Skip to main content

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 1934))

  • 1745 Accesses

Abstract

Although the hyperbolic r.w. defined on a regular hyperbolic planar grid satisfies an invariance principle, as we shall see, the picture radically differs from the Euclidean setting: the infinite grid is the whole space when the step is too small. We also give a radial discretization of Bochner’s subordinated hyperbolic Brownian motions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airault H. (2004). Stochastic analysis on finite dimensional siegel disks, approach to the infinite dimensional Siegel disk and upper half plane. Bull. Sci. Math. 128 (7) 605–659.

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambroladze A., Wallin H. (2000). Random iteration of Möbius transformations and Furstenberg’s theorem. Ergod. Th. Dynam. Sys. 20 (4) 953–962.

    Article  MATH  MathSciNet  Google Scholar 

  3. Applebaum D. (2000). Compound Poisson processes and Lévy processes in groups and symmetric spaces. J Theor. Probab. 13 (2) 383–425.

    Article  MATH  MathSciNet  Google Scholar 

  4. Applebaum D., Estrade A. (2000). Isotropic Lévy processes on Riemannian manifolds. Ann. Probab. 28 (1), 166–184.

    Article  MATH  MathSciNet  Google Scholar 

  5. Applebaum D. (2001). Lévy processes in stochastic differential geometry., in Lévy processes, theory and applications, Barndorff-Nielsen O.E. et al. editors, Birkhäuser, Basel.

    Google Scholar 

  6. Baxendale P. H. (1986). Asymptotic behavior of the stochastic flows of diffeomorphisms: two case studies. Probab. Th. Rel. Fields 73 51–85.

    Article  MATH  MathSciNet  Google Scholar 

  7. Beardon A.F. (1983). Geometry of discrete groups. Springer, Berlin.

    Book  MATH  Google Scholar 

  8. Beardon A.F. (1996). Some remarks on non-discrete Möbius groups. Ann. Acad. Sci. Fenn. 21 69–79.

    MATH  MathSciNet  Google Scholar 

  9. Benedetti R., Petronio C. (1992). Lectures on hyperbolic geometry. Springer, Berlin.

    Book  MATH  Google Scholar 

  10. Bloom W. R., Heyer H. (1995). Harmonic analysis on probability measures on hypergroups, W. de Gruyter, Berlin-New-York.

    Book  MATH  Google Scholar 

  11. Blum G. (1984). A note on the central limit theorem for geodesic random walks. Bull. Austral. Math. Soc. 30 (2) 169–173.

    Article  MATH  MathSciNet  Google Scholar 

  12. Bougerol Ph., Lacroix J. (1985). Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics 8, Birkhäuset, Basel.

    Book  MATH  Google Scholar 

  13. Breuillard E. Random walks on Lie groups, preprint available at http://www.dma.ens.fr/~breuilla/part0bg.ps.

    Google Scholar 

  14. Chen S.S., Greenberg L. (1974). Hyperbolic spaces in Contributions to analysis, a collection of papers dedicated to Lipman Bers, 49–87, Academic Press, New York.

    Google Scholar 

  15. Cohen S. (1995). Some Markov properties of stochastic differential equations with jumps. Seminaire de Probabilités XXIX, 181–193, Springer, Berlin.

    Google Scholar 

  16. Cohen J. M., Colonna F. (1984). Embeddings of trees in the hyperbolic disk. Compl. Var. Th. Appl. 24 311–335 and corrigendum (2004) in vol 49 (3) 227–228.

    MathSciNet  Google Scholar 

  17. Davydov Yu., Nagaev A.V. (2002). Theoretical aspects of simulation of random vectors having a symmetric stable distribution. J. Multivar. Anal. 82 (1) 210–235.

    Article  MATH  MathSciNet  Google Scholar 

  18. De La Harpe P. (1983). Free groups in linear groups. Enseignement math. 29 129–144.

    MATH  Google Scholar 

  19. Durrett R. (1996). Probability: Theory and examples, second edition, Duxburry press, Belmont.

    Google Scholar 

  20. Ethier S.N., Kurtz Th.G. (1986). Markov processes, characterization and convergence, Wiley, New-York.

    Book  MATH  Google Scholar 

  21. Gangolli R. (1964). On the construction of certain diffusions on a differentiable manifold. Zeit. f. Warsch. 2, 406–419.

    Article  MATH  MathSciNet  Google Scholar 

  22. Getoor R.K. (1961). Infinitely divisible probabilities on the hyperbolic plane. Pacific J. Math. 11 1287–1308.

    Article  MATH  MathSciNet  Google Scholar 

  23. Gilman J. (1995). Two-generators discrete subgroups of PSL (2, ℝ). Memoirs of the A.M.S. 561.

    Google Scholar 

  24. Graczyck P., Stós A. (2004). Transition density for stable processes on symmetric spaces. Pacific J. Math. 217 (1) 87–100.

    Article  MathSciNet  Google Scholar 

  25. Gruet J-C. (1998). Jacobi radial stable processes. Ann. Math. Blaise Pascal 5 (2) 39–48.

    Article  MATH  MathSciNet  Google Scholar 

  26. Jorgensen E. (1975). The central limit problem for geodesic random walks. Zeit. f. Warsch. 32 (1) 1–64.

    Article  Google Scholar 

  27. Kanai M. (1985). Rough isometries and combinatorial approximations of noncompact Riemannian manifolds. J. Math. Soc. Japan 37, 391–413.

    Article  MATH  MathSciNet  Google Scholar 

  28. Kanai M. (1986). Rough isometries and the parabolicity of Riemannian manifolds. J. Math. Soc. Japan 38, 277–288.

    Article  MathSciNet  Google Scholar 

  29. Katok A., Haselblatt B. (1995). Introduction to the modern theory of dynamical systems, Encyclopedia of Math. vol 54. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  30. Kunita H. (1995). Some problems concerning Lévy processes on Lie groups. Proceedings of Symposia in Pure Mathematics 57, 323–341. A.M.S.

    Article  MathSciNet  Google Scholar 

  31. Kuranishi M. (1949). Two elements generations on semisimple Lie groups. Kodai Math. Sem. Reports 1 (5–6) 9–10.

    Article  MathSciNet  Google Scholar 

  32. Lyndon R., Ullman J.L. (1969). Groups generated by 2 parabolic linear fractional transforms. Canad. J. Math. 21 1388–1403.

    Article  MATH  MathSciNet  Google Scholar 

  33. Pinsky M.A. (1975). Isotropic transport process on Riemannian manifold. Trans. Amer. Math. Soc. 218 353–360.

    Article  MathSciNet  Google Scholar 

  34. Stroock D.W., Varadhan S.R.S. (1973). Limit theorems for random walks on Lie groups. Sankhyā Ser. A 35 277–294.

    MATH  MathSciNet  Google Scholar 

  35. Sullivan D. (1985). Quasicoformal homeomorphisms and dynamics II: structural stability implies hyperbolicity for Kleinian groups. Acta Math. 155 253–289.

    Article  Google Scholar 

  36. Terras A. (1985). Harmonic analysis on symmetric spaces and applications, Springer, Berlin.

    Book  MATH  Google Scholar 

  37. Varopoulos N. Th. (1984). Brownian motion and random walks on a Riemannian manifold. Ann. Inst. Fourier 34 (2) 243–269.

    Article  MATH  MathSciNet  Google Scholar 

  38. Wehn D. (1960). Limit distributions on Lie groups, Yale thesis.

    Google Scholar 

  39. Whitt W. (1980). Some useful functions for functional limit theorems. Math. Oper. Res. 5 67–85.

    Article  MATH  MathSciNet  Google Scholar 

  40. Zeuner H.M. (1989). The central limit theorem for Chébli-Trimèche hypergroups. J. Theor. Probab. 2 (1) 51–63.

    Article  MATH  MathSciNet  Google Scholar 

  41. Zeuner H.M. (1993). Invariance principles for random walks on hypergroups on ℝ+ and ℕ. J. Theor. Probab. 7 (2) 225–245.

    Article  MathSciNet  Google Scholar 

  42. Zeuner H.M. (1995). Domains of attraction with inner norming on Sturm-Liouville hypergroups. J. Appl. Analysis 1 213–221.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gruet, JC. (2008). Hyperbolic random walks. In: Donati-Martin, C., Émery, M., Rouault, A., Stricker, C. (eds) Séminaire de Probabilités XLI. Lecture Notes in Mathematics, vol 1934. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77913-1_14

Download citation

Publish with us

Policies and ethics