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Campus Universitaire des Cézeaux, 63177 Aubière cedex, France
e-mail: Laurent.Serlet@math.univ-bpclermont.fr

Summary. We show that a negative drift can be created on a Brownian trajectory
by cutting excursions according to a certain Poisson measure. Conversely a negative
drift can be annihilated by inserting independent excursions again according to a
certain Poisson measure. We first give results in discrete time by considering the
random walks as contour processes of Galton-Watson trees and then pass to the
limit.
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1 Introduction

1.1 Summary of results and methods

It is possible to create a drift on a linear Brownian motion by cutting some
excursions of this trajectory. By excursion we mean a connected part of this
trajectory above a certain level. These excursions are chosen according to a
certain Poisson measure defined conditionally on the initial trajectory. This
is explained in section 2 below but this result is essentially Proposition 4
of [AS]. However the arguments are given there in the setting of random
snakes, a subject we want to avoid in the present paper in order to make
it readable by a broader public. So we give anew an exposition of theses
results, in a slightly more general setting, with more connections to trees and
give the ideas of the proofs skipping some details. Our point of view is to
approximate (reflected) Brownian motion by random walks, seen as contour
processes of Galton-Watson forests. Then the cutting of (discrete) excursions
on the contour process amounts to a percolation on the Galton-Watson trees
which gives again Galton-Watson trees, with a new offspring law, for which
the contour process is a random walk, with a higher downward bias. The
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version for continous time i.e. Brownian motion as stated in Theorem 3, is
obtained by examining the limit of this cutting procedure.

A natural question is to ask whether this operation can be reversed, that
is, if a negative drift can be annihilated by adding excursions. The answer is
positive and is the subject of section 3. Again the problem is easily solved
on random walks interpretating them as the contour processes of trees. The
issue is to see how a Galton-Watson tree can be “decorated” by the graft of
small trees on certain vertices to give a new Galton-Watson tree with higher
progeny. All our Galton-Watson trees have geometric progeny law and we rely
simply on a property of these laws. The next step, explained in subsection 3.3,
is to consider the continuous-time limit in order to state Theorem 7, our main
result. This result specifies how excursions must be added to a Brownian
motion with drift to destroy the drift, a procedure that is roughly the converse
of the cutting procedure specified in Theorem 3. We conclude this paper with
an example of application. Other applications to Brownian snake and super-
Brownian motion will be given in [Se].

1.2 Bibliographical notes

The idea of percolation on the edges of a Galton-Watson tree to retain the
connected component of the root is exploited for instance by Aldous and Pit-
man in [AP1] to define what they call a pruning process. They describe the
transition rates and give special attention to the Poisson offspring law. This
idea of pruning appears also in the setting of the Continuum Random Tree
(CRT) in [AP2] where Poissonian pruning leads to a description of a self-
similar fragmentation process. This work is related to the results stated here
because CRT can be represented by a Brownian excursion: this correspon-
dence is used in [AS2]. Conversely the idea of grafting small trees to a forest
in order to obtain a new forest having a law of similar type but with different
parameters is central in [PW]. The edges of the trees and forest considered
there have variable lengths; a composition rule is proved and the link with
Williams decomposition for the Brownian trajectory is explained. Galton-
Watson forests with random edge lengths are also studied by Duquesne and
Winkel in [DW]. They define a growing family of these trees which is con-
sistent under a Bernoulli percolation on vertices that is described there as
“tree coloring”. They show the existence of a limit called the Lévy tree in the
topological setting of real trees . This setting avoids the coding of trees by
real valued processes such as the height process. Our point of view is com-
pletely opposite since we seek results on real-valued processes by seeing them
as limit of contour processes of forests. In [EW] an operation of tree pruning
and regrafting is studied for real trees; for the continuous tree associated to
a real valued continuous function, it consists in cutting an excursion in the
graph of the function and inserting it to another place.
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2 How to create a negative drift ?

In this paper we deal with random rooted trees. We refer to [AP1] for the
general terminology of trees, for instance the notions of tree, vertex, edge,
root,. . . and also the notion of Galton-Watson tree. We concentrate here on
geometric Galton-Watson trees : each “vertex” has, independently of the oth-
ers, an offspring distributed according to a geometric law G(ρ) of parameter
ρ ∈ [1/2, 1). We mean that the probability for a vertex to have k children is
ρ (1− ρ)k for every k ∈ N = {0, 1, 2, . . .}. The expectation of this law is 1

ρ − 1
and then is smaller or equal to 1 for ρ ∈ [1/2, 1) which implies the a.s. finitness
of the tree. For basic facts on Galton-Watson trees such as the previous one
the reader can refer to [AP1] Section 2.2. Moreover we let ρ depend on the
height of the vertex, that is the number of generations computed from the
root, but we still suppose that ρ(·) ∈ [1/2, 1). In the following we will denote
GW(ρ(·)) this inhomogeneous Galton-Watson random tree. Let us perform a
percolation with probability p ∈ (0, 1) on the edges of this tree, that is, each
edge is kept with probability p, independently of the others. Again the value
of p may depend of the height in the tree i.e. we cut with probability p(t)
an edge linking two vertices of respective heights t and t+ 1. The connected
component of the root in the remaining tree is still a inhomogeneous Galton-
Watson tree but now the generating function of the number Ñ of children of
a vertex can be obtained as below, by conditioning on the number of children
N that this vertex had in the original tree :

E
(
sÑ
)

= E
[
E
(
sÑ
∣∣∣N)]

= E
[
(p s+ 1− p)N

]
=

ρ

1− (1− ρ)(p s+ 1− p)

=
ν

1− (1− ν) s where ν = ν(·) =
ρ(·)

ρ(·) + p(·)− p(·)ρ(·) .

This means that this (inhomogeneous) Galton-Watson tree has a geometric
offspring law of parameter ν(·) given above.

A convenient way to describe a tree is to use the contour process of this
tree. To our purpose it is more convenient to work with forests –in our case
Galton-Watson forests– than trees. A forest is merely a sequence of indepen-
dent trees. Such a forest can be seen as a sort of tree by connecting with an
edge each root of the independent trees to an added vertex that we call the
root of the forest. This would create an (infinite) tree with an infinite number
of individuals at the first generation. We will still denote GW(ρ(·)) the forest
consisting of independent (inhomogeneous) Galton-Watson trees with G(ρ(·))
offspring law where ρ(·) is a function of the height in the tree. The contour
process of such a forest is a nearest-neighbour random walk (X(k), k ∈ N) on
N, reflecting at 0 and with transition law given, for j > 0, by :
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P(X(k + 1) = j − 1|X(k) = j) = ρ(j) = 1− P(X(k + 1) = j + 1|X(k) = j)

and whose is denoted RW(ρ(·)). To be more specific we consider for this
contour process that the roots of the independent trees belonging to the forest
are at height 1 and the passage from one tree to the following consists for
the contour process in a passage at 0. How can we interpret the percolation
procedure of the tree on the contour process ? Cutting an edge and keeping
only the part containing the root amounts to cut an excursion of the contour
process. More precisely, let us denote by (X(t), t ≥ 0) the continuous time
process which coincides with (X(k)) at all integer times and which is piecewise
linear between those times. We denote E(X) the epigraph of (X(t), t ≥ 0) i.e.
the set of points of [0,+∞)2 which are under the graph of (X(t), t ≥ 0) :

E(X) = {(s, t) ∈ [0,+∞)2; X(s) > t}. (1)

For each (s, t) ∈ E(X) we denote by [α(X, s, t), β(X, s, t)] the excursion of X
above level t and containing time s :

α(X, s, t) = sup{s′ < s; X(s′) = t}, (2)
β(X, s, t) = inf{s′ > s; X(s′) = t}. (3)

For a non-negative function b on N, we consider the Poisson point measure Λ
with intensity ∑

(s,t)∈N2∩E(X)

b(t)
β(X, s, t)− α(X, s, t)− 1

δ(s,t)

where δ(s,t) denotes the Dirac measure at (s, t). Of course the law of Λ given
above must be understood as a conditional law given X. The “part to cut” is
defined as

C =
⋃

(s,t) : Λ((s,t)) �=0

[α(X, s, t), β(X, s, t)]. (4)

We can now state the result of the above discussion.

Proposition 1 The process Y (s) = X(A(s)) where

A(s) = inf
{
u;
∫ u

0
1{v �∈C} dv > s

}
(5)

is the contour process of the connected component of the root after percolation
at rate p = e−b of the forest having contour X. In other words, assuming that
X is a (interpolated) random walk on N following the law RW(ρ(·)) as defined
above then Y is a (interpolated) random walk on N distributed as RW(ν(·))
where

ν(·) =
ρ(·)

ρ(·) + p(·)− p(·) ρ(·) .
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We now want to see the counterpart of this result on diffusion processes,
making such processes appear as limit of random walks. We consider a se-
quence of random walks on 1√

N
N, at first indexed by k ∈ 1

N N, that we denote
(XN (k); k ∈ 1

N N), which is reflecting at 0 and has the transition law given,
for every j ∈ 1√

N
N \ {0} and every k ∈ 1

N N, by

P

(
XN (k +

1
N

) = j − 1√
N

∣∣∣XN (k) = j

)
=

1
2

+
θN (j)
2
√
N
, (6)

P

(
XN (k +

1
N

) = j +
1√
N

∣∣∣XN (k) = j

)
=

1
2
− θN (j)

2
√
N

(7)

where θN is a sequence of continuous non-negative functions on R+. We extend
XN to continuous time by linear interpolation between consecutive times of
k ∈ 1

N N. Such a rescaled reflecting random walk will be denoted RW(N, θN )
from now on. In the case θN = 0 we call it, as usual, a standard rescaled
reflecting random walk. The following “classical” result, gives the limit in law
when (θN ) converges. It can be deduced from general results on interpolated
Markov chains, for instance as stated in [Ku] except that it applies to a non-
reflecting process. However we give a short proof in the appendix, as a corollary
of Donsker Theorem, for the convenience of the reader and because this proof
can easily be generalized to path-valued processes which is the setting of
the applications we will develop in [Se]. We recall that a reflecting Brownian
motion with non-positive drift −θ(·) has the law of (|Zt|) where (Zt) is a
solution of the stochastic differential equation dZt = dBt − sign(Zt) θ(Zt) dt
where (Bt) is a standard Brownian motion.

Proposition 2 If the sequence (θN ) of non-negative continuous functions
converges to the continuous function θ on R+, uniformly on compact sets
of R+, then the law of the process (XN (s); s ≥ 0) described above converges
weakly to the law of a reflecting Brownian motion with drift −θ(·).
The procedure of cutting excursion described above on discrete random walks
also makes sense on continuous time processes and we are able to state a
continuous time analogue of Proposition 1. The following theorem shows that
it is possible to create a negative drift on a linear Brownian motion by cutting
certain excursions (case θ = 0) or more generally to increase the negative drift
of a Brownian motion.

Theorem 3 Let (X(t), t ≥ 0) be a Brownian motion reflecting at 0 with
continuous drift −θ(·). Let b be a continuous function on R+ and Λ be a point
measure which is, conditionally on X, a Poisson measure with intensity

2 b(t)
β(X, s, t)− α(X, s, t)

1E(X)(s, t) ds dt

where E(·), α and β are defined by (1,2,3). Also C is still defined by (4) and
we set Y (t) = X(A(t)) where A(·) is given by (5).



220 L. Serlet

Then (Y (t), t ≥ 0) is a Brownian motion reflecting at 0 with drift −(θ(·)+
b(·)).
Proof. We consider XN a rescaled reflecting random walk RW(N, θ) so that
in particular, for j ∈ 1√

N
N \ {0},

P

(
XN (k +

1
N

) = j − 1√
N

∣∣∣XN (k) = j

)
= ρN (j) =

1
2

+
θ(j)
2
√
N
.

Let ΛN be the Poisson point measure with intensity

μN =
1

N
√
N

∑
(s,t)∈( 1

N N× 1√
N

N)∩E(XN )

2 b(t)
β(XN , s, t)− α(XN , s, t)− 1

N

δ(s,t) .

We set
CN =

⋃
(s,t) : ΛN ((s,t)) �=0

[α(XN , s, t), β(XN , s, t)]

and

AN (s) = inf
{
u;
∫ u

0
1{v �∈CN } dv > s

}
and, finally, YN = XN ◦ AN . We apply Proposition 1 with a change of scale.
We deduce that (YN (k), k ∈ 1

N N) is a random walk on 1√
N

N reflecting at 0
and with transition probabilities given, for j ∈ 1√

N
N by

P

(
YN (k +

1
N

) = j − 1√
N

∣∣∣YN (k) = j

)
=

ρN (j)

1− (1− ρN (j))
(

1− e− 2b(j)√
N

)
=

1
2

(
1 +

θ(j) + b(j) + εN (j)√
N

)
where εN is a function converging to 0 uniformly on compact sets. We now
let N → +∞. By Proposition 2 we know that YN converges in law to a
Brownian motion reflecting at 0 with drift −(θ(·) + b(·)). Proposition 2 also
applies to XN . By Skorohod representation Theorem we may suppose that
XN converges to X uniformly on compact sets of R+, almost surely. Then,
skipping technicalities explained in the proof of Proposition 4 of [AS], μN is
shown to converge to the intensity given in the Theorem and we deduce that
YN = XN ◦AN converges to Y = X ◦A. We conclude that the law of Y is as
stated.

3 How to create a positive drift ?

We have seen in the previous section that we can create a negative drift
on a Brownian trajectory by cutting excursions. Conversely is it possible to
reduce or even annihilate a negative drift by adding excursions ? The answer
is affirmative as stated in Theorem 7 for total annihilation of the drift and
Theorem 9 for reduction of the drift.
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3.1 Graft on a Galton-Watson tree

Our first issue is the way to transform a subcritical geometric Galton-Watson
tree into another one with bigger progeny expectation. We start with an ele-
mentary lemma on the geometric law whose proof is left to the reader.

Lemma 4 Let 0 < ρ < ν < 1, Zν and Zρ be independent random variables
distributed according to the respective laws G(ν) and G(ρ). Let U be an in-
dependent Bernoulli variable with expectation p = ν−ρ

ν−νρ . Then Zν + U Zρ is
distributed according to the geometric law G(ρ).

We will now apply this elementary result to the “decoration” of a Galton-
Watson tree. Considering a forest GW(ν(·)) we add to each vertex v, with
probability p(h(v)) depending of the height h(v) of vertex v, an independent
tree GW(ρ(h(v) + ·)) rooted at v. In case of addition effectively occuring at
vertex v, the added tree is placed at the right of the subtrees already born at
vertex v.

Proposition 5 The forest obtained from the forest GW(ν(·)) by “decoration”
at probability p(·) = ν(·)−ρ(·)

ν(·)−ν(·)ρ(·) using GW(ρ(·))–trees as described above, is a
GW(ρ(·))–forest.
Proof. The independence properties being clearly satisfied, it suffices to prove
that a vertex v of the decorated tree has a progeny distributed according to
the G(ρ(h(v)))–geometric law. This is obvious if v is supposed to belong to
one of the added trees. Otherwise the vertex v belonged to the original forest
and the number of its children is Z1 + U Z2 where Z1 is the original number
of children, distributed as G(ν(h(v)), Z2 is the number of children possibly
added, and U equals 1 if decoration occurs at vertex v. But the lemma shows
that this variable is G(ρ(h(v))–geometric.

3.2 Translation to random walks

We can translate this result in the language of random walks. The contour
process of a GW(ν(·))–forest is a random walk (X(k), k ∈ N) on N, reflecting
at 0 whose law is, as denoted before, RW(ν(·)). Moreover we prolong this ran-
dom walk into a continuous time process (X(s), s ≥ 0) by linear interpolation
between consecutive integer times. For each (s, t) ∈ N×N, we define E(s,t) as
the contour process of a GW(ρ(t+ ·))–tree i.e. a reflecting random walk that
is going down with probability ρ(t+ ·) and stopped after a number of returns
to 0 which is equal to the progeny of the first generation thus distributed as
G(ρ(t)). These processes are supposed to be independent. We set

p(t) =
ν(t)− ρ(t)

ν(t)− ν(t) ρ(t) .
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Conditionally on (X(s)), for every s ∈ N such that X(s + 1) = X(s) − 1,
with probability p(X(s)), the walk E(s,X(s)) is inserted in the graph of X at
(s,X(s)). Let Y be the walk obtained after these insertions have been done
altogether( they are of finite number on a bounded time interval). The reader
wishing to see formulas describing this procedure can refer to the proof of
Proposition 7. We let the reader check that this procedure of insertion in the
graph of X to obtain Y is the translation into the language of contour process
of the “decoration” procedure of a forest described in Proposition 5. Therefore
we can conclude on the following result.

Proposition 6 Y is the contour of a GW(ρ(·))–forest and as a consequence
is a reflecting random walk with law RW(ρ(·)).

3.3 From discrete time to continous time

The problem now consists in stating a continuous time analogue of Proposi-
tion 6.

Theorem 7 Let (X(t), t ≥ 0) be a Brownian motion reflecting at 0 with
continuous non-positive drift −θ(·). We define, conditionally on X, a Poisson
point measure Λ on R+ × C(R+,R+) with intensity

2 θ(X(s)) ds n(de) (8)

where n(·) denotes the Itô measure of positive excursions of Brownian motion.
Let σ(e) denote the duration (length) of an excursion e. The function

Au = u+
∫

{s≤u}
σ(e) Λ(ds de)

is increasing right-continuous and has a jump Au −Au− = σ(eu) for every u
such that Λ({(u, eu)}) �= 0. We define (Y (v))v≥0 by Y (v) = X(u) if v = Au

and Y (v) = X(u) + eu(v −Au−) for Au− ≤ v < Au.
Then (Y (t), t ≥ 0) is a Brownian motion reflecting at 0.

Proof. We let (XN (s), s ∈ 1
N N) be a RW(N, θ) random walk. Our first goal

is to apply Proposition 6 to XN so that we now set

νN (t) =
1
2

+
θ(t)
2
√
N
, ρN (t) =

1
2

and

pN (t) =
νN (t)− ρN (t)

νN (t)− νN (t) ρN (t)
=

2 θ(t)/
√
N

1 + θ(t)/
√
N
. (9)

We let (Us, s ∈ 1
N N) be a family of independent uniform variables on (0, 1)

and (B(N, s), s ∈ 1
N N) be independent copies of a rescaled reflecting standard

RW(N, 0) random walk BN , stopped at the time of the g-th return at 0 where
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g is an independent random variable with law G(1/2). We consider the point
measure ΛN on R+ × C(R+,R+) given by

ΛN =
∑

s∈ 1
N N

1{XN (s+ 1
N )=XN (s)− 1√

N
}1{Us≤pN (XN (s))} δ(s,B(N,s)). (10)

We set
AN

u = u+
∫

{s≤u}
ΛN (ds de) σ(e)

where σ(e) is the time of the last return to 0 of e. We define (Y N (v))v≥0 by
Y N (v) = XN (u) if v = AN

u and Y N (v) = XN (u) + eu(v −AN
u ) if

AN
u− ≤ v < AN

u = AN (u−) + σ(eu) where ΛN ({(u, eu)}) �= 0.

The effect of this time change is to insert, at point (s,XN (s)) preceding a
descent of XN , with probability pN (XN (s)), a rescaled reflecting standard
random walk stopped after a number of return to 0 distributed according to
G(1/2). It follows from Proposition 6 that (Y N (s)) is a rescaled reflecting
standard random walk. We now let N → +∞. As before, we may suppose
that (XN (s)) converges uniformly on every compact to (X(s)), almost surely,
where (X(s)) is a Brownian motion with drift −θ(·). Also Y N converges in
law to a Brownian motion, reflecting at 0.

From now on we denote C∗(R+,R+) the set of the e ∈ C(R+,R+) such
that there exists σ(e) = inf{s; ∀s′ ≥ s, e(s′) = 0}. Let us consider an interval
p ∈ Z+ and K1, . . . ,Kp be disjoint Borel subsets of C∗(R+,R+) ∩ {σ ≥ η}.
We thus have for every i ≤ p, n(Ki) < +∞ and we suppose moreover that
n(∂Ki) = 0. Let λ1, . . . , λp be positive real numbers. Let us define, for any
interval [a, b] of R+, the set DN (a, b) consisting in the times of descents of XN

over [a, b] :

DN (a, b) =
{
s ∈ [a, b] ∩ 1

N
N; XN (s+

1
N

) = XN (s)− 1√
N

}
.

Then, for 0 < t1 < t2, we have

log E

[
exp−

(
p∑

i=1

λi Λ
N ([t1, t2]×Ki)

)∣∣∣XN

]
(11)

=
∑

s∈DN (t1,t2)

log

(
1 +

p∑
i=1

(e−λi − 1) P[B(N, s) ∈ Ki] P[Us ≤ pN (XN (s))
∣∣∣XN ]

)

But, as N → +∞,

P(B(N, s) ∈ Ki) P(Us ≤ pN (XN (s)) |XN ) ∼ 4 θ(X(s)) n(Ki)
N

. (12)
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We have used Equation (9) which shows

pN (XN (s)) ∼ 2√
N
θ(X(s))

and Lemma 13 below which asserts that
√
N P (BN ∈ Ki) → 2n(Ki).

At this point we need the following lemma.

Lemma 8 Let 0 < t1 < t2 and ϕ be a continuous function on [t1, t2]. Then,
as N → +∞, almost surely,

1
N

∑
s∈DN (t1,t2)

ϕ(s) → 1
2

∫ t2

t1

ϕ(s) ds

Proof of the lemma. For any interval [a, b] of R+, we denote #DN (a, b)
the number of descents of XN over [a, b] i.e. the number of s in DN (a, b). We
introduce a partition [t1 = s0 < s1 < . . . < sk+1 = t2] of the interval [t1, t2].
By immediate bounds,

1
N

∑
s∈DN (t1,t2)

ϕ(s) ≤ 1
N

k∑
i=0

#DN (si, si+1) sup
[si,si+1]

ϕ. (13)

But an elementary count of climbs and descents gives

2 #DN (si, si+1) = N (si+1 − si)−
√
N(XN (si+1)−XN (si))

which implies that, almost surely,

#DN (si, si+1) ∼ N
si+1 − si

2
.

From Inequality (13), we deduce

lim sup
N→+∞

1
N

∑
s∈DN (t1,t2)

ϕ(s) ≤ 1
2

k∑
i=0

(si+1 − si) sup
[si,si+1]

ϕ.

When the stepsize of the considered subdivision goes to 0, the right-hand side
above converges to

∫ t2
t1
ϕ/2. By symmetrical bounds we obtain obviously

lim inf
N→+∞

1
N

∑
s∈DN (t1,t2)

ϕ(s) ≥ 1
2

∫ t2

t1

ϕ

and the proof of the lemma is complete.

Coming back to the proof of the theorem and more precisely Equation (11),
we see, using (12) and a Taylor expansion of the logarithm, that the right-hand



Creation or deletion of a drift on a Brownian trajectory 225

side in (11) has the same asymptotic behaviour as∑
s∈DN (t1,t2)

p∑
i=1

(e−λi − 1)
4 θ(X(s)) n(Ui)

N
.

To see this, the reader can note that (12) holds uniformly for s ∈ [t1, t2]. But
the previous lemma implies that this quantity converges, as N → +∞, to

2
∫ t2

t1

ds θ(X(s))
p∑

i=1

(e−λi − 1) n(Ui).

So, it follows from the preceding derivation and from obvious independence
properties that, for a function ϕ : R+ × C∗(R+,R+) → R+ of the type

ϕ(s, e) =
∑
i,j

λi,j 1[ti,ti+1)(s) 1Uj
(e)

with Uj ⊂ {e;σ(e) ≤ η} for η > 0, we have

lim
N→+∞

E

[
exp
∫ t

0
ϕ(s, e) ΛN (ds de)

∣∣∣XN

]
= exp

[
2
∫
n(de)

∫ t

0
ds θ(X(s))

(
eϕ(s,e) − 1

)]
.

We deduce the convergence in law of ΛN toward a Poisson measure Λ on
R+ × C(R+,R+) with intensity

2 θ(X(s)) ds n(de).

By Skorokhod representation theorem, we may even suppose that the ΛN are
such that, almost surely, the measure ΛN converges weakly to the measure Λ,
when restricted to any set [0, t] × {σ > η} where η, t > 0. It follows that we
can suppose that on each such set, the atoms of ΛN converge to the atoms of
Λ. This implies that

u→
∫

{s≤u}
ΛN (ds de) 1{σ(e)≥η} σ(e)

converges to

u→
∫

{s≤u}
Λ(ds de) 1{σ(e)≥η} σ(e)

in the Skorokhod topology on càdlàg functions. Moreover

E

(∫
{s≤u}

ΛN (ds, de) 1{σ(e)≤η} σ(e)

)

≤ E

⎛⎝ ∑
s≤u,s∈ 1

N N

σ(B(N, s)) 1{σ(B(N,s)≤η} p(XN (s))

⎞⎠
≤ c

√
N E

(
σ(BN ) 1{σ(BN )≤η}

)
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and this last quantity is small for all N , provided η is chosen small enough,
by Lemma 14. We can thus neglect small durations up to a set of small
probability. We deduce the convergence in probability of Y N as defined above
to Y as defined in the statement of the theorem. But we know that the limit
in law of Y N is Brownian motion so we can conclude on the law of Y and the
proof is complete.

At the price of a complexification of the notations, the ideas of the previous
proof show that we can also reduce a drift −θ to b−θ ≤ 0 by adding excursions
of a Brownian motion (subjected itself to the drift b− θ).

Theorem 9 Let (X(t), t ≥ 0) be a Brownian motion reflecting at 0 with
continuous non-positive drift −θ(·). Let b be a non-negative continuous func-
tion on R+ such that b ≤ θ. We define, conditionally on X, a Poisson point
measure Λ on R+ × C(R+,R+) with intensity

2 b(X(s)) ds n(X(s))(de) (14)

where n(t) denotes the Itô measure of positive excursions of Brownian motion
with drift (b− θ)(t+ ·). The function

Au = u+
∫

{s≤u}
σ(e) Λ(ds de)

is increasing right-continuous and has a jump Au −Au− = σ(eu) for every u
such that Λ({(u, eu)}) �= 0. We define (Y (v))v≥0 by Y (v) = X(u) if v = Au

and Y (v) = X(u) + eu(v −Au−) for Au− ≤ v < Au.
Then (Y (t), t ≥ 0) is a Brownian motion reflecting at 0 with drift

−θ(·) + b(·).

3.4 Extension and applications

Theorem 7 remains true if (X(t)) is a Brownian motion starting from x ∈ R
with continuous non-positive drift −θ(·) and in this case (Y (t)) is a Brownian
motion (starting from x ∈ R).

Indeed we can look at Theorem 7 when applied on [Tx, T
′
0] where Tx is the

hitting time of x > 0 and T ′
0 the following return to 0. As x is arbitrary and by

translation invariance this prove the result mentioned above for a Brownian
motion starting from x ∈ R up to the hitting time of any lower value. We
give an application establishing a connection between Brownian motion and
Brownian motion with drift.

Proposition 10 Let Px and Pθ
x denote respectively the law of Brownian mo-

tion and Brownian motion with continuous non-positive drift −θ(·), both start-
ing at x > 0. Let T0 denote the hitting time of 0. Then we have
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Eθ
x

[
exp−

∫ T0

0
g(Bs) ds

]
= Ex

[
exp−

∫ T0

0
f(Bs) ds

]
(15)

when f, g are continuous non-negative functions such that f + θ f̃ = g where
f̃ denotes the function

f̃(x) = 2
∫
n(de)

(
1− exp−

∫ σ

0
f(x+ er) dr

)
which is a solution of the Ricatti differential equation y′ = −2 f + y2.

Proof. The Equality (15) is a straightforward consequence of Theorem 7
and the classical exponential formula for Poisson measures. We then sketch
the proof that f̃ satisfies the given Ricatti equation:

1
2
f̃(x) =

∫
n(de)

∫ σ

0
exp−

(∫ s

0
f(x+ er) dr

)
f(x+ es) ds

=
∫ +∞

0
dy f(x+ y)

· exp−2
[∫ y

0
dh

∫
n(de)

(
1− exp−

∫ σ

0
f(x+ h+ eu) du

)]
=
∫ +∞

0
dy f(x+ y) exp−2

∫ y

0
dh f̃(x+ h)

=
∫ +∞

x

dy f(y) exp−2
∫ y

x

dh f̃(h)

The first equality is elementary calculus, the third one uses only the definition
of f̃ and the fourth one is a change of variables. The second one involves more
sophisticated arguments; first Bismut’s description of the Brownian excursion
under Itô measure; then we use the excursions above the future infimum of
(e(r), r ≤ s) which is a three dimensional Bessel process run up to a hitting
time; these excursions have the same intensity as the excursions of a reflected
Brownian motion and we finish with the exponential formula. Finally the last
equality leads easily to the Ricatti equation.

As a (trivial) example consider the case of constant θ and f so that g is
also constant. We obtain, using the well-known Laplace transform of T0 under
Px,

Eθ
x

[
e−g T0

]
= Ex

[
e−f T0

]
= e−x

√
2 f = e

−x
(√

θ2+2g−θ
)

as could also be obtained by an application of Girsanov Theorem.
More sophisticated applications, in the setting of super-processes will be

given in [Se].
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4 Appendix

4.1 Proof for Proposition 2

To simplify notation we restrict ourselves to the convergence of (XN (s),
s ∈ [0, 1]). We denote (UN ) a reflecting and rescaled standard walkRW(N, 0).
Let F be a continuous function on C([0, 1],R+). By the definition of the law
of XN given by Formulas (6, 7), we have

E [F (XN )] = E

[
F (UN )

×
N−1∏
k=0

(
1− 1{UN ( k

N )�=0}

(
UN (

k + 1
N

)− UN (
k

N
)
)
θN (UN (

k

N
))
)]

.

We introduce a reflecting Brownian motion (Bs)s∈R+ , starting from B0 = 0
and the stopping times : TN

0 = 0,

TN
k+1 = inf

{
s > TN

k , |Bs −BT N
k
| = 1√

N

}
.

It is clear that (BT N
k
, 0 ≤ k ≤ N) is identically distributed as (UN (k/N),

0 ≤ k ≤ N). We set

BN
s = BT N

k
+ (N s− k)(BT N

k+1
−BT N

k
) for s ∈ [k/N, (k + 1)/N).

We get
E [F (XN )] = E

[
F (BN ) exp(LN )

]
where

LN =
N−1∑
k=0

log
(

1− 1{B
T N

k
�=0} (BT N

k+1
−BT N

k
) θN (BT N

k
)
)

= −
N−1∑
k=0

1{B
T N

k
�=0} (BT N

k+1
−BT N

k
) θN (BT N

k
)

−1
2

1
N

N−1∑
k=0

1{B
T N

k
�=0} θN (BT N

k
)2 +RN

with RN being a remainder which converges to 0 in probability. By the Markov
property for B and the scaling property of Brownian motion we can write, for
k ≤ N ,

TN
k =

1
N

k∑
j=1

Vj
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where V1, V2, . . . are independent and distributed as the hitting time of {1,−1}
for a Brownian motion starting from 0. In particular E(V1) = 1. By Kol-
mogorov’s Lemma (or Doob’s inequality) we deduce for ε > 0, that

P

[
sup
k≤N

|TN
k − k

N
| ≥ ε

]
= P

⎡⎣ 1
N

sup
k≤N

∣∣∣∣∣∣
k∑

j=1

(Vj − 1)

∣∣∣∣∣∣ ≥ ε
⎤⎦

≤ 1
ε2 N

Var(V1) .

This shows that supk≤N |TN
k − k

N | converges to 0 in probability as N → +∞
and thus almost surely along a subsequence. Then it follows that BN

s → Bs,
uniformly in s, almost surely when N → +∞ along the previous subsequence.

Noting TN
N → 1, a. s., it follows from standard arguments (see for in-

stance [RY] Proposition IV.2.13) that, a. s., for N → +∞ along a subse-
quence,

LN → L = −
∫ 1

0
θ(Bs) 1{Bs �=0} dBs −

1
2

∫ 1

0
θ(Bs)2 ds.

Since the extraction of a converging subsequence can be made from any
sequence along which N goes to infinity, we claim that F (BN ) expLN →
F (B) expL in probability. It is easy to prove, by using induction and the
Markov property for B, that

sup
N

E
[(
F (BN ) expLN

)2]
< +∞.

We conclude that E [F (XN )] → E [F (B) expL] and this is, via Girsanov
Theorem, the desired result.

4.2 Convergence of discrete excursions and walks

Lemma 11 Let (eN (s), s ≥ 0) be an excursion of the rescaled reflecting
standard random walk RW(N, 0). Let η > 0 and F be a bounded continuous
function on C∗(R+,R+) null on {σ < η}.

Then, we have

√
N E

[
F (eN )

] N→+∞−→ 2
∫
F (e) n(de)

Proof. Let B be a standard (non-rescaled) random walk on N starting from
0 and stopped at its first return to 0, denoted σ(B) so that eN is the renor-
malization of B by 1/N in time and 1/

√
N in space. A classical exercise on

reflection principle gives that

P(σ(B) = 2n) =
(

2n
n

)
2−2n

2n− 1
∼ 1√

π n 2n
. (16)
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We deduce that

P
(
σ(eN ) ≥ η

)
∼

√
2√

η N π
.

It is well known (see for instance [RY] Proposition XII.2.8) that

n (σ(e) ≥ η) =
1√
2π η

.

So, it suffices to prove that

E
[
F (eN )

∣∣∣σ(eN ) ≥ η
]

N→+∞−→
∫
F (e) n(de|σ(e) ≥ η).

This is a conditioned version of Donsker invariance Theorem for which we
refer to [Ka].

Lemma 12 Let (BN (s), s ≥ 0) be a standard rescaled reflecting random walk
RW(N, 0), stopped at the time of the g-th return at 0. Let η > 0 and F be a
bounded continuous function on C∗(R+,R+) null on {σ < η}.

Then, we have

√
N E

[
F (BN )

] N→+∞−→ g 2
∫
F (e) n(de) . (17)

Proof. For simplicity of notations let us suppose in fact that F vanishes on
{σ < g η}. We denote eN

1 , . . . , e
N
g the excursions of BN . We have to work on

the event that at least one of these excursions has a duration greater than η.
From the proof of Lemma 11, we recall that

P
(
σ(eN

i ) ≥ η
)
≤ c√

N

so the event that two excursions are of duration larger than η is of order
1/N and can be asymptotically neglected. We set H(x·) = sups |xs| for x· ∈
C∗(R+,R+). The renormalization done on eN shows that

P
(
H(eN ) ≥ ε(N)

)
→ 0 if

√
N ε(N) → +∞

and similarily

P
(
σ(eN ) ≥ ε(N)

)
→ 0 if N ε(N) → +∞ .

From now on, we fix ε(N) → 0 such that the first (hence both) of the above
conditions hold. We work on one of the g events{

σ(eNi ) ≥ η, ∀j �= i, H(eN
j ) ≤ ε(N), σ(eN

j ) ≤ ε(N)
}

where i ∈ {1, . . . , g}. On such an event, we have

|BN (s)− eN
i (s)| ≤ ε(N) + sup

s≤gε(N)
|eN

i (s)|+ sup
s, u≤gε(N)

∣∣eN
i (s+ u)− eN

i (s)
∣∣, (18)



Creation or deletion of a drift on a Brownian trajectory 231

because |BN (s)− eN
i (s)| is smaller than

sup
r, j>i

|eN
j (r)| if s ≥

∑
j≤i

σ(eN
j ),

or is lower than

sup
r

∣∣∣∣∣∣eN
i

⎛⎝r +
∑
j<i

σ(eN
j )

⎞⎠− eN
i (r)

∣∣∣∣∣∣ if
∑
j<i

σ(eN
j ) ≤ s ≤

∑
j≤i

σ(eN
j ),

or is lower than

sup
r, j<i

|eN
j (r)|+ sup

r≤
∑

j<i
σ(eN

j
)
|eN

i (r)| if s ≤
∑
j<i

σ(eN
j ).

But under
√
N P restricted to {σ ≥ η}, eN

i converges in distribution to n
restricted to {σ ≥ η}. It follows that the right-hand-side of (18) converges to
0 in probability.

We deduce from these facts that the left-hand side in (17) has the same
limit as g

√
N E

[
F (eN )

]
and this one is given by Lemma 11.

Lemma 13 Let (BN (s), s ≥ 0) be a standard rescaled reflecting random
walk RW(N, 0), stopped at the time of the g-th return at 0 where g is an
independent random variable with law G( 1

2 ). Then, for any mesurable U ⊂
C∗(R+,R+) ∩ {σ > η} with η > 0 such that n(∂U) = 0,

√
N P[BN ∈ U ] N→+∞−→ 2 n(U) .

Proof. We first randomize g in the limit (17) according to the law G( 1
2 ) as

specified here. But this law has mean 1 so (17) is now re-expressed in our new
setting by replacing “g” by 1. A reformulation of this result of limit in the
language of sets is the above statement.

Lemma 14 Let (BN (s), s ≥ 0) be a standard rescaled reflecting random
walk RW(N, 0), stopped at the time of the g-th return at 0 where g is an
independent random variable with law G( 1

2 ). Let ε > 0.
Then there exists η > 0 such that, for every N ,

√
N E

(
σ(BN ) 1{σ(BN )≤η}

)
≤ ε.

Proof. By conditioning by the value of g, it suffices to prove the same result
with BN replaced by eN . As before, we denote by B a standard non-rescaled
random walk on N starting from 0 and stopped at its first return to 0 i.e. eN

is the renormalization of B by 1/N in time and 1/
√
N in space. We now have

to find η > 0 such that, for every N ,

1√
N

E
[
σ(B) 1{σ(B)≤ηN}

]
≤ ε.
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From Formula (16) we deduce

E
(
σ(B) 1{σ(B)≤ηN}

)
≤ c

ηN/2∑
n=1

1√
n
.

But this quantity behaves like
√
ηN and the proof of the lemma is complete.
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