
Chapter 3

Point Estimation of Simultaneous
Methods

In this chapter, we are primarily interested in the construction of computa-
tionally verifiable initial conditions and the corresponding convergence anal-
ysis of the simultaneous methods presented in Sect. 1.1. These quantitative
conditions predict the immediate appearance of the guaranteed and fast con-
vergence of the considered methods. Two original procedures, based on (1)
suitable localization theorems for polynomial zeros and (2) the convergence
of error sequences, are applied to the most frequently used iterative methods
for finding polynomial zeros.

3.1 Point Estimation and Polynomial Equations

As mentioned in Chap. 2, one of the most important problems in solving
nonlinear equations is the construction of such initial conditions which pro-
vide both the guaranteed and fast convergence of the considered numerical
algorithm. Smale’s approach from 1981, known as “point estimation theory,”
examines convergence conditions in solving an equation f(z) = 0 using only
the information of f at the initial point z0. In the case of monic algebraic
polynomials of the form

P (z) = zn + an−1z
n−1 + · · · + a1z + a0,

which are the main subject of our investigation in this chapter and Chaps. 4
and 5, initial conditions should be some functions of polynomial coeffi-
cients a = (a0, . . . , an−1), its degree n, and initial approximations z(0) =
(z(0)

1 , . . . , z
(0)
n ). A rather wide class of initial conditions can be represented

by the inequality of general form

φ(z(0),a, n) < 0. (3.1)
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It is well known that the convergence of any iterative method for finding
zeros of a given function is strongly connected with the distribution of its ze-
ros. If these zeros are well separated, almost all algorithms show mainly good
convergence properties. Conversely, in the case of very close zeros (“clusters
of zeros”), almost all algorithms either fail or work with a big effort. From this
short discussion, it is obvious that a measure of separation of zeros should
be taken as an argument of the function φ given in (3.1). Since the exact
zeros are unknown, we restrict ourselves to deal with the minimal distance
among initial approximations d(0) = minj �=i |z(0)

i − z
(0)
j |. Furthermore, the

closeness of initial approximations to the wanted zeros is also an important
parameter, which influences the convergence of the applied method. A mea-
sure of this closeness can be suitably expressed by a quantity of the form
h(z) = |P (z)/Q(z)|, where Q(z) does not vanish when z lies in the neighbor-
hood Λ(ζ) of any zero ζ of P . For example, in the case of simple zeros of a
polynomial, the choice

Q(z) = P ′(z), Q(z) =
n∏

j=1
j �=i

(z − zj) or

|Q(z)| = |P ′(z)|−1 sup
k>1

∣∣∣P (k)(z)
k!P ′(z)

∣∣∣1/(k−1)

(see Sect. 2.1)

gives satisfactory results. Let us note that, considering algebraic equations,
the degree of a polynomial n appears as a natural parameter in (3.1). There-
fore, instead of (3.1), we can take the inequality of the form

ϕ(h(0), d(0), n) < 0, (3.2)

where h(0) depends on P and Q at the initial point z(0).
Let In := {1, . . . , n} be the index set. For i ∈ In and m = 0, 1, . . . , let us

introduce the quantity

W
(m)
i =

P
(
z
(m)
i

)
n∏

j=1
j �=i

(
z
(m)
i − z

(m)
j

) (i ∈ In, m = 0, 1, . . .), (3.3)

which is often called Weierstrass’ correction since it appeared in Weierstrass’
paper [187]. In [178], D. Wang and Zhao improved Smale’s result for Newton’s
method and applied it to the Durand–Kerner’s method for the simultaneous
determination of polynomial zeros (see Sect. 2.5, (2.38), and (2.39)). Their
approach led in a natural way to an initial condition of the form

w(0) ≤ cn d(0), (3.4)
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where
w(0) = max

1≤i,j≤n
i�=j

|W (0)
i |, d(0) = min

1≤i,j≤n
i�=j

|z(0)
i − z

(0)
j |.

A completely different approach presented in [112] for the same method
also led to the condition of the form (3.4). In both cases, the quantity cn

was of the form cn = 1/(an + b), where a and b are suitably chosen positive
constants. It turned out that initial conditions of this form are also suitable for
other simultaneous methods for solving polynomial equations, as shown in the
subsequent papers [5], [110], [112], [114]–[117], [119]–[121], [123], [132], [133],
[136], [137], [140], [150], [151], [178], [195] and the books [20] and [118]. For
these reasons, in the convergence analysis of simultaneous methods considered
in this book, we will also use initial conditions of the form (3.4). We note
that (3.4) is a special case of the condition (3.2). The quantity cn, which
depends only on the polynomial degree n, will be called the inequality factor,
or the i-factor for brevity. We emphasize that during the last years, special
attention has been paid to the increase of the i-factor cn for the following
obvious reason. From (3.4), we notice that a greater value of cn allows a
greater value of |W (0)

i |. This means that cruder initial approximations can
be chosen, which is of evident interest in practical realizations of numerical
algorithms.

The proofs of convergence theorems of the simultaneous methods investi-
gated in this chapter and Chaps. 4 and 5 are based on the inductive argu-
ments. It turns out that the inequality of the form (3.4), with a specific value
of cn depending on the considered method, appears as a connecting link in
the chain of inductive steps. Namely, w(0) ≤ cnd(0) ⇒ w(1) ≤ cnd(1), and
one may prove by induction that w(0) ≤ cnd(0) implies w(m) ≤ cnd(m) for all
m = 0, 1, 2, . . ..

In this chapter, we discuss the best possible values of the i-factor cn ap-
pearing in the initial condition (3.4) for some efficient and frequently used
iterative methods for the simultaneous determination of polynomial zeros.
The reader is referred to Sect. 1.1 for the characteristics (derivation, histori-
cal notes, convergence speed) of these methods. We study the choice of “al-
most optimal” factor cn. The notion “almost optimal” i-factor arises from (1)
the presence of a system of (say) k inequalities and (2) the use of computer
arithmetic of finite precision:

(1) In the convergence analysis, it is necessary to provide the validity of k
substantial successive inequalities g1(cn) ≥ 0, . . . , gk(cn) ≥ 0 (in this or-
der), where all gi(cn) are monotonically decreasing functions of cn (see
Fig. 3.1). The optimal value cn should be determined as the unique solu-
tion of the corresponding equations gi(cn) = 0. Unfortunately, all equa-
tions cannot be satisfied simultaneously and we are constrained to find
such cn which makes the inequalities gi(cn) ≥ 0 as sharp as possible.
Since gi(cn) ≥ 0 succeeds gj(cn) ≥ 0 for j < i, we first find cn so that
the inequality g1(cn) ≥ 0 is as sharp as possible and check the validity
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of all remaining inequalities g2(cn) ≥ 0, . . . , gk(cn) ≥ 0. If some of them
are not valid, we decrease cn and repeat the process until all inequalities
are satisfied. For demonstration, we give a particular example on Fig. 3.1.
The third inequality g3(cn) ≥ 0 is not satisfied for c

(1)
n , so that cn takes a

smaller value c
(2)
n satisfying all three inequalities. In practice, the choice

of cn is performed iteratively, using a programming package, in our book
Mathematica 6.0.

g1

cn
cn
cn

cn cn

g2 g3

(1)

(2)

Fig. 3.1 The choice of i-factor cn iteratively

(2) Since computer arithmetic of finite precision is employed, the optimal
value (the exact solution of gi(cn) = 0, if it exists for some i) cannot
be represented exactly, so that cn should be decreased for a few bits
to satisfy the inequalities gi(cn) > 0. The required conditions (in the
form of inequalities gi(cn) ≥ 0) are still satisfied with great accuracy.
We stress that this slight decrease of the i-factor cn with respect to the
optimal value is negligible from a practical point of view. For this reason,
the constants a and b appearing in cn = 1/(an + b) are rounded for all
methods considered in this book.

The entries of cn, obtained in this way and presented in this chapter, are
increased (and, thus, improved) compared with those given in the literature,
which means that newly established initial conditions for the guaranteed
convergence of the considered methods are weakened (see Fig. 3.3).

We note that all considerations in this book are given for n ≥ 3, taking
into account that algebraic equations of the order ≤ 2 are trivial and their
numerical treatment is unnecessary. In our analysis, we will sometimes omit
the iteration index m, and new entries in the later (m + 1)th iteration will
be additionally stressed by the symbol ̂ (“hat”). For example, instead of

z
(m)
i , z

(m+1)
i ,W

(m)
i ,W

(m+1)
i , d(m), d(m+1), N

(m)
i , N

(m+1)
i , etc.,

we will write
zi, ẑi,Wi, Ŵi, d, d̂, Ni, N̂i.
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According to this, we denote

w = max
1≤i≤n

|Wi|, ŵ = max
1≤i≤n

|Ŵi|.

This denotation will also be used in the subsequent study in Chaps. 4 and 5.

3.2 Guaranteed Convergence: Correction Approach

In this chapter, we present two procedures in the study of the guaranteed con-
vergence of simultaneous methods (1) the approach based on iterative correc-
tions and (2) the approach based on convergent sequences. Both schemes will
be applied to the most frequently used simultaneous zero-finding methods in
considerable details.

Applying the first method (1), we will deal with a real function t �→ g(t)
defined on (0, 1) by

g(t) =

⎧⎪⎨⎪⎩
1 + 2t, 0 < t ≤ 1

2
1

1 − t
,

1
2

< t < 1

The minorizing function of g(t) on (0, 1) is given in the following lemma
whose proof is elementary.

Lemma 3.1. Let

sm (t) =
m∑

i=0

ti + tm (t ∈ (0, 1) , m = 1, 2, . . .).

Then, sm (t) < g (t) .

Most of the iterative methods for the simultaneous determination of simple
zeros of a polynomial can be expressed in the form

z
(m+1)
i = z

(m)
i − Ci

(
z
(m)
1 , . . . , z(m)

n

)
(i ∈ In, m = 0, 1, . . .), (3.5)

where z
(m)
1 , . . . , z

(m)
n are some distinct approximations to simple zeros

ζ1, . . . , ζn, respectively, obtained in the mth iterative step by the method
(3.5). In what follows, the term

C
(m)
i = Ci

(
z
(m)
1 , . . . , z(m)

n

)
(i ∈ In)

will be called the iterative correction or simply the correction.
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Let Λ(ζi) be a sufficiently close neighborhood of the zero ζi (i ∈ In). In
this book, we consider a class of iterative methods of the form (3.5) with
corrections Ci which can be expressed as

Ci(z1, . . . , zn) =
P (zi)

Fi(z1, . . . , zn)
(i ∈ In), (3.6)

where the function (z1, . . . , zn) �→ Fi(z1, . . . , zn) satisfies the following condi-
tions for each i ∈ In and distinct approximations z1, . . . , zn:

1◦ Fi(ζ1, . . . , ζn) �= 0,

2◦ Fi(z1, . . . , zn) �= 0 for any (z1, . . . , zn) ∈ Λ(ζ1) × · · · × Λ(ζn) =: Y,

3◦ Fi(z1, . . . , zn) is continuous in Cn.

Starting from mutually disjoint approximations z
(0)
1 , . . . , z

(0)
n , the itera-

tive method (3.5) produces n sequences of approximations
{
z
(m)
i

}
(i ∈ In)

which, under certain convenient conditions, converge to the polynomial zeros.
Indeed, if we find the limit values

lim
m→∞ z

(m)
i = ζi (i ∈ In),

then having in mind (3.6) and the conditions 1◦–3◦, we obtain from (3.5)

0 = lim
m→∞

(
z
(m)
i − z

(m+1)
i

)
= lim

m→∞Ci

(
z
(m)
1 , . . . , z(m)

n

)
= lim

m→∞
P
(
z
(m)
i

)
Fi

(
z
(m)
1 , . . . , z

(m)
n

) =
P (ζi)

Fi(ζ1, . . . , ζn)
(i ∈ In).

Hence P (ζi) = 0, i.e., ζi is a zero of the polynomial P .
Theorem 3.1 has the key role in our convergence analysis of simultaneous

methods presented in this section and Chap. 4 (see M. Petković, Carstensen,
and Trajković [112]).

Theorem 3.1. Let the iterative method (3.5) have the iterative correction of
the form (3.6) for which the conditions 1◦–3◦ hold, and let z

(0)
1 , . . . , z

(0)
n be

distinct initial approximations to the zeros of P . If there exists a real number
β ∈ (0, 1) such that the following two inequalities

(i)
∣∣C(m+1)

i

∣∣ ≤ β
∣∣C(m)

i

∣∣ (m = 0, 1, . . .),

(ii)
∣∣z(0)

i − z
(0)
j

∣∣ > g(β)
(∣∣C(0)

i

∣∣+ ∣∣C(0)
j

∣∣) (i �= j, i, j ∈ In)

are valid, then the iterative method (3.5) is convergent.
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Proof. Let us define disks D
(m)
i := {z(m+1)

i ; |C(m)
i |} for i ∈ In and m =

0, 1, . . . , where z
(m+1)
i and C

(m)
i are approximations and corrections appear-

ing in (3.5). Then for a fixed i ∈ In, we have

D
(m)
i = {z(m)

i − C
(m)
i ; |C(m)

i |} = {z(m−1)
i − C

(m−1)
i − C

(m)
i ; |C(m)

i |} = · · ·
= {z(0)

i − C
(0)
i − C

(1)
i − · · · − C

(m)
i ; |C(m)

i |} ⊂ {z(0)
i ; r(m)

i },

where
r
(m)
i = |C(0)

i | + · · · + |C(m−1)
i | + 2|C(m)

i |.
Using (i), we find |C(k)

i | ≤ βk|C(0)
i | (k = 1, 2, . . . , β < 1) so that, according

to Lemma 3.1 and the definition of the function g(t),

r
(m)
i ≤ |C(0)

i |(1 + β + · · · + βm + βm) < g(β)|C(0)
i |.

Therefore, for each i ∈ In, we have the inclusion

D
(m)
i ⊂ Si :=

{
z
(0)
i ; g(β)|C(0)

i |},
which means that the disk Si contains all the disks D

(m)
i (m = 0, 1, . . .). In

regard to this and the definition of disks D
(m)
i , we can illustrate the described

situation by Fig. 3.2.

Fig. 3.2 Inclusion disk Si contains all disks D
(m)
i

The sequence {z(m)
i } of the centers of the disks D

(m)
i forms a Cauchy’s

sequence in the disk Si ⊃ D
(m)
i (m = 0, 1, . . .). Since the metric subspace Si
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is complete (as a closed set in C), there exists a unique point z∗i ∈ Si such
that

z
(m)
i → z∗i as m → ∞ and z∗i ∈ Si.

Since

z
(m+1)
i = z

(m)
i − P (z(m)

i )

F (z(m)
1 , . . . , z

(m)
n )

and F (z(m)
1 , . . . , z

(m)
n ) does not vanish whenever (z1, . . . , zn) ∈ Y , there

follows

|P (z(m)
i )| = |F (z(m)

1 , . . . , z(m)
n )(z(m+1)

i − z
(m)
i )|

≤ |F (z(m)
1 , . . . , z(m)

n )| |z(m+1)
i − z

(m)
i |.

Taking the limit when m → ∞, we obtain

|P (z∗i )| ≤ lim
m→∞ |F (z(m)

1 , . . . , z(m)
n )| lim

m→∞ |z(m+1)
i − z

(m)
i | = 0,

which means that the limit points z∗1 , . . . , z∗n of the sequences {z(m)
1 }, . . . , {z(m)

n }
are, actually, the zeros of the polynomial P . To complete the proof of the
theorem, it is necessary to show that each of the sequences {z(m)

i } (i ∈ In)
converges to one and only one zero of P . Since z

(m)
i ∈ Si for each i ∈ In

and m = 0, 1, . . ., it suffices to prove that the disks S1, . . . , Sn are mutually
disjoint, i.e. (according to (1.67)),

|z(0)
i −z

(0)
j |=|mid Si−mid Sj |>radSi+radSj = g(β)

(|C(0)
i |+ |C(0)

j |) (i �= j),

which reduces to (ii). 
�
In this section and Chap. 4, we will apply Theorem 3.1 to some iterative

methods for the simultaneous approximation of simple zeros of a polynomial.
We will assume that an iterative method is well defined if F (z1, . . . , zn)�=0
under the stated initial conditions and for each array of approximations
(z1, . . . , zn) obtained in the course of the iterative procedure.

The convergence analysis of simultaneous methods considered in this sec-
tion is essentially based on Theorem 3.1 and the four relations connecting
the quantities |Wi| (Weierstrass’ corrections), d (minimal distance between
approximations), and |Ci| (iterative corrections). These relations are referred
to as W–D, W–W, C–C, and C–W inequalities according to the quantities
involved, and read thus:

(W–D): w(0) ≤ cnd(0), (3.7)

(W–W):
∣∣W (m+1)

i

∣∣ ≤ δn

∣∣W (m)
i

∣∣ (i ∈ In, m = 0, 1, . . .), (3.8)



3.2 Guaranteed Convergence: Correction Approach 75

(C–C):
∣∣C(m+1)

i

∣∣ ≤ βn

∣∣C(m)
i

∣∣ (i ∈ In, m = 0, 1, . . .), (3.9)

(C–W):
∣∣C(m)

i

∣∣ ≤ λn

∣∣W (m)
i

∣∣
cn

(i ∈ In, m = 0, 1, . . .). (3.10)

Here, cn, δn, βn, and λn are real positive constants depending only on the
polynomial degree n. The W–D inequality (3.7) defines the initial condition
for the guaranteed convergence of an iterative method and plays the main
role in the convergence analysis based on the relations (3.7)–(3.10).

The convergence analysis consists of two steps:

1◦ Starting from the W–D inequality (3.7), derive the W–W inequality (3.8)
for each m = 0, 1, . . .. The i-factor cn has to be chosen so that δn<1 holds.
In this way, the convergence of the sequences of Weierstrass’ corrections
{W (m)

i } (i ∈ In) to 0 is ensured.
2◦ Derive the C–C inequality (3.9) for each m = 0, 1, . . . under the condition

(3.7). The choice of the i-factor cn must provide the validity of the C–W
inequality (3.10) and the inequalities

βn < 1 (3.11)

and
λn <

1
2g(βn)

. (3.12)

The last requirement arises from the following consideration. Assume that
(3.7) implies the inequality (3.10) for all i ∈ In. Then using (3.7), we obtain

∣∣z(0)
i − z

(0)
j

∣∣ ≥ d(0) ≥ w(0)

cn
≥
∣∣C(0)

i

∣∣+ ∣∣C(0)
j

∣∣
2λn

.

Hence, to provide the inequality (ii) in Theorem 3.1, it is necessary to be
1/(2λn) > g(βn) (the inequality (3.12)) where, according to the conditions of
Theorem 3.1, the (positive) argument βn must be less than 1 (the inequality
(3.11)). Note that the requirement βn < 1 is also necessary to ensure the
contraction of the correction terms (see (3.9)) and, thus, the convergence of
the considered simultaneous method.

In the subsequent analysis, we will apply the described procedure to some
favorable simultaneous methods. This procedure requires certain bounds of
the same type and, to avoid the repetition, we give them in the following
lemma.

Lemma 3.2. For distinct complex numbers z1, . . . , zn and ẑ1, . . . , ẑn, let

d = min
1≤i,j≤n

i�=j

|zi − zj |, d̂ = min
1≤i,j≤n

i�=j

|ẑi − ẑj | (i ∈ In).
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If
|ẑi − zi| ≤ λnd (i ∈ In, λn < 1/2), (3.13)

then

|ẑi − zj | ≥ (1 − λn)d (i ∈ In), (3.14)
|ẑi − ẑj | ≥ (1 − 2λn)d (i ∈ In), (3.15)

and ∣∣∣∣∣∏
j �=i

ẑi − zj

ẑi − ẑj

∣∣∣∣∣ ≤
(

1 +
λn

1 − 2λn

)n−1

. (3.16)

Proof. Applying the triangle inequality, we find

|ẑi − zj | ≥ |zi − zj | − |ẑi − zi| ≥ d − λnd = (1 − λn)d

and

|ẑi− ẑj | ≥ |zi−zj |− |ẑi−zi|− |ẑj −zj | ≥ d−λnd−λnd = (1−2λn)d. (3.17)

From ∏
j �=i

ẑi − zj

ẑi − ẑj
=
∏
j �=i

(
1 +

ẑj − zj

ẑi − ẑj

)
and ∣∣∣∣ ẑj − zj

ẑi − ẑj

∣∣∣∣ ≤ λnd

(1 − 2λn)d
=

λn

1 − 2λn
,

we obtain∣∣∣∣∣∏
j �=i

ẑi − zj

ẑi − ẑj

∣∣∣∣∣ =∏
j �=i

∣∣∣∣1 +
ẑj − zj

ẑi − ẑj

∣∣∣∣ ≤∏
j �=i

(
1 +
∣∣∣∣ ẑj − zj

ẑi − ẑj

∣∣∣∣)
≤
∏
j �=i

(
1 +

λn

1 − 2λn

)
=
(
1 +

λn

1 − 2λn

)n−1

. 
�

Remark 3.1. Since d̂ ≤ |ẑi − ẑj |, from (3.17) we obtain

d̂ ≤ (1 − 2λn)d. (3.18)

In what follows, we apply Theorem 3.1 to the convergence analysis of four
frequently used simultaneous zero-finding methods.

The Durand–Kerner’s Method

One of the most frequently used iterative methods for the simultaneous
determination of simple zeros of a polynomial is the Durand–Kerner’s (or
Weierstrass’) method defined by
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z
(m+1)
i = z

(m)
i − W

(m)
i (i ∈ In, m = 0, 1, . . .), (3.19)

where W
(m)
i is given by (3.3). In this case, the iterative correction term is

equal to Weierstrass’ correction, i.e., Ci = Wi = P (zi)/Fi(z1, . . . , zn), where

Fi(z1, . . . , zn) =
n∏

j=1
j �=i

(zi − zj) (i ∈ In).

To simplify the denotation, we will omit sometimes the iteration index m
in the sequel and denote quantities in the subsequent (m + 1)th iteration
by ̂ (“hat”). It will be always assumed that the polynomial degree n is not
smaller than 3.

Lemma 3.3. Let z1, . . . , zn be distinct approximations and let

w ≤ cnd, (3.20)
cn ∈ (0, 0.5) , (3.21)

δn :=
(n − 1) cn

1 − cn

(
1 +

cn

1 − 2cn

)n−1

≤ 1 − 2cn (3.22)

hold. Then:

(i)
∣∣∣Ŵi

∣∣∣ ≤ δn |Wi|.
(ii) ŵ ≤ cnd̂.

Proof. Let λn = cn. From (3.19) and (3.20), there follows

|ẑi − zi| = |Wi| ≤ w ≤ cnd. (3.23)

According to this and Lemma 3.2, we obtain

|ẑi − zj | ≥ (1 − cn)d (3.24)

and
|ẑi − ẑj | ≥ (1 − 2cn)d. (3.25)

From the iterative formula (3.19), it follows

Wi

ẑi − zi
= −1,

so that
n∑

j=1

Wj

ẑi − zj
+ 1 =

Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1 =

∑
j �=i

Wj

ẑi − zj
. (3.26)
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Putting z = ẑi in the polynomial representation by Lagrange’s interpola-
tion formula

P (z) =

(
n∑

j=1

Wj

z − zj
+ 1

)
n∏

j=1

(z − zj), (3.27)

we find by (3.26)

P (ẑi) = (ẑi − zi)

(∑
j �=i

Wj

ẑi − zj

)∏
j �=i

(ẑi − zj).

After dividing with
∏
j �=i

(ẑi − ẑj), one obtains

Ŵi =
P (ẑi)∏

j �=i

(ẑi − ẑj)
= (ẑi − zi)

(∑
j �=i

Wj

ẑi − zj

)∏
j �=i

(
1 +

ẑj − zj

ẑi − ẑj

)
. (3.28)

Using the inequalities (3.20), (3.23)–(3.25) and Lemma 3.2, from (3.28),
we estimate ∣∣Ŵi

∣∣ ≤ |ẑi − zi|
∑
j �=i

|Wj |
|ẑi − zj |

∏
j �=i

(
1 +

|ẑj − zj |
|ẑi − ẑj |

)

≤ |Wi| (n − 1)w
(1 − cn)d

(
1 +

cnd

(1 − 2cn)d

)n−1

≤ |Wi| (n − 1)cn

1 − cn

(
1 +

cn

1 − 2cn

)n−1

= δn |Wi| .

This proves the assertion (i) of the lemma.
Since

d̂ = min
1≤i,j≤n

i�=j

|ẑi − ẑj | ,

from (3.25), one obtains

d̂ ≥ (1 − 2λn)d = (1 − 2cn)d, i.e., d ≤ d̂

1 − 2cn
.

According to the last inequality and (3.22), we estimate

∣∣Ŵi

∣∣ ≤ δn |Wi| ≤ δncnd ≤ δn

1 − 2cn
cnd̂ ≤ cnd̂.

Therefore, the assertion (ii) holds. 
�
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Theorem 3.2. Let the assumptions from Lemma 3.3 hold. If z
(0)
1 , . . . , z

(0)
n

are distinct approximations for which the initial condition

w(0) ≤ cnd(0) (3.29)

is valid, then the Durand–Kerner’s method (3.19) is convergent.

Proof. It is sufficient to prove the assertions (i) and (ii) of Theorem 3.1 taking
C

(m)
i = W

(m)
i in this particular case.

According to (ii) of Lemma 3.3, we conclude that (3.29) provides the im-
plication w(0) ≤ cnd(0) ⇒ w(1) ≤ cnd(1). In a similar way, we show the
implication

w(m) ≤ cnd(m) =⇒ w(m+1) ≤ cnd(m+1),

proving by induction that the initial condition (3.29) implies the inequality

w(m) ≤ cnd(m) (3.30)

for each m = 1, 2, . . .. Hence, by (i) of Lemma 3.3, we get∣∣W (m+1)
i

∣∣ ≤ δn

∣∣W (m)
i

∣∣ = βn|W (m)
i | (3.31)

for each m = 0, 1, . . .. Let us note that (3.31) is the W–W inequality of the
form (3.8), but also the C–C inequality of the form (3.9) since Ci = Wi in
this particular case with βn = δn, where δn is given by (3.22). Therefore, the
assertion (i) holds true.

In a similar way as for (3.25), under the condition (3.29), we prove the
inequality∣∣z(m+1)

i − z
(m+1)
j

∣∣ ≥ (1 − 2cn)d(m) > 0 (i �= j, i, j ∈ In, m = 0, 1, . . .),

so that
Fi

(
z
(m)
1 , . . . , z(m)

n

)
=
∏
i �=j

(z(m)
i − z

(m)
j ) �= 0

in each iteration. Therefore, the Durand–Kerner’s method (3.19) is well
defined.

Since βn = δn, from (3.22), we see that βn < 1 (necessary condition (3.11)),
and the function g is well defined. To prove (ii) of Theorem 3.1, we have to
show that the inequality (3.12) is valid. If βn ≥ 1/2, then (3.12) becomes

1
1 − βn

<
1

2λn
,

which is equivalent to (3.22). If βn < 1/2, then (3.12) reduces to

1 + βn <
1

2λn
, i.e., λn = cn <

1
2(1 + 2βn)

∈ (0.25, 0.5),



80 3 Point Estimation of Simultaneous Methods

which holds according to the assumption (3.21) of Lemma 3.3. Since we have
proved both assertions (i) and (ii) of Theorem 3.1, we conclude that the
Durand–Kerner’s method (3.19) is convergent. 
�

The choice of the “almost optimal” value of cn is considered in the following
lemma.

Lemma 3.4. The i-factor cn given by

cn =
1

An + B
, A = 1.76325, B = 0.8689425, (3.32)

satisfies the conditions (3.21) and (3.22).

Proof. Since cn ≤ c3 ≈ 0.16238, it follows that cn ∈ (0, 0.5) and (3.21) holds
true.

To prove (3.22), it is sufficient to prove the inequality

ηn :=
δn

1 − 2cn
=

n − 1
1 − cn

cn

1 − 2cn

(
1 +

cn

1 − 2cn

)n−1

≤ 1. (3.33)

Since

lim
n→∞

1
1 − cn

= 1, lim
n→∞

(
1 +

cn

1 − 2cn

)1 − 2cn

cn = e, lim
n→∞

(n − 1) cn

1 − 2cn
=

1
A

,

where A = 1.76325 appears in (3.32), we obtain

lim
n→∞ ηn =

1
A

e1/A < 0.99998 < 1.

Since the sequence {ηn}, defined by (3.33), is monotonically increasing for
n ≥ 3, we have ηn < η∞ < 0.99998 < 1. 
�
Remark 3.2. The constant A = 1.76325 is determined as the reciprocal value
of the approximate solution of the equation xex = 1, and chosen so that it
satisfies the inequality e1/A/A < 1 (to fulfill the condition limn→∞ ηn < 1).
The use of an approximate solution of the equation xex = 1 instead of the
exact solution (that cannot be represented in floating-point arithmetic of
finite precision) just leads to the notion of the “almost optimal” i-factor.
Taking a greater number of decimal digits for A (and, consequently, for B,
see Remark 3.3), we can make the inequality (3.34) arbitrarily sharp. In this
way, we can improve the i-factor cn to the desired (optimal) extent but, from
a practical point of view, such improvement is negligible.

Remark 3.3. Note that the coefficient B in (3.32), not only for the Durand–
Kerner’s method but also for other methods, is chosen so that the entries δn,
βn, and λn appearing in the W–W, C–C, and C–W inequalities (3.8)–(3.10)
ensure the validity of these inequalities for a particular n, most frequently
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for n = 3. For example, this coefficient for the Durand–Kerner’s method is
B = 0.8689425.

According to Theorem 3.1 and Lemma 3.4, we can state the convergence
theorem, which considers initial conditions for the guaranteed convergence of
the Durand–Kerner’s method.

Theorem 3.3. The Durand–Kerner’s method is convergent under the
condition

w(0) <
d(0)

1.76325n + 0.8689425
. (3.34)

Remark 3.4. The sign < (“strongly less”) in the inequality (3.34) differs from
“ ≤ ” used in the previous consideration since the concrete choice of A and B
in (3.14) yields δn < 1 − 2cn in (3.22) (also “strongly less”). This is also the
case in all remaining methods presented in this book, so that the subsequent
situations of this type will not be explained again.

Some authors have considered initial conditions in the form of the
inequality

‖W (0)‖1 =
n∑

i=1

∣∣W (0)
i

∣∣ ≤ Ωnd(0), W (0) = (W (0)
1 , . . . , W (0)

n ),

instead of the condition (3.7). Obviously, one can take Ωn = n cn since (3.29)
implies ∣∣W (0)

i

∣∣ ≤ cnd(0) (i = 1, . . . , n).

As already mentioned, the choice of cn and Ωn as large as possible permits
cruder initial approximations.

We recall some previous ranges concerned with the bounds of Ωn for n ≥ 3.
X. Wang and Han obtained in [181]

Ωn =
n

n − 1

(
3 − 2

√
2
)
∈ (0.1716, 0.2574) (n ≥ 3).

D. Wang and Zhao improved in [178] the above result yielding the interval

Ωn ∈ (0.2044, 0.3241) (n ≥ 3).

Batra [5] and M. Petković et al. [120] have dealt with cn = 1/(2n), which
gives Ωn = 0.5. The choice of cn in this section (see (3.32)) yields

Ω3 = 3c3 = 0.48712

and

Ωn ∈
(
4c4, lim

n→∞ncn

)
=
(

0.50493,
1
A

)
= (0.50493, 0.56713) (n ≥ 4),

which improves all previous results.
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The Börsch-Supan’s Method

Börsch-Supan’s third-order method for the simultaneous approximations of
all simple zeros of a polynomial, presented for the first time in [10] and later
in [95], is defined by the iterative formula

z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
n∑

j=1
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .), (3.35)

where W
(m)
i are given by (3.3) (see Sect. 1.1). This formula has the form (3.5)

with the correction

Ci(z1, . . . , zn) =
P (zi)

Fi(z1, . . . , zn)
(i ∈ In),

where

Fi(z1, . . . , zn) =

(
1 +
∑
j �=i

Wj

zi − zj

)∏
j �=i

(zi − zj) (i ∈ In).

Before establishing the main convergence theorems, we prove two auxiliary
results.

Lemma 3.5. Let z1, . . . , zn be distinct complex numbers and let

cn ∈
(

0,
1

n + 1

)
(3.36)

and
w ≤ cnd. (3.37)

Then:

(i)
cn

λn
≤
∣∣∣∣∣1 +

∑
j �=i

Wj

zi − zj

∣∣∣∣∣ ≤ 2 − cn

λn
.

(ii) |ẑi − zi| ≤ λn

cn
|Wi| ≤ λnd.

(iii) |ẑi − zj | ≥ (1 − λn)d.
(iv) |ẑi − ẑj | ≥ (1 − 2λn)d.

(v)

∣∣∣∣∣
n∑

j=1

Wj

ẑi − zj
+ 1

∣∣∣∣∣ ≤ (n − 1)λncn

1 − λn
.

(vi)

∣∣∣∣∣∏
j �=i

ẑi − zj

ẑi − ẑj

∣∣∣∣∣ ≤
(

1 +
λn

1 − 2λn

)n−1

,

where λn =
cn

1 − (n − 1)cn
.
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Proof. Since 1−2λn =
1 − (n + 1)cn

1 − (n − 1)cn
, from (3.36), it follows 0 < 1−2λn < 1,

hence λn ∈ (0, 0.5). By (3.37) and the definition of d, we obtain∣∣∣∣∣1 +
∑
j �=i

Wj

zi − zj

∣∣∣∣∣ ≥ 1 −
∑
j �=i

|Wj |
|zi − zj | ≥ 1 − (n − 1)w

d
≥ 1 − (n − 1) cn =

cn

λn

and ∣∣∣∣∣1 +
∑
j �=i

Wj

zi − zj

∣∣∣∣∣ ≤ 1 +
(n − 1)w

d
≤ 1 + (n − 1) cn = 2 − cn

λn
,

which proves (i). By (i) and (3.37), we prove (ii):

|ẑi − zi| =
|Wi|∣∣∣∣∣1 +
∑
j �=i

Wj

zi − zj

∣∣∣∣∣
≤ |Wi|

1 − (n − 1) cn
=

λn

cn
|Wi| ≤ λnd.

The assertions (iii), (iv), and (vi) follow directly according to Lemma 3.2.
Omitting the iteration index, from (3.35), we find

Wi

ẑi − zi
= −1 −

∑
j �=i

Wj

zi − zj
,

so that∣∣∣∣∣
n∑

j=1

Wj

ẑi − zj
+ 1

∣∣∣∣∣ =
∣∣∣∣∣ Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1

∣∣∣∣∣ =
∣∣∣∣∣∑

j �=i

Wj(zi − ẑi)
(ẑi − zj)(zi − zj)

∣∣∣∣∣.
Hence, using (3.37), (ii), and (iii), it follows∣∣∣∣∣

n∑
j=1

Wj

ẑi − zj
+ 1

∣∣∣∣∣ ≤ |ẑi − zi|
∑
j �=i

|Wj |
|ẑi − zj ||zi − zj | ≤

(n − 1)λncn

1 − λn
,

which means that (v) is also true. This completes the proof of the lemma.

�

According to Lemma 3.5, we can prove the following assertions.

Lemma 3.6. Let z1, . . . , zn be distinct approximations and let the assump-
tions (3.36) and (3.37) of Lemma 3.5 hold. In addition, let

δn :=
(n − 1)λ2

n

1 − λn

(
1 +

λn

1 − 2λn

)n−1

≤ 1 − 2λn (3.38)
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be valid. Then:

(i) |Ŵi| ≤ δn|Wi|.
(ii) ŵ ≤ cnd̂.

Proof. Setting z = ẑi in (3.27), where ẑi is a new approximation produced by
the Börsch-Supan’s method (3.35), we obtain

P (ẑi) = (ẑi − zi)

(
n∑

j=1

Wj

ẑi − zj
+ 1

)∏
j �=i

(ẑi − zj).

After dividing with
∏
j �=i

(ẑi − ẑj), we get

Ŵi = (ẑi − zi)

(
n∑

j=1

Wj

ẑi − zj
+ 1

)∏
j �=i

ẑi − zj

ẑi − ẑj
.

Using the bounds (ii), (v), and (vi) of Lemma 3.5, we estimate

∣∣Ŵi

∣∣ = |ẑi − zi|
∣∣∣∣∣

n∑
j=1

Wj

ẑi − zj
+ 1

∣∣∣∣∣
∣∣∣∣∣∏

j �=i

ẑi − zj

ẑi − ẑj

∣∣∣∣∣
≤ |Wi| (n − 1)λ2

n

1 − λn

(
1 +

λn

1 − 2λn

)n−1

,

i.e.,
∣∣Ŵi

∣∣ ≤ δn|Wi|. Therefore, the assertion (i) holds true.
According to (iv) of Lemma 3.5, there follows

d̂ ≥ (1 − 2λn)d.

This inequality, together with (i) of Lemma 3.6 and (3.38), gives (ii), i.e.,

∣∣Ŵi

∣∣ ≤ δn|Wi| ≤ δn

1 − 2λn
cnd̂ ≤ cnd̂. 
�

Theorem 3.4. Let the assumptions from Lemmas 3.5 and 3.6 hold and, in
addition, let

βn :=
(2λn

cn
− 1
)
δn < 1 (3.39)

and
g(βn) <

1
2λn

. (3.40)

If z
(0)
1 , . . . , z

(0)
n are distinct initial approximations satisfying

w(0) ≤ cnd(0), (3.41)
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then the Börsch-Supan’s method (3.35) is convergent.

Proof. It is sufficient to prove (i) and (ii) of Theorem 3.1 for the iterative
correction given by

C
(m)
i =

W
(m)
i

1 +
∑
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .)

(see (3.35)). By virtue of Lemma 3.6, which holds under the conditions (3.36),
(3.38), and (3.41), we can prove by induction that

w(m+1) ≤ δnw(m) ≤ δn

1 − 2λn
cnd(m+1) ≤ cnd(m+1)

holds for each m = 0, 1, . . ..
Starting from the assertion (i) of Lemma 3.5, under the condition (3.41),

we prove by induction

Fi

(
z
(m)
1 , . . . , z(m)

n

)
=

(
1 +
∑
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

)∏
j �=i

(
z
(m)
i − z

(m)
j

)
�= 0

for each i ∈ In and m = 0, 1, . . .. Therefore, the Börsch-Supan’s method
(3.35) is well defined in each iteration.

Using (i) of Lemma 3.5, we find

|Ci| =
|Wi|∣∣∣∣∣1 +
∑
j �=i

Wj

zi − zj

∣∣∣∣∣
≤ λn

cn
|Wi|, (3.42)

so that for the next iterative step we obtain by Lemma 3.5 and (i) of
Lemma 3.6

∣∣Ĉi

∣∣ ≤ λn

cn

∣∣∣Ŵi

∣∣∣ ≤ λnδn

cn

|Wi|∣∣∣∣∣1 +
∑
j �=i

Wj

zi − zj

∣∣∣∣∣
∣∣∣∣∣1 +

∑
j �=i

Wj

zi − zj

∣∣∣∣∣

=
λnδn

cn
|Ci|
∣∣∣∣∣1 +

∑
j �=i

Wj

zi − zj

∣∣∣∣∣ ≤ λnδn

cn

(
2 − cn

λn

)
|Ci|

= δn

(2λn

cn
− 1
)
|Ci| = βn|Ci|,

where βn < 1 (the assumption (3.39)). Using the same argumentation, we
prove by induction
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i

∣∣ ≤ βn

∣∣C(m)
i

∣∣
for each i ∈ In and m = 0, 1, . . ..

By (3.41) and (3.42), we estimate

1
λn

|C(0)
i | ≤ |W (0)

i |
cn

≤ d(0).

According to this and (3.40), we see that

∣∣z(0)
i − z

(0)
j

∣∣ ≥ d(0) ≥ w(0)

cn
≥ 1

2λn

(∣∣C(0)
i

∣∣+ ∣∣C(0)
j

∣∣)
> g(βn)

(∣∣C(0)
i

∣∣+ ∣∣C(0)
j

∣∣)
holds for each i �= j, i, j ∈ In. This proves (ii) of Theorem 3.1. The validity
of (i) and (ii) of Theorem 3.1 shows that the Börsch-Supan’s method (3.35)
is convergent under the given conditions. 
�

The choice of the i-factor cn is considered in the following lemma.

Lemma 3.7. The i-factor cn defined by

cn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

n + 9
2

, n = 3, 4

1
309
200n + 5

, n ≥ 5

(3.43)

satisfies the condition of Theorem 3.4.

The proof of this lemma is elementary and it is derived by a simple analysis
of the sequences {βn} and {g(βn)}.

According to Lemma 3.7 and Theorem 3.4, we may state the following
theorem.

Theorem 3.5. The Börsch-Supan’s method (3.35) is convergent under the
condition (3.41), where cn is given by (3.43).

Tanabe’s Method

In Sect. 1.1, we have presented the third-order method, often referred to as
Tanabe’s method

z
(m+1)
i = z

(m)
i −W

(m)
i

(
1−
∑
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

)
(i ∈ In, m = 0, 1, . . .). (3.44)

As in the previous cases, before stating initial conditions that ensure the
guaranteed convergence of the method (3.44), we give first some necessary
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bounds using the previously introduced notation and omitting the iteration
index for simplicity.

Lemma 3.8. Let z1, . . . , zn be distinct approximations and let

cn ∈
(
0,

1
1 +

√
2n − 1

)
. (3.45)

If the inequality
w ≤ cnd (3.46)

holds, then for i, j ∈ In we have:

(i)
λn

cn
= 1 + (n − 1)cn ≥

∣∣∣1 −
∑
j �=i

Wj

zi − zj

∣∣∣ ≥ 1 − (n − 1)cn = 2 − λn

cn
.

(ii) |ẑi − zi| ≤ λn

cn
|Wi| ≤ λnd.

(iii) |ẑi − zj | ≥ (1 − λn)d.
(iv) |ẑi − ẑj | ≥ (1 − 2λn)d.

(v)
∣∣∣ n∑
j=1

Wj

ẑi − zj
+ 1
∣∣∣ ≤ (n − 1)c2

n

(2cn − λn)(1 − λn)

(
λn + (n − 1)cn

)
.

(vi)
∏
j �=i

∣∣∣ ẑi − zj

ẑi − ẑj

∣∣∣ ≤ (1 +
λn

1 − 2λn

)n−1

,

where λn = (1 + (n − 1)cn)cn.

Proof. We omit the proofs of the assertions (i)–(iv) and (vi) since they are
quite similar to those given in Lemma 3.5. To prove (v), we first introduce

σi =
∑
j �=i

Wj

zi − zj
.

Then

|σi| ≤ (n − 1)w
d

≤ (n − 1)cn and
|σi|

1 − |σi| ≤
(n − 1)cn

1 − (n − 1)cn
. (3.47)

From the iterative formula (3.44), we obtain

Wi

ẑi − zi
= − 1

1 −
∑
j �=i

Wj

zi − zj

,
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so that by (3.47) it follows∣∣∣ n∑
j=1

Wj

ẑi − zj
+ 1
∣∣∣ = ∣∣∣ Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1
∣∣∣ = ∣∣∣1 − 1

1 − σi
+
∑
j �=i

Wj

ẑi − zj

∣∣∣
=

1
|1 − σi|

∣∣∣∑
j �=i

Wj

ẑi − zj
−
∑
j �=i

Wj

zi − zj
− σi

∑
j �=i

Wj

zi − zj

∣∣∣
≤ 1

|1 − σi|
∣∣∣∑
j �=i

Wj(zi − ẑi)
(ẑi − zj)(zi − zj)

∣∣∣+ |σi|
1 − |σi|

∣∣∣∑
j �=i

Wj

ẑi − zj

∣∣∣
≤ 1

1 − (n − 1)cn
|zi − ẑi|

∑
j �=i

|Wj |
|ẑi − zj ||zi − zj |

+
(n − 1)cn

1 − (n − 1)cn

∑
j �=i

|Wj |
|ẑi − zj | .

Hence, by (ii), (iii), (3.46), and (3.47), we estimate∣∣∣ n∑
j=1

Wj

ẑi − zj
+ 1
∣∣∣ ≤ λd

1 − (n − 1)cn

(n − 1)w
(1 − λn)d · d +

(n − 1)cn

1 − (n − 1)cn

(n − 1)w
(1 − λn)d

=
(n − 1)c2

n

(2cn − λn)(1 − λn)

(
λn + (n − 1)cn

)
. 
�

Remark 3.5. The inequalities (iv) and (vi) require 2λn<1 or 2cn(1+(n − 1)
cn) < 1. This inequality will be satisfied if cn < 1/(1 +

√
2n − 1), which is

true according to (3.45).

Lemma 3.9. Let z1, . . . , zn be distinct approximations and let the assump-
tions (3.45) and (3.46) of Lemma 3.8 hold. If the inequality

δn :=
(n − 1)cnλn

(2cn − λn)(1 − λn)

(
λn+(n−1)cn

)(
1+

λn

1 − 2λn

)n−1

≤ 1−2λn (3.48)

is valid, then:

(i) |Ŵi| ≤ δn|Wi|.
(ii) ŵ ≤ cnd̂.

Proof. Putting z = ẑi in (3.27), where ẑi is a new approximation obtained by
Tanabe’s method (3.44), and dividing with

∏
j �=i

(ẑi − ẑj), we obtain

Ŵi =
P (ẑi)∏

j �=i

(ẑi − ẑj)
= (ẑi − zi)

[
n∑

j=1

Wj

ẑi − zj
+ 1

]∏
j �=i

ẑi − zj

ẑi − ẑj
.
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From the last relation, we obtain by (ii), (v), and (vi) of Lemma 3.8

|Ŵi| = |ẑi − zi|
∣∣∣ n∑
j=1

Wj

ẑi − zj
+ 1
∣∣∣∏

j �=i

∣∣∣ ẑi − zj

ẑi − ẑj

∣∣∣
≤ λn

cn
|Wi| (n − 1)c2

n

(2cn − λn)(1 − λn)

(
λn + (n − 1)cn

)(
1 +

λn

1 − 2λn

)n−1

= δn|Wi|,

which proves (i).
Using (iv) of Lemma 3.8, we find

d̂ ≥ (1 − 2λn)d.

Combining this inequality with (i) of Lemma 3.9, (3.45), and (3.48), we
prove (ii):

|Ŵi| ≤ δn|Wi| ≤ δncnd ≤ δn

1 − 2λn
cnd̂ ≤ cnd̂. 
�

Theorem 3.6. Let the assumptions of Lemmas 3.7 and 3.8 be valid and let

βn :=
λnδn

2cn − λn
< 1 (3.49)

and
g(βn) <

1
2λn

. (3.50)

If z
(0)
1 , . . . , z

(0)
n are distinct initial approximations satisfying

w(0) ≤ cnd(0), (3.51)

then the Tanabe’s method (3.44) is convergent.

Proof. In Lemma 3.9 (assertion (ii)), we derived the implication w ≤ cnd ⇒
ŵ ≤ cnd̂. Using a similar procedure, we prove by induction that the initial
condition (3.51) implies the inequality w(m) ≤ cnd(m) for each m = 1, 2, . . ..
Therefore, all assertions of Lemmas 3.8 and 3.9 are valid for each m = 1, 2, . . ..
For example, we have

|W (m+1)
i | ≤ δn|W (m)

i | (i ∈ In, m = 0, 1, . . .). (3.52)

From the iterative formula (3.44), we see that corrections C
(m)
i are given by

C
(m)
i = W

(m)
i

(
1 −
∑
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

)
(i ∈ In). (3.53)
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This correction has the required form

C
(m)
i = P (z(m)

i )/F (z(m)
1 , . . . , z(m)

n ),

where

Fi(z
(m)
1 , . . . , z(m)

n ) =

∏
j �=i

(
z
(m)
i − z

(m)
j

)
1 −
∑
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

(i ∈ In).

According to (i) of Lemma 3.8, it follows Fi(z
(m)
1 , . . . , z

(m)
n ) �= 0, which means

that the Tanabe’s method is well defined in each iteration.
We now prove the first part of the theorem which is concerned with the

monotonicity of the sequences {C(m)
i } (i ∈ In) of corrections. Starting from

(3.53) and omitting iteration indices, we find by (ii) of Lemma 3.8 (which is
valid under the condition (3.51))

|Ci| = |Wi|
∣∣∣1 −

∑
j �=i

Wj

zi − zj

∣∣∣ ≤ λn

cn
|Wi|. (3.54)

According to (3.52)–(3.54) and by the inequalities (i) of Lemma 3.8, we
obtain

|Ĉi| ≤ λn

cn
|Ŵi| ≤ λnδn

cn
|Wi| =

λnδn

cn
·

∣∣∣∣∣Wi

(
1 −
∑
j �=i

Wj

zi − zj

)∣∣∣∣∣∣∣∣1 −
∑
j �=i

Wj

zi − zj

∣∣∣
≤ λnδn

cn(2 − λn/cn)
|Ci| = βn|Ci|,

where βn < 1 (assumption (3.49)). By induction, it is proved that the in-
equality |C(m+1)

i | ≤ βn|C(m)
i | holds for each i = 1, . . . , n and m = 0, 1, . . ..

By (3.51) and (3.54), we estimate

1
λn

|C(0)
i | ≤ w(0)

cn
≤ d(0).

According to this, (3.50), and (3.51), we conclude that

|z(0)
i − z

(0)
j | ≥ d(0) ≥ w(0)

cn
≥ 1

2λn

(|C(0)
i | + |C(0)

j |) > g(βn)
(|C(0)

i | + |C(0)
j |)

holds for each i �= j, i, j ∈ In. This proves (ii) of Theorem 3.1. 
�
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Lemma 3.10. The i-factor cn given by cn = 1/(3n) satisfies the condition
(3.45), (3.48), (3.49), and (3.50).

Proof. Obviously, cn = 1/(3n) < 1/
(
1+

√
2n − 1

)
. Furthermore, the sequence

{δn} is monotonically increasing so that

δn < lim
n→+∞ δn =

2
9
e4/9 ≈ 0.3465 < 0.35 for every n ≥ 3.

We adopt δn = 0.35 and prove that (3.48) holds; indeed,

δn = 0.35 < 1 − 2λn = 1 − 2(4n − 1)
9n2

(
≥ 59

81
≈ 0.728

)
for every n ≥ 3.

For δn = 0.35 and cn = 1/(3n), the sequence {βn} defined by

βn =
δnλn

2cn − λn
=

0.35(4n − 1)
2n + 1

is monotonically increasing so that

βn < lim
n→+∞ δn = 0.7 < 1 (n ≥ 3),

which means that (3.49) is valid.
Finally, we check the validity of the inequality (3.50) taking βn = 0.7. We

obtain

g(βn) = g(0.7) =
1

1 − 0.7
= 3.333... <

1
2λn

=
9n2

2(4n − 1)

(
≥ 81

22
≈ 3.68

)
,

wherefrom we conclude that the inequality (3.50) holds for every n ≥ 3. 
�

According to Lemma 3.10 and Theorem 3.1, the following theorem is
stated.

Theorem 3.7. The Tanabe’s method (3.44) is convergent under condition
(3.51), where cn = 1/(3n).

The Chebyshev-Like Method

In Sect. 1.1, we have presented the iterative fourth-order method of
Chebyshev’s type

z
(m+1)
i = z

(m)
i − W

(m)
i

1 + G
(m)
1,i

(
1 − W

(m)
i G

(m)
2,i

(1 + G
(m)
1,i )2

)
(i ∈ In, m = 0, 1, 2, . . .),

(3.55)
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proposed by M. Petković, Tričković, and -D. Herceg [146]. Before stating initial
conditions that guarantee the convergence of the method (3.55), three lemmas
which concern some necessary bounds and estimations are given first.

Lemma 3.11. Let z1, . . . , zn be distinct approximations to the zeros ζ1, . . . , ζn

of a polynomial P and let ẑ1, . . . , ẑn be new approximations obtained by the
iterative formula (3.55). If the inequality

w < cnd, cn =
2

5n + 3
(n ≥ 3) (3.56)

holds, then for all i ∈ In we have:

(i)
3n + 5
5n + 3

< |1 + G1,i| <
7n + 1
5n + 3

.

(ii) |ẑi − zi| ≤ λn

cn
|Wi| ≤ λnd, where λn =

2(9n2 + 34n + 21)
(3n + 5)3

.

Proof. According to the definition of the minimal distance d and the inequality
(3.56), it follows

|G1,i| ≤
∑
j �=i

|Wj |
|zi − zj | < (n − 1)cn, |G2,i| ≤

∑
j �=i

|Wj |
|zi − zj |2 <

(n − 1)cn

d
,

(3.57)
so that we find

|1 + G1,i| ≥ 1 −
∑
j �=i

|Wj |
|zi − zj | > 1 − (n − 1)cn =

3n + 5
5n + 3

and

|1 + G1,i| ≤ 1 +
∑
j �=i

|Wj |
|zi − zj | < 1 + (n − 1)cn =

7n + 1
5n + 3

.

Therefore, the assertion (i) of Lemma 3.11 is proved.
Using (i) and (3.57), we estimate∣∣∣ Wi

1 + G1,i

∣∣∣ < w

1 − (n − 1)cn
<

2
3n + 5

d (3.58)

and∣∣∣ WiG2,i

(1 + G1,i)2

∣∣∣ < w(n − 1)cn/d

(1 − (n − 1)cn)2
<

c2
n(n − 1)

(1 − (n − 1)cn)2
≤ 4(n − 1)

(3n + 5)2
. (3.59)
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Using (3.58) and (3.59), we obtain the bound (ii):

|ẑi − zi| = |Ci| =
∣∣∣ Wi

1 + G1,i

(
1 − WiG2,i

(1 + G1,i)2
)∣∣∣

≤ |Wi|
|1 + G1,i|

(
1 +

|WiG2,i|
|1 + G1,i|2

)
< |Wi| · 5n + 3

3n + 5

(
1 +

4(n − 1)
(3n + 5)2

)
<

2(9n2 + 34n + 21)
(3n + 5)3

d = λnd. 
�

According to Lemma 3.2 and the assertion (ii) of Lemma 3.11, under the
condition (3.56), we have

|ẑi − zj | > (1 − λn)d (i, j ∈ In), (3.60)
|ẑi − ẑj | > (1 − 2λn)d (i, j ∈ In), (3.61)

and ∣∣∣∣∣∏
j �=i

ẑi − zj

ẑi − ẑj

∣∣∣∣∣ <
(

1 +
λn

1 − 2λn

)n−1

. (3.62)

Let us note that the necessary condition λn < 1/2 is satisfied under the
condition (3.56).

Remark 3.6. Since (3.61) is valid for arbitrary pair i, j ∈ In and λn < 1/2 if
(3.56) holds, there follows

d̂ = min
j �=i

|ẑi − ẑj | > (1 − 2λn)d. (3.63)

Lemma 3.12. If the inequality (3.56) holds, then

(i) |Ŵi| < 0.22|Wi|.
(ii) ŵ <

2
5n + 3

d̂.

Proof. For distinct points z1, . . . , zn, we use the polynomial representation
(3.27) and putting z = ẑi in (3.27), we find

P (ẑi) = (ẑi − zi)

(
Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1

)∏
j �=i

(ẑi − zj).
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After division with
∏
j �=i

(ẑi − ẑj), we get

Ŵi =
P (ẑi)∏

j �=i

(ẑi − ẑj)
= (ẑi − zi)

(
Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1

)∏
j �=i

(
ẑi − zj

ẑi − ẑj

)
.

(3.64)
From the iterative formula (3.55), it follows

Wi

ẑi − zi
=

−(1 + G1,i)

1 − WiG2,i

(1 + G1,i)2

= −1 −
G1,i +

WiG2,i

(1 + G1,i)2

1 − WiG2,i

(1 + G1,i)2

. (3.65)

Then

Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1 = −1 −

G1,i +
WiG2,i

(1 + G1,i)2

1 − WiG2,i

(1 + G1,i)2

+
∑
j �=i

Wj

ẑi − zj
+ 1

=

−
∑
j �=i

Wj

zi − zj
+
∑
j �=i

Wj

ẑi − zj
− WiG2,i

(1 + G1,i)2
− WiG2,i

(1 + G1,i)2
∑
j �=i

Wj

ẑi − zj

1 − WiG2,i

(1 + G1,i)2

=

−(ẑi − zi)
∑
j �=i

Wj

(zi − zj)(ẑi − zj)
− WiG2,i

(1 + G1,i)2
(
1 +
∑
j �=i

Wj

ẑi − zj

)
1 − WiG2,i

(1 + G1,i)2

.

From the last formula, we obtain by (3.59), (3.60), the definition of the min-
imal distance, and (ii) of Lemma 3.11∣∣∣ Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1
∣∣∣

≤
|ẑi − zi|

∑
j �=i

|Wj |
|zi − zj ||ẑi − zj | +

∣∣∣ WiG2,i

(1 + G1,i)2

∣∣∣(1 +
∑
j �=i

|Wj |
|ẑi − zj |

)
1 −
∣∣∣ WiG2,i

(1 + G1,i)2

∣∣∣
<

8(135n5 + 594n4 + 646n3 − 292n2 − 821n − 262)
(5n + 3)(9n2 + 26n + 29)(27n3 + 117n2 + 157n + 83)

= yn. (3.66)
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Now, starting from (3.64) and taking into account (3.60)–(3.62), (3.66), and
the assertions of Lemma 3.11, we obtain

|Ŵi| ≤ |ẑi − zi|
∣∣∣ n∑
j=1

Wj

ẑi − zj
+ 1
∣∣∣∏

j �=i

(
1 +

|ẑj − zj |
|ẑi − ẑj |

)
<

λn

cn
|Wi|yn

(
1 +

λn

1 − 2λn

)n−1

= φn|Wi|.

Using the symbolic computation in the programming package Mathematica
6.0, we find that the sequence

{
φn

}
n=3,4,...

attains its maximum for n = 5:

φn ≤ φ5 < 0.22, for all n ≥ 3.

Therefore, |Ŵi| < 0.22|Wi| and the assertion (i) is valid.
According to this, (3.63), and the inequality

0.22(3n + 5)3

27n3 + 99n2 + 89n + 41
≤ 0.32 < 1,

we find

|Ŵi| < 0.22|Wi| < 0.22
2d

5n + 3
< 0.22

2
5n + 3

(3n + 5)3

27n3 + 99n2 + 89n + 41
d̂,

wherefrom
ŵ <

2
5n + 3

d̂,

which proves the assertion (ii) of Lemma 3.12. 
�
Now, we are able to establish the main convergence theorem for the iter-

ative method (3.55).

Theorem 3.8. If the initial approximations z
(0)
1 , . . . , z

(0)
n satisfy the initial

condition
w(0) < cnd(0), cn =

2
5n + 3

(n ≥ 3), (3.67)

then the iterative method (3.55) is convergent.

Proof. It is sufficient to prove that the inequalities (i) and (ii) of Theorem 3.1
are valid for the correction

C
(m)
i =

W
(m)
i

1 + G
(m)
1,i

(
1 − W

(m)
i G

(m)
2,i

(1 + G
(m)
1,i )2

)
(i ∈ In),

which appears in the considered method (3.55).
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Using Lemma 3.11(i) and (3.59), we find

|Ci| = |ẑi − zi| =
∣∣∣ Wi

1 + G1,i

(
1 − WiG2,i

(1 + G1,i)2
)∣∣∣

<
5n + 3
3n + 5

Wi

(
1 +

4(n − 1)
(3n + 5)2

)
=

(5n + 3)(9n2 + 34n + 21)
(3n + 5)3

|Wi|
= xn|Wi|.

It is easy to show that the sequence {xn}n=3,4,... is monotonically increasing
and xn < lim

m→∞xn = 5/3, wherefrom

|Ci| <
5
3
|Wi|. (3.68)

In Lemma 3.12 (assertion (ii)), the implication w < cnd ⇒ ŵ < cnd̂ has been
proved. Using a similar procedure, we prove by induction that the initial
condition (3.67) implies the inequality w(m) < cnd(m) for each m = 1, 2, . . ..
Therefore, by (i) of Lemma 3.12, we obtain

|W (m+1)
i | < 0.22|W (m)

i | (i ∈ In, m = 0, 1, . . .).

According to this and by the inequalities (i) of Lemma 3.11 and (3.68), we
obtain (omitting iteration indices)

|Ĉi| =
5
3
|Ŵi| <

5
3
· 0.22|Wi|

=
1.1
3

∣∣∣ Wi

1 + G1,i

(
1 − WiG2,i

(1 + G1,i)2
)∣∣∣∣∣∣∣∣ 1 + G1,i

1 − WiG2,i

(1 + G1,i)2

∣∣∣∣∣
<

1.1
3

|Ci|
7n + 1
5n + 3

1 − 4(n − 1)
(3n + 5)2

< 0.52|Ci|.

In this manner, we have proved by induction that the inequality |C(m+1)
i | <

0.52|C(m)
i | holds for each i = 1, . . . , n and m = 0, 1, . . .. Furthermore, com-

paring this result with (i) of Theorem 3.1, we see that β = 0.52 < 1. This
yields the first part of the theorem. In addition, according to (3.57), we note
that the following is valid:

|G1,i| < (n − 1)cn =
2(n − 1)
5n + 3

≤ 2
9

< 1,

which means that 0 /∈ 1 + G1,i. Using induction and the assertion (ii) of
Lemma 3.12, we prove that 0 /∈ 1 + G

(m)
1,i for arbitrary iteration index m.
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Therefore, under the condition (3.67), the iterative method (3.55) is well
defined in each iteration.

To prove (ii) of Theorem 3.8, we first note that β = 0.52 yields g(β) =
1

1−0.52 ≈ 2.08. It remains to prove the disjunctivity of the inclusion disks

S1 = {z(0)
1 ; 2.08|C(0)

1 }, . . . , Sn = {z(0)
n ; 2.08|C(0)

n }.

By virtue of (3.68), we have |C(0)
i | < 5

3w(0), wherefrom

d(0) >
5n + 3

2
w(0) >

5n + 3
2

· 3
5
|C(0)

i | ≥ 3(5n + 3)
20

(|C(0)
i | + |C(0)

j |)
> g(0.52)

(|C(0)
i | + |C(0)

j |).
This means that∣∣z(0)

i − z
(0)
j

∣∣ ≥ d(0) > g(0.52)
(∣∣C(0)

i

∣∣+ ∣∣C(0)
j

∣∣) = radSi + radSj .

Therefore, the inclusion disks S1, . . . , Sn are disjoint, which completes the
proof of Theorem 3.8. 
�

3.3 Guaranteed Convergence: Sequence Approach

In what follows, we will present another concept of the convergence analysis
involving initial conditions of the form (3.7) which guarantee the convergence
of the considered methods.

Let z
(m)
1 , . . . , z

(m)
n be approximations to the simple zeros ζ1, . . . , ζn of a

polynomial P , generated by some iterative method for the simultaneous de-
termination of zeros at the mth iterative step and let u

(m)
i = z

(m)
i −ζi (i ∈ In).

Our main aim is to study the convergence of the sequences {u(m)
1 }, . . . , {u(m)

n }
under the initial condition (3.7). In our analysis, we will use Corollary 1.1
proved in [118] (see Sect. 1.2).

The point estimation approach presented in this section consists of the
following main steps:

1◦ If cn ≤ 1/(2n) and (3.7) holds, from Corollary 1.1, it follows that the
inequalities

|u(0)
i | = |z(0)

i − ζi| <
|W (0)

i |
1 − ncn

(3.69)

are valid for each i ∈ In. These inequalities have an important role in
the estimation procedure involved in the convergence analysis of the se-
quences

{
z
(m)
i

}
, produced by the considered simultaneous method.
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2◦ In the next step, we derive the inequalities

d < τnd̂ and |Ŵi| < βn|Wi|,

which involve the minimal distances and the Weierstrass’ corrections at
two successive iterative steps. The i-factor cn appearing in (3.7) has to
be chosen to provide such values of τn and βn which give the following
implication

w < cnd =⇒ ŵ < cnd̂,

important in the proof of convergence theorems by induction. Let us note
that the above implication will hold if τnβn < 1.

3◦ In the final step, we derive the inequalities of the form

|u(m+1)
i | ≤ γ(n, d(m))|u(m)

i |p
(

n∑
j=1
j �=i

|u(m)
j |q

)r

(3.70)

for i = 1, . . . , n and m = 0, 1, . . ., and prove that all sequences{|u(m)
1 |}, . . ., {|u(m)

n |} tend to 0 under the condition (3.7) (with suit-
ably chosen cn), which means that z

(m)
i → ζi (i ∈ In). The order of

convergence of these sequences is obtained from (3.70) and it is equal to
p + qr.

To study iterative methods which do not involve Weierstrass’ corrections
Wi, appearing in the initial conditions of the form (3.7), it is necessary to
establish a suitable relation between Newton’s correction P (zi)/P ′(zi) and
Weierstrass’ correction Wi. Applying the logarithmic derivative to P (t), rep-
resented by the Lagrangean interpolation formula (3.27) (for z = t), one
obtains

P ′(t)
P (t)

=
n∑

j=1
j �=i

1
t − zj

+

n∑
j=1
j �=i

Wj

t − zj
+ 1 − (t − zi)

n∑
j=1
j �=i

Wj

(t − zj)2

Wi + (t − zi)

[
n∑

j=1
j �=i

Wj

t − zj
+ 1

] . (3.71)

Putting t = zi in (3.71), we get Carstensen’s identity [15]

P ′(zi)
P (zi)

=
n∑

j=1
j �=i

1
zi − zj

+

n∑
j=1
j �=i

Wj

zi − zj
+ 1

Wi
. (3.72)

In what follows, we will apply the three-stage aforementioned procedure
for the convergence analysis of some frequently used simultaneous methods.
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The Ehrlich–Aberth’s Method

In this part, we use Newton’s and Weierstrass’ correction, given, respectively,
by

N
(m)
i =

P (z(m)
i )

P ′(z(m)
i )

and W
(m)
i =

P (z(m)
i )

n∏
j=1
j �=i

(z(m)
i − z

(m)
j )

(i ∈ In, m = 0, 1, . . .).

We are concerned here with one of the most efficient numerical methods for
the simultaneous approximation of all zeros of a polynomial, given by the
iterative formula

z
(m+1)
i = z

(m)
i − 1

1

N
(m)
i

−
n∑

j=1
j �=i

1

z
(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .). (3.73)

Our aim is to state practically applicable initial conditions of the form
(3.7), which enable a guaranteed convergence of the Ehrlich–Aberth’s method
(3.73). First, we present a lemma concerned with the localization of polyno-
mial zeros.

Lemma 3.13. Assume that the following condition

w < cnd, cn =

⎧⎪⎪⎨⎪⎪⎩
1

2n + 1.4
, 3 ≤ n ≤ 7

1
2n

, n ≥ 8

(3.74)

is satisfied. Then, each disk
{

zi;
1

1 − ncn
|Wi|
}

(i ∈ In) contains one and only

one zero of P .

The above assertion follows from Corollary 1.1 under the condition (3.74).

Lemma 3.14. Let z1, . . . , zn be distinct approximations to the zeros ζ1, . . . , ζn

of a polynomial P of degree n and let ẑ1, . . . , ẑn be new respective approxi-
mations obtained by the Ehrlich–Aberth’s method (3.73). Then, the following
formula is valid:

Ŵi = −(ẑi − zi)2
∑
j �=i

Wj

(ẑi − zj)(zi − zj)

∏
j �=i

(
1 +

ẑj − zj

ẑi − ẑj

)
. (3.75)
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Proof. From the iterative formula (3.73), one obtains

1
ẑi − zi

=
∑
j �=i

1
zi − zj

− P ′(zi)
P (zi)

,

so that, using (3.72),

Wi

ẑi − zi
= Wi

(∑
j �=i

1
zi − zj

− P ′(zi)
P (zi)

)
= −Wi

[
1

Wi

(∑
j �=i

Wj

zi − zj
+ 1
)]

= −
∑
j �=i

Wj

zi − zj
− 1.

According to this, we have

n∑
j=1

Wj

ẑi − zj
+ 1 =

Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1 = −

∑
j �=i

Wj

zi − zj
+
∑
j �=i

Wj

ẑi − zj

= −(ẑi − zi)
∑
j �=i

Wj

(ẑi − zj)(zi − zj)
.

Taking into account the last expression, returning to (3.27), we find for
z = ẑi

P (ẑi) =
( n∑

j=1

Wj

ẑi − zj
+ 1
) n∏

j=1

(ẑi − zj)

= −(ẑi − zi)2
∑
j �=i

Wj

(ẑi − zj)(zi − zj)

∏
j �=i

(ẑi − zj).

After dividing by
∏

j �=i(ẑi − ẑj) and some rearrangement, we obtain (3.75).

�

Let us introduce the abbreviations:

ρn =
1

1 − ncn
, γn =

1
1 − ρncn − (n − 1)(ρncn)2

,

λn = ρncn(1 − ρncn)γn, βn =
(n − 1)λ2

n

1 − λn

(
1 +

λn

1 − 2λn

)n−1

.

Lemma 3.15. Let ẑ1, . . . , ẑn be approximations produced by the Ehrlich–
Aberth’s method (3.73) and let ui = zi − ζi and ûi = ẑi − ζi. If n ≥ 3 and the
inequality (3.74) holds, then:

(i) d <
1

1 − 2λn
d̂.
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(ii) ŵ < βnw.
(iii) ŵ < cnd̂.
(iv) |ûi| ≤ γn

d2
|ui|2

∑
j �=i

|uj |.

Proof. According to the initial condition (3.74) and Lemma 3.13, we have

|ui| = |zi − ζi| ≤ ρn|Wi| ≤ ρnw < ρncnd. (3.76)

In view of (3.76) and the definition of the minimal distance d, we find

|zj − ζi| ≥ |zj − zi| − |zi − ζi| > d − ρncnd = (1 − ρncn)d. (3.77)

Using the identity

P ′(zi)
P (zi)

=
n∑

j=1

1
zi − ζj

=
1
ui

+
∑
j �=i

1
zi − ζj

, (3.78)

from (3.73), we get

ûi = ẑi − ζi = zi − ζi − 1
1
ui

+
∑
j �=i

1
zi − ζj

−
∑
j �=i

1
zi − zj

= ui − ui

1 − uiSi
= − u2

i Si

1 − uiSi
, (3.79)

where Si =
∑
j �=i

uj

(zi − ζj)(zi − zj)
.

Using the definition of d and the bounds (3.76) and (3.77), we estimate

|uiSi| ≤ |ui|
∑
j �=i

|uj |
|zi − ζj ||zi − zj | < ρncnd · (n − 1)ρncnd

(1 − ρncn)d2

=
(ρncn)2(n − 1)

1 − ρncn
. (3.80)

Now, by (3.76) and (3.80), from (3.73) we find

|ẑi − zi| =
∣∣∣ ui

1 − uiSi

∣∣∣ ≤ |ui|
1 − |uiSi| <

|ui|
1 − (ρncn)2(n − 1)

1 − ρncn

<
ρncn(1 − ρncn)

1 − ρncn − (ρncn)2(n − 1)
d = ρncn(1 − ρncn)γnd

= λnd (3.81)
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and also
|ẑi − zi| < (1 − ρncn)γn|ui| < (1 − ρncn)γnρn|Wi|. (3.82)

Having in mind (3.81), according to Lemma 3.2, we conclude that the esti-
mates |ẑi − zj | > (1 − λn)d and |ẑi − ẑj | > (1 − 2λn)d (i ∈ In) hold. From
the last inequality, we find

d

d̂
<

1
1 − 2λn

for every n ≥ 3, (3.83)

which proves the assertion (i) of Lemma 3.15.
Using the starting inequality w/d < cn and the bounds (3.81), (3.82),

(3.14), (3.15), and (3.16), we estimate the quantities involved in (3.75):

|Ŵi| ≤ |ẑi − zi|2
∑
j �=i

|Wj |
|ẑi − zj ||zi − zj |

∏
j �=i

(
1 +

|ẑj − zj |
|ẑi − ẑj |

)
<

(n − 1)λ2
n

(1 − λn)

(
1 +

λn

1 − 2λn

)n−1

|Wi|
= βn|Wi|.

Therefore, we have
ŵ < βnw (3.84)

so that, by (3.74), (3.83), and (3.84), we estimate

ŵ < βnw < βncnd <
βn

1 − 2λn
cnd̂.

Since
βn

1 − 2λn
< 0.95 < 1 for all 3 ≤ n ≤ 7

and
βn

1 − 2λn
< 0.78 < 1 for all n ≥ 8,

we have
ŵ < cnd̂, n ≥ 3.

In this way, we have proved the assertions (ii) and (iii) of Lemma 3.15.
Using the previously derived bounds, we find

|ûi| ≤ |ui|2|Si|
1 − |uiSi| <

|ui|2

1 − (ρcn)2(n − 1)
1 − ρncn

∑
j �=i

|uj |
|zi − ζj ||zi − zj |

<
1 − ρncn

1 − ρncn − (ρncn)2(n − 1)
|ui|2

∑
j �=i

|uj |
(1 − ρncn)d2

=
1

(1 − ρncn − (ρncn)2(n − 1))d2
|ui|2

∑
j �=i

|uj |,



3.3 Guaranteed Convergence: Sequence Approach 103

wherefrom
|ûi| <

γn

d2
|ui|2

∑
j �=i

|uj |. (3.85)

This strict inequality is derived assuming that ui �= 0 (see Remark 3.8). If we
include the case ui = 0, then it follows

|ûi| ≤ γn

d2
|ui|2

∑
j �=i

|uj |

and the assertion (iv) of Lemma 3.15 is proved. 
�
Remark 3.7. In what follows, the assertions of the form (i)–(iv) of Lemma 3.15
will be presented for the three other methods, but for different i-factor cn

and specific entries of λn, βn, and γn.

We now give the convergence theorem for the Ehrlich–Aberth’s method
(3.73), which involves only initial approximations to the zeros, the polynomial
coefficients, and the polynomial degree n.

Theorem 3.9. Under the initial condition

w(0) < cnd(0), (3.86)

where cn is given by (3.74), the Ehrlich–Aberth’s method (3.73) is convergent
with the cubic convergence.

Proof. The convergence analysis is based on the estimation procedure of the
errors u

(m)
i = z

(m)
i − ζi (i ∈ In). The proof is by induction with the argu-

mentation used for the inequalities (i)–(iv) of Lemma 3.15. Since the initial
condition (3.86) coincides with (3.74), all estimates given in Lemma 3.15 are
valid for the index m = 1. Actually, this is the part of the proof with respect
to m = 1. Furthermore, the inequality (iii) again reduces to the condition
of the form (3.74) and, therefore, the assertions (i)–(iv) of Lemma 3.15 hold
for the next index, and so on. All estimates and bounds for the index m are
derived essentially in the same way as for m = 0. In fact, the implication

w(m) < cnd(m) =⇒ w(m+1) < cnd(m+1)

plays the key role in the convergence analysis of the Ehrlich–Aberth’s method
(3.73) because it involves the initial condition (3.86), which enables the valid-
ity of all inequalities given in Lemma 3.15 for all m = 0, 1, . . .. In particular,
regarding (3.83) and (3.85), we have

d(m)

d(m+1)
<

1
1 − 2λn

(3.87)
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and

|u(m+1)
i | ≤ γn

(d(m))2
|u(m)

i |2
n∑

j=1
j �=i

|u(m)
j | (i ∈ In) (3.88)

for each iteration index m = 0, 1, . . . if (3.86) holds.
Substituting

t
(m)
i =

[ (n − 1)γn

(1 − 2λn)(d(m))2

]1/2

|u(m)
i |,

the inequalities (3.88) become

t
(m+1)
i ≤ (1 − 2λn)d(m)

(n − 1)d(m+1)

(
t
(m)
i

)2 n∑
j=1
j �=i

t
(m)
j ,

wherefrom, by (3.87),

t
(m+1)
i <

(
t
(m)
i

)2
n − 1

n∑
j=1
j �=i

t
(m)
j (i ∈ In). (3.89)

By virtue of (3.76), we find

t
(0)
i =

√
(n − 1)γn

(1 − 2λn)(d(0))2
|u(0)

i | < ρncnd(0)

√
(n − 1)γn

(1 − 2λn)(d(0))2

= ρncn

√
(n − 1)γn

1 − 2λn

for each i = 1, . . . , n. Taking

t = max
1≤i≤n

t
(0)
i < ρncn

√
(n − 1)γn

1 − 2λn
,

we come to the inequalities

t
(0)
i ≤ t < 0.571 < 1 (3 ≤ n ≤ 7)

and
t
(0)
i ≤ t < 0.432 < 1 (n ≥ 8)

for all i = 1, . . . , n. According to this, from (3.89), we conclude that the
sequences

{
t
(m)
i

}
(and, consequently,

{|u(m)
i |}) tend to 0 for all i = 1, . . . , n.

Therefore, the Ehrlich–Aberth’s method (3.73) is convergent.
Taking into account that the quantity d(m), which appears in (3.88), is

bounded (see the proof of Theorem 5.1) and tends to min
i�=j

|ζi−ζj | and setting
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u(m) = max
1≤i≤n

|u(m)
i |,

from (3.88), we obtain

|u(m+1)
i | ≤ u(m+1) <

(n − 1)γn

d(m)
|u(m)|3,

which proves the cubic convergence. 
�
Remark 3.8. As usual in the convergence analysis of iterative methods (see,
e.g., [48]), we could assume that the errors u

(m)
i =z

(m)
i − ζi (i ∈ In) do

not reach 0 for a finite m. However, if u
(m0)
i =0 for some indices i1, . . . , ik

and m0 ≥ 0, we just take z
(m0)
i1

, . . . , z
(m0)
ik

as approximations to the zeros
ζi1 , . . . , ζik

and do not iterate further for the indices i1, . . . , ik. If the se-
quences {u(m)

i } (i ∈ In \ {i1, . . . , ik}) have the order of convergence q, then
obviously the sequences {u(m)

i1
}, . . . , {u(m)

ik
} converge with the convergence

rate at least q. This remark refers not only to the iterative method (3.73)
but also to all methods considered in this book. For this reason, we do not
discuss this point further.

The Ehrlich–Aberth’s Method with Newton’s Corrections

The convergence of the Ehrlich–Aberth’s method (3.1) can be accelerated
using Newton’s corrections N

(m)
i = P (z(m)

i )/P ′(z(m)
i ) (i ∈ In, m = 0, 1, . . .).

In this way, the following method for the simultaneous approximation of all
simple zeros of a given polynomial P can be established

z
(m+1)
i = z

(m)
i − 1

1

N
(m)
i

−
∑
j �=i

1

z
(m)
i − z

(m)
j + N

(m)
j

(i ∈ In), (3.90)

where m = 0, 1, . . ., see Sect. 1.1. This method will be briefly called the EAN
method.

From Corollary 1.1, the following lemma can be stated.

Lemma 3.16. Let z1, . . . , zn be distinct numbers satisfying the inequality

w < cnd, cn =

⎧⎪⎪⎨⎪⎪⎩
1

2.2n + 1.9
, 3 ≤ n ≤ 21

1
2.2n

, n ≥ 22

. (3.91)

Then, the disks
{

z1;
1

1 − ncn
|W1|
}

, . . . ,
{

zn;
1

1 − ncn
|Wn|

}
are mutually dis-

joint and each of them contains exactly one zero of a polynomial P .

We now give the expression for the improved Weierstrass’ correction Ŵi.
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Lemma 3.17. Let z1, . . . , zn be distinct approximations to the zeros ζ1, . . . , ζn

of a polynomial P of degree n and let ẑ1, . . . , ẑn be new respective approxi-
mations obtained by the EAN method (3.90). Then, the following formula is
valid:

Ŵi = −(ẑi − zi)
(
WiΣN,i + (ẑi − zi)ΣW,i

)∏
j �=i

(
1 +

ẑj − zj

ẑi − ẑj

)
, (3.92)

where

ΣN,i =
∑
j �=i

Nj

(zi − zj + Nj)(zi − zj)
, ΣW,i =

∑
j �=i

Wj

(ẑi − zj)(zi − zj)
.

The relation (3.92) is obtained by combining the Lagrangean interpolation
formula (3.27) for z = ẑi, the iterative formula (3.90), and the identity (3.72).
Since the proving technique of Lemma 3.17 is a variation on earlier procedure
applied in the proof of Lemma 3.14, we shall pass over it lightly. The complete
proof can be found in [119].

We introduce the abbreviations:

ρn =
1

1 − ncn
, δn = 1 − ρncn − (n − 1)ρncn,

αn = (1 − ρncn)((1 − ρncn)2 − (n − 1)ρncn),

γn =
n − 1

αn − (n − 1)2(ρncn)3
, λn =

αnγnρncn

n − 1
,

βn = λn(n − 1)
( (1 − ρncn)2ρncn

αn
+

λn

1 − λn

)(
1 +

λn

1 − 2λn

)n−1

.

Lemma 3.18. Let ẑ1, . . . , ẑn be approximations generated by the EAN method
(3.90) and let ui = zi − ζi, ûi = ẑi − ζi. If n ≥ 3 and the inequality (3.91)
holds, then:

(i) d <
1

1 − 2λn
d̂.

(ii) ŵ < βnw.
(iii) ŵ < cnd̂.
(iv) |ûi| ≤ γn

d3
|ui|2

∑
j �=i

|uj |2.

Proof. In regard to (3.91) and Lemma 3.16, we have ζi ∈
{

zi;
1

1 − ncn
|Wi|
}

(i ∈ In), so that

|ui| = |zi − ζi| ≤ ρn|Wi| ≤ ρnw < ρncnd. (3.93)
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According to this and the definition of the minimal distance d, we find

|zj − ζi| ≥ |zj − zi| − |zi − ζi| > d − ρncnd = (1 − ρncn)d. (3.94)

Using the identity (3.78) and the estimates (3.93) and (3.94), we obtain∣∣∣∣∣P ′(zi)
P (zi)

∣∣∣∣∣ =
∣∣∣∣∣

n∑
j=1

1
zi − ζj

∣∣∣∣∣ ≥ 1
|zi − ζi| −

∑
j �=i

1
|zi − ζj | >

1
ρncnd

− n − 1
(1 − ρncn)d

=
1 − ρncn − (n − 1)ρncn

(1 − ρncn)ρncnd
=

δn

(1 − ρncn)ρncnd
.

Hence

|Ni| =

∣∣∣∣∣ P (zi)
P ′(zi)

∣∣∣∣∣ < (1 − ρncn)ρncnd

δn
, (3.95)

so that

|zi − zj + Nj | ≥ |zi − zj | − |Nj | > d − (1 − ρncn)ρncnd

δn

=
(1 − ρncn)2 − (n − 1)ρncn

δn
d =

αn

δn(1 − ρncn)
d. (3.96)

Let us introduce

Si =
∑
j �=i

Nj − uj

(zi − ζj)(zi − zj + Nj)
, hj =

∑
k �=j

1
zj − ζk

.

We start from the iterative formula (3.90) and use the identity (3.78) to find

ûi = ẑi − ζi = zi − ζi − 1
1
ui

+
∑
j �=i

1
zi − ζj

−
∑
j �=i

1
zi − zj + Nj

= ui − ui

1 + ui

∑
j �=i

Nj − uj

(zi − ζj)(zi − zj + Nj)

= ui − ui

1 + uiSi
=

u2
i Si

1 + uiSi
. (3.97)

Furthermore, we find

Nj =
uj

1 + ujhj
, Nj−uj = − u2

jhj

1 + ujhj
, Si = −

∑
j �=i

u2
jhj

1 + ujhj

(zi − ζj)(zi − zj + Nj)
.
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Using (3.93) and the inequality

|hj | =
∣∣∣∑
k �=j

1
zj − ζk

∣∣∣ < n − 1
(1 − ρncn)d

,

we find

∣∣∣ hj

1 + ujhj

∣∣∣ ≤ |hj |
1 − |uj ||hj | <

n − 1
(1 − ρncn)d

1 − ρncnd
n − 1

(1 − ρncn)d

=
n − 1
δnd

. (3.98)

Combining (3.93), (3.94), (3.96), and (3.98), we obtain

|uiSi| ≤ |ui|
∑
j �=i

|uj |2
∣∣∣ hj

1 + ujhj

∣∣∣
|zi − ζj ||zi − zj + Nj |

< ρncnd ·
(n − 1)(ρncnd)2

n − 1
δnd

(1 − ρncn)d
αn

δn(1 − ρncn)
d

=
(n − 1)2(ρncn)3

αn
. (3.99)

Using (3.93) and (3.99), from (3.90), we find

|ẑi − zi| =
∣∣∣ ui

1 + uiSi

∣∣∣ ≤ |ui|
1 − |uiSi| <

|ui|
1 − (n − 1)2(ρncn)3

αn

=
αn

αn − (n − 1)2(ρncn)3
|ui| <

αnρncnγn

n − 1
d = λnd

and

|ẑi − zi| <
αn

αn − (n − 1)2(ρncn)3
|ui| <

αnρnγn

n − 1
|Wi| =

λn

cn
|Wi| < λnd.

(3.100)
Since (3.100) holds, we apply Lemma 3.2 and obtain

d <
1

1 − 2λn
d̂ (3.101)

from (3.15). Thus, the assertion (i) of Lemma 3.18 is valid.
Using the starting inequality w/d < cn and the bounds (3.95), (3.96),

(3.100), (3.14), and (3.15), for n ≥ 3, we estimate the quantities appearing
in (3.92):
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|Wi||ΣN,i| < w
(n − 1)

(1 − ρncn)ρncnd

δn
αn

δn(1 − ρncn)
d2

<
(n − 1)(1 − ρncn)2ρnc2

n

αn
,

|ẑi − zi||ΣW,i| < λnd
(n − 1)cnd

(1 − λn)d · d <
(n − 1)λncn

1 − λn
.

According to the last two bounds and (3.16), from (3.92), we estimate

|Ŵi| ≤ |ẑi − zi|
(
|Wi||ΣN,i| + |ẑi − zi||ΣW,i|

)∣∣∣∏
j �=i

(
1 +

ẑj − zj

ẑi − ẑj

)∣∣∣
<

λn

cn
|Wi|
( (n − 1)(1 − ρncn)2ρnc2

n

αn
+

(n − 1)λncn

1 − λn

)(
1 +

λn

1 + 2λn

)n−1

= βn|Wi| ≤ βnw,

i.e.,
ŵ < βnw. (3.102)

Therefore, we have proved the assertion (ii) of Lemma 3.18.
Since

βn

1 − 2λn
< 0.942 for 3 ≤ n ≤ 21

and
βn

1 − 2λn
< 0.943 for n ≥ 22,

starting from (3.102), by (3.91) and (3.101), we find

ŵ < βnw < βncnd <
βn

1 − 2λn
· cnd̂ < cnd̂,

which means that the implication w < cnd ⇒ ŵ < cnd holds. This proves
(iii) of Lemma 3.18.

Using the above bounds, from (3.97), we obtain

|ûi| ≤ |ui|2|Si|
1 − |uiSi| <

αn

αn − (n − 1)2(ρncn)3
|ui|2

∑
j �=i

|uj |2
∣∣∣ hj

1 + ujhj

∣∣∣
|zi − ζj ||zi − zj + Nj |

<
αn

αn − (n − 1)2(ρncn)3

n − 1
δnd

(1 − ρncn)d
αn

δn(1 − ρncn)
d
|ui|2

∑
j �=i

|uj |2,
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wherefrom (taking into account Remark 3.8)

|ûi| ≤ γn

d3
|ui|2

∑
j �=i

|uj |2,

which proves (iv) of Lemma 3.18. 
�
Now, we give the convergence theorem for the EAN method (3.90).

Theorem 3.10. Let P be a polynomial of degree n ≥ 3 with simple zeros. If
the initial condition

w(0) < cnd(0) (3.103)

holds, where cn is given by (3.91), then the EAN method (3.90) is convergent
with the order of convergence 4.

Proof. Similarly to the proof of Theorem 3.9, we apply induction with the
argumentation used for the inequalities (i)–(iv) of Lemma 3.18. According to
(3.103) and (3.91), all estimates given in Lemma 3.18 are valid for the index
m = 1. We notice that the inequality (iii) coincides with the condition of the
form (3.103), and hence, the assertions (i)–(iv) of Lemma 3.18 are valid for
the next index, etc. The implication

w(m) < cnd(m) =⇒ w(m+1) < cnd(m+1)

provides the validity of all inequalities given in Lemma 3.18 for all m =
0, 1, . . .. In particular, we have

d(m)

d(m+1)
<

1
1 − 2λn

(3.104)

and

|u(m+1)
i | ≤ γn

(d(m))3
|u(m)

i |2
n∑

j=1
j �=i

|u(m)
j |2 (i ∈ In) (3.105)

for each iteration index m = 0, 1, . . . , where

γn =
n − 1

αn − (n − 1)2(ρncn)3
.

Substituting

t
(m)
i =

[ (n − 1)γn

(1 − 2λn)(d(m))3

]1/3

|u(m)
i |

into (3.105) yields

t
(m+1)
i ≤ (1 − 2λn)d(m)

(n − 1)d(m+1)

(
t
(m)
i

)2 n∑
j=1
j �=i

(
t
(m)
j

)2 (i ∈ In).
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Hence, using (3.104), we obtain

t
(m+1)
i <

1
n − 1

[t(m)
i ]2

n∑
j=1
j �=i

[t(m)
j ]2 (i ∈ In). (3.106)

Using (3.93), we find

t
(0)
i =

[ (n − 1)γn

(1 − 2λn)(d(0))3

]1/3

|u(0)
i | < ρncnd(0)

[ (n − 1)γn

(1 − 2λn)(d(0))3

]1/3

= ρncn

[ (n − 1)γn

1 − 2λn

]1/3

.

Taking t = max
1≤i≤n

t
(0)
i yields

t
(0)
i ≤ t < 0.626 < 1 (3 ≤ n ≤ 21)

and
t
(0)
i ≤ t < 0.640 < 1 (n ≥ 22)

for each i = 1, . . . , n. In regard to this, we conclude from (3.106) that the
sequences

{
t
(m)
i

}
and

{|u(m)
i |} tend to 0 for all i = 1, . . . , n, meaning that

z
(m)
i → ζi. Therefore, the EAN method (3.90) is convergent. Besides, taking

into account that the quantity d(m) appearing in (3.105) is bounded and
tends to min

1≤i,j≤n
i�=j

|ζi − ζj | and setting

u(m) = max
1≤i≤n

|u(m)
i |,

from (3.105), we obtain

|u(m+1)
i | ≤ u(m+1) < (n − 1)

γn

(d(m))3
(
u(m)
)4

,

which means that the order of convergence of the EAN method is 4. 
�

The Börsch-Supan’s Method with Weierstrass’ Correction

The cubically convergent Börsch-Supan’s method

z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
∑
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .),



112 3 Point Estimation of Simultaneous Methods

presented in [10], can be accelerated by using Weierstrass’ corrections W
(m)
i =

P (z(m)
i )
/∏

j �=i(z
(m)
i −z

(m)
j ). In this manner, we obtain the following iterative

formula (see Nourein [95])

z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
∑
j �=i

W
(m)
j

z
(m)
i − W

(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .).

(3.107)

The order of convergence of the Börsch-Supan’s method with Weierstrass’
corrections (3.107) is 4 (see, e.g., [16], [188]). For brevity, the method (3.107)
will be referred to as the BSW method.

Let us introduce the abbreviations:

ρn =
1

1 − ncn
, γn =

ρn(1 + ρncn)2n−2

(1 − ρncn)2
,

λn = ρncn(1 − cn), βn =
λnρnc2

n(n − 1)2

(1 − λn)(1 − cn)

(
1 +

λn

1 − 2λn

)n−1

.

Lemma 3.19. Let ẑ1, . . . , ẑn be approximations obtained by the iterative
method (3.107) and let ûi = ẑi − ζi, d̂ = min

i�=j
|ẑi − ẑj |, and ŵ = max

1≤i≤n
|Ŵi|.

If the inequality

w < cnd, cn =

⎧⎪⎪⎨⎪⎪⎩
1

2n + 1
, 3 ≤ n ≤ 13

1
2n

, n ≥ 14

(3.108)

holds, then:

(i) ŵ < βnw.

(ii) d <
1

1 − 2λn
d̂.

(iii) |ui| < ρncnd.
(iv) ŵ < cnd̂.

(v) |ûi| ≤ γn

d3
|ui|2
(∑

j �=i

|uj |
)2

.

The proof of this lemma is strikingly similar to that of Lemmas 3.15 and
3.18 and will be omitted.

Now, we establish initial conditions of practical interest, which guarantee
the convergence of the BSW method (3.107).

Theorem 3.11. If the initial condition given by

w(0) < cnd(0) (3.109)
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is satisfied, where cn is given by (3.108), then the iterative method (3.107) is
convergent with the order of convergence 4.

Proof. The proof of this theorem is based on the assertions of Lemma 3.19
with the help of the previously presented technique. As in the already stated
convergence theorems, the proof goes by induction. By the same argumenta-
tion as in the previous proofs, the initial condition (3.109) provides the valid-
ity of the inequality w(m) < cnd(m) for all m ≥ 0, and hence, the inequalities
(i)–(iv) of Lemma 3.19 also hold for all m ≥ 0. In particular (according to
Lemma 3.19(i)), we have

d(m)

d(m+1)
<

1
1 − 2λn

(3.110)

and, with regard to Lemma 3.19(iv),

|u(m+1)
i | ≤ γn

(d(m))3
|u(m)

i |2
(

n∑
j=1
j �=i

|u(m)
j |
)2

(3.111)

for each i ∈ In and all m = 0, 1, . . ..
Substituting

t
(m)
i =

[ (n − 1)2γn

(1 − 2λn)(d(m))3

]1/3

|u(m)
i |

into (3.111) and using (3.110), we obtain

t
(m+1)
i <

1
(n − 1)2

(
t
(m)
i

)2( n∑
j=1
j �=i

t
(m)
j

)2

. (3.112)

By the assertion (ii) of Lemma 3.19 for the first iteration (m = 0), we have

t
(0)
i =

[ (n − 1)2γn

(1 − 2λn)(d(0))3

]1/3

|u(0)
i | < ρncn

[ (n − 1)2γn

1 − 2λn

]1/3

. (3.113)

Putting t = maxi t
(0)
i , we find from (3.113) that t

(0)
i ≤ t < 0.988 < 1 for

3 ≤ n ≤ 13, and t
(0)
i ≤ t < 0.999 < 1 for n ≥ 14, for each i = 1, . . . , n.

According to this, we infer from (3.112) that the sequences {t(m)
i } (and,

consequently, {|u(m)
i |}) tend to 0 for all i = 1, . . . , n. Hence, the BSW method

(3.107) is convergent.
Putting u(m) = max

1≤i≤n
|u(m)

i |, from (3.111), we get

u(m+1) <
γn

(d(m))3
(n − 1)2

(
u(m)
)4

,

which means that the order of convergence of the BSW method is 4. 
�
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The Halley-Like Method

Using a concept based on Bell’s polynomials, X. Wang and Zheng [182] estab-
lished a family of iterative methods of the order of convergence k + 2, where
k is the highest order of the derivative of P appearing in the generalized iter-
ative formula, see Sect. 1.1. For k = 1, this family gives the Ehrlich–Aberth’s
method (3.73), and for k = 2 produces the following iterative method of
the fourth order for the simultaneous approximation of all simple zeros of a
polynomial P

z
(m+1)
i = z

(m)
i − 1

f(z(m)
i ) − P (z(m)

i )

2P ′(z(m)
i )

([
S

(m)
1,i

]2
+ S

(m)
2,i

) (i∈In, m=0, 1, . . .),

(3.114)
where

f(z) =
P ′(z)
P (z)

− P ′′(z)
2P ′(z)

, S
(m)
k,i =

∑
j �=i

1(
z
(m)
i − z

(m)
j

)k (k = 1, 2).

Since the function f(z) appears in the well-known Halley’s iterative method

ẑi = zi − 1
P ′(zi)
P (zi)

− P ′′(zi)
2P ′(zi)

= zi − 1
f(zi)

,

we could say that the method (3.114) is of Halley’s type. In the literature,
the method (3.114) is sometimes called the Wang–Zheng’s method.

The convergence analysis of the Halley-like method (3.114) is similar to
that given previously in this section (see also the paper by M. Petković and
-D. Herceg [117]), so it will be presented in short.

Let us introduce the following abbreviations:

ρn =
1

1 − ncn
, ηn =

2(1 − nρncn)
1 − ρncn

− n(n − 1)(ρncn)3(2 − ρncn)
(1 − ρncn)2

,

λn =
2ρncn(1 − ρncn + (n − 1)ρncn)

(1 − ρncn)ηn
, γn =

n(2 − ρncn)
ηn(1 − ρncn)2

.

Lemma 3.20. Let ẑ1, . . . , ẑn be approximations generated by the iterative
method (3.114) and let ûi = ẑi − ζi, d̂ = min

i�=j
|ẑi − ẑj |, and ŵ = max

1≤i≤n
|Ŵi|.

If the inequality

w < cnd, cn =

⎧⎪⎪⎨⎪⎪⎩
1

3n + 2.4
, 3 ≤ n ≤ 20

1
3n

, n ≥ 21

(3.115)
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holds, then:

(i) d <
1

1 − 2λn
d̂.

(ii) |ui| < ρncnd.
(iii) ŵ < cnd̂.
(iv) |ûi| ≤ γn

d3
|ui|3

∑
j �=i

|uj |.

The proof of this lemma is similar to the proofs of Lemmas 3.15 and 3.18.
We now give the convergence theorem for the iterative method (3.114)

under computationally verifiable initial conditions.

Theorem 3.12. Let P be a polynomial of degree n ≥ 3 with simple zeros. If
the initial condition

w(0) < cnd(0) (3.116)

holds, where cn is given by (3.115), then the Halley-like method (3.114) is
convergent with the fourth order of convergence.

Proof. The proof of this theorem goes in a similar way to the previous cases
using the assertions of Lemma 3.20. By virtue of the implication (iii) of
Lemma 3.20 (i.e., w < cnd ⇒ ŵ < cnd̂ ), we conclude by induction that
the initial condition (3.116) implies the inequality w(m) < cnd(m) for each
m = 1, 2, . . .. For this reason, the assertions of Lemma 3.20 are valid for all
m ≥ 0. In particular (according to (i) and (iv) of Lemma 3.20), we have

d(m)

d(m+1)
<

1
1 − 2λn

(3.117)

and

|u(m+1)
i | ≤ γn

(d(m))3
|u(m)

i |3
n∑

j=1
j �=i

|u(m)
j | (i ∈ In) (3.118)

for each iteration index m = 0, 1, . . ..
Substituting

t
(m)
i =

[ (n − 1)γn

(1 − 2λn)(d(m))3

]1/3

|u(m)
i |

into (3.118) gives

t
(m+1)
i ≤ (1 − 2λn)d(m)

(n − 1)d(m+1)

(
t
(m)
i

)3 n∑
j=1
j �=i

t
(m)
j (i ∈ In).

Hence, using (3.117), we arrive at

t
(m+1)
i <

1
n − 1

(
t
(m)
i

)3 n∑
j=1
j �=i

t
(m)
j (i ∈ In). (3.119)
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Since |u(0)
i | < ρncnd(0) (assertion (ii) of Lemma 3.20), we may write

t
(0)
i =

[ (n − 1)γn

(1 − 2λn)(d(0))3

]1/3

|u(0)
i | < ρncn

[ (n − 1)γn

1 − 2λn

]1/3

for each i = 1, . . . , n. Let t
(0)
i ≤ maxi t

(0)
i = t. Then

t < ρncn

[ (n − 1)γn

1 − 2λn

]1/3

< 0.310 for 3 ≤ n ≤ 20

and
t < 0.239 for n ≥ 21,

i.e., t
(0)
i ≤ t < 1 for all i = 1, . . . , n. Hence, we conclude from (3.119) that the

sequences
{
t
(m)
i

}
(and, consequently,

{|u(m)
i |}) tend to 0 for all i = 1, . . . , n.

Therefore, z
(m)
i → ζi (i ∈ In) and the method (3.114) is convergent.

Finally, from (3.118), there follows

|u(m+1)
i | ≤ u(m+1) < (n − 1)

γn

(d(m))3
(
u(m)
)4

,

where u(m) = max
1≤i≤n

|u(m)
i |. Therefore, the convergence order of the Halley-

like method (3.114) is 4. 
�

Some Computational Aspects

In this section, we have improved the convergence conditions of four root find-
ing methods. For the purpose of comparison, let us introduce the normalized
i-factor Ωn = n · cn. The former Ωn for the considered methods, found in the
recent papers cited in Sect. 1.1, and the improved (new) Ωn, proposed in this
section, are given in Table 3.1.

Table 3.1 The entries of normalized i-factors

Former Ωn New Ωn

Ehrlich–Aberth’s method (3.73)
n

2n + 3

{ n

2n + 1.4
(3 ≤ n ≤ 7),

1/2 (n ≥ 8)

EAN method (3.90)
1

3

{ n

2.2n + 1.9
(3 ≤ n ≤ 21),

1/2.2 (n ≥ 22)

BSW method (3.107)
n

2n + 2

{ n

2n + 1
(3 ≤ n ≤ 13),

1/2 (n ≥ 14)

Halley-like method (3.114)
1

4

{ n

3n + 2.4
(3 ≤ n ≤ 20),

1/3 (n ≥ 21)
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To compare the former Ωn = ncn with the improved Ωn, we introduce a
percentage measure of the improvement

r% =
Ω

(new)
n − Ω

(former)
n

Ω
(former)
n

· 100.

Following Table 3.1, we calculated r% for n ∈ [3, 30] and displayed r% in
Fig. 3.3 as a function of n for each of the four considered methods. From
Fig. 3.3, we observe that we have significantly improved i-factors cn, especially
for the EAN method (3.90) and Halley-like method (3.114).

The values of the i-factor cn, given in the corresponding convergence the-
orems for the considered iterative methods, are mainly of theoretical impor-
tance. We were constrained to take smaller values of cn to enable the validity
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Fig. 3.3 (a) r%: the method (3.73) Fig. 3.3 (b) r%: the method (3.90)
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Fig. 3.3 (c) r%: the method (3.107) Fig. 3.3 (d) r%: the method (3.114)

of inequalities appearing in the convergence analysis. However, these theoret-
ical values of cn can be suitably applied in ranking the considered methods
regarding (1) their initial conditions for the guaranteed convergence and (2)
convergence behavior in practice.

As mentioned in [118], in practical implementation of simultaneous root
finding methods, we may take greater cn related to that given in the conver-
gence theorems and still preserve both guaranteed and fast convergence. The
determination of the range of values of i-factor cn providing favorable fea-
tures (guaranteed and fast convergence) is a very difficult task, and practical
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experiments are the only means for obtaining some information on its range.
We have tested the considered methods in examples of many algebraic poly-
nomials with degree up to 20, taking initial approximations in such a way
that the i-factor took the values kcn for k = 1 (theoretical entry applied in
the stated initial conditions) and for k = 1.5, 2, 3, 5, and 10. The stopping
criterion was given by the inequality

max
1≤i≤n

|z(m)
i − ζi| < 10−15.

In Table 3.2, we give the average number of iterations (rounded to one decimal
place), needed to satisfy this criterion.

From Table 3.2, we observe that the new i-factor not greater than 2cn

mainly preserves the convergence rate related to the theoretical value cn given
in the presented convergence theorems. The entry 3cn is rather acceptable

Table 3.2 The average number of iterations as the i-factor increases

cn 1.5cn 2cn 3cn 5cn 10cn

Ehrlich–Aberth’s method (3.73) 3.9 4 4.2 5.4 7.3 13.3

EAN method (3.90) 3.1 3.2 3.4 5.1 6.1 10.2

BSW method (3.107) 3 3.1 3.3 4.3 5.8 9.8

Halley-like method (3.114) 3.2 3.4 4.2 5.5 6.7 10.7

from a practical point of view, while the choice of 5cn doubles the number
of iterations. Finally, the value 10cn significantly decreases the convergence
rate of all considered methods, although still provides the convergence.

3.4 A Posteriori Error Bound Methods

In this section, we combine good properties of iterative methods with fast
convergence and a posteriori error bounds given in Corollary 1.1, based on
Carstensen’s results [13] on Gerschgorin’s disks, to construct efficient inclu-
sion methods for polynomial complex zeros. Simultaneous determination of
both centers and radii leads to iterative error bound methods, which en-
joy very convenient property of enclosing zeros at each iteration. This class
of methods possesses a high computational efficiency since it requires less
numerical operations compared with standard interval methods realized in
interval arithmetic (see M. Petković and L. Petković [132]). Numerical ex-
periments demonstrate equal or even better convergence behavior of these
methods than the corresponding circular interval methods. In this section,
the main attention is devoted to the construction of inclusion error bound
methods. We will also give a review of some properties of these methods,
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including the convergence rate, efficient implementation, and initial condi-
tions for the guaranteed convergence.

Corollary 1.1 given in Chap. 1 may be expressed in the following form.

Corollary 3.1. Let P be an algebraic polynomial with simple (real or com-
plex) zeros. Under the condition w < cnd (cn ≤ 1/(2n)), each of disks Di

defined by

Di =
{

zi;
|Wi(zi)|
1 − ncn

}
=
{
zi; ρi

}
(i ∈ In)

contains exactly one zero of P .

If the centers zi of disks Di are calculated by an iterative method, then
we can generate sequences of disks D

(m)
i (m = 0, 1, . . .) whose radii ρ

(m)
i =

W
(m)
i /(1 − ncn) converge to 0 under some suitable conditions. It should be

noted that only those methods which use quantities already calculated in
the previous iterative step (in our case, the corrections Wi) enable a high
computational efficiency. For this reason, we restrict our choice to the class
of derivative-free methods which deal with Weierstrass’ corrections, so-called
W -class. The following most frequently used simultaneous methods from the
W -class will be considered.

The Durand–Kerner’s or Weierstrass’ method [32], [72], shorter the
W method, the convergence order 2:

z
(m+1)
i = z

(m)
i − W

(m)
i (i ∈ In, m = 0, 1, . . .). (3.120)

The Börsch-Supan’s method [10], shorter the BS method, the convergence
order 3:

z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
∑
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .). (3.121)

The Börsch-Supan’s method with Weierstrass’ correction [95],
shorter the BSW method, the convergence order 4:

z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
∑
j �=i

W
(m)
j

z
(m)
i − W

(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .).

(3.122)
Let us note that W

(m)
i = W (z(m)

i ), see (1.17).
Let z

(0)
1 , . . . , z

(0)
n be given initial approximations and let

z
(m)
i = ΦW (z(m−1)

i ) (i ∈ In, m = 1, 2, . . .) (3.123)
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be a derivative-free iterative method based on Weierstrass’ corrections (be-
longing to the W -class), which is indicated by the subscript index “W.” For
example, the methods (3.120)–(3.122) belong to the W -class. Other iterative
methods of Weierstrass’ class are given in [34], [124], [131], [146], and [196].

Combining the results of Corollary 3.1 and (3.123), we can state the fol-
lowing inclusion method in a general form.

A posteriori error bound method. A posteriori error bound method
(shorter PEB method) is defined by the sequences of disks

{
D

(m)
i

}
(i ∈ In),

D
(0)
i =

{
z
(0)
i ;

|W (z(0)
i )|

1 − ncn

}
,

D
(m)
i =

{
z
(m)
i ; ρ(m)

i

}
, (i ∈ In, m = 1, 2, . . .), (3.124)

z
(m)
i = ΦW (z(m−1)

i ), ρ
(m)
i =

|W (z(m)
i )|

1 − ncn
,

assuming that the initial condition w(0) < cnd(0) (with cn ≤ 1/(2n)) holds.

The proposed method, defined by the sequences of disks given by (3.124),
may be regarded as a quasi-interval method, which differs structurally from
standard interval methods that deal with disks as arguments. For comparison,
let us present the following circular interval methods which do not use the
polynomial derivatives.

The Weierstrass-like interval method [183], the order 2:

Z
(m+1)
i = z

(m)
i − P (z(m)

i )
n∏

j=1
j �=i

(
z
(m)
i − Z

(m)
j

) (i ∈ In, m = 0, 1, . . .). (3.125)

The Börsch-Supan-like interval method [107], the order 3:

Z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
n∑

j=1
j �=i

W
(m)
j

Z
(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .). (3.126)

The Börsch-Supan-like interval method with Weierstrass’ correc-
tion [111], the order 4 (with the centered inversion (1.63)):

Z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
n∑

j=1
j �=i

W
(m)
j

Z
(m)
i − W

(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .).

(3.127)
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All of the methods (3.124)–(3.127) possess the crucial inclusion property:
each of the produced disks contains exactly one zero in each iteration. In
this manner, not only very close zero approximations (given by the centers
of disks) but also the upper error bounds for the zeros (given by the radii
of disks) are obtained. More about interval methods for solving polynomial
equations can be found in the books by M. Petković [109] and M. Petković
and L. Petković [129].

Studying the convergence of error bounds produced by (3.124), the follow-
ing important tasks arise:

1. Determine the convergence order of a posteriori error bound method when
the centers z

(m)
i of disks

D
(m)
i =

{
z
(m)
i ;

|W (z(m)
i )|

1 − ncn

}
(i ∈ In, m = 0, 1, . . .) (3.128)

are calculated by an iterative method of order k (≥ 2).
2. State computationally verifiable initial condition that guarantees the con-

vergence of the sequences of radii
{
radD

(m)
i

}
. We note that this problem,

very important in the theory and practice of iterative processes in general,
is a part of Smale’s point estimation theory [165] which has attracted a
considerable attention during the last two decades (see [118] and Chap. 2
for details). As mentioned in the previous sections, initial conditions in
the case of algebraic polynomials should depend only on attainable data –
initial approximations, polynomial degree, and polynomial coefficients.

3. Compare the computational efficiencies of the PEB methods and the ex-
isting circular interval methods (given, for instance, by (3.125)–(3.127)).
Which of these two classes of methods is more efficient?

4. Using numerical experiments, compare the size of inclusion disks produced
by the PEB methods and the corresponding interval methods (3.125)–
(3.127). Whether the construction of PEB methods is justified?

The study of these subjects was the main goal of the paper [122]. Here, we
give the final results and conclusions of this investigation in short.

Assume that the following inequality

w(0) < cnd(0) (3.129)

holds, where cn is given by

cn =

⎧⎪⎪⎨⎪⎪⎩
1
2n

, the W method [2] and BS method [42],

1
2n + 1

, the BSW method [52].

(3.130)
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Then, the following three methods from the W-class are convergent: the
Durand–Kerner’s method (3.120) (for the proof, see Batra [5]), the Börsch-
Supan’s method (3.121) (M. Petković and -D. Herceg [117]), and the Börsch-
Supan’s method with Weierstrass’ correction (3.122) (see [60], [140]). The
corresponding inequalities of the form

|W (m+1)
i | < δn|W (m)

i | (δn < 1)

are the composite parts of Lemmas 3.3(i), 3.6(i), and 3.19(i) under the con-
dition (3.129) for specific entries cn given by (3.130). This means that the
sequences

{|W (m)
i |} (i ∈ In) are convergent and tend to 0. Hence, the se-

quences of radii
{
ρ(m)|} (i ∈ In) are also convergent and tend to 0 under the

condition (3.129). The convergence rate of the PEB methods based on the
iterative methods (3.120)–(3.122) was studied in [122], where the following
assertions were proved.

Theorem 3.13. The PEB method (3.124), based on the Durand–Kerner’s
method (3.120), converges quadratically if the initial condition (3.129) holds,
where cn = 1/(2n).

Theorem 3.14. The PEB method (3.124), based on the Börsch-Supan’s
method (3.121), converges cubically if the initial condition (3.129) holds,
where cn = 1/(2n).

Theorem 3.15. The PEB method (3.124), based on the Börsch-Supan’s
method with Weierstrass’ corrections (3.122), converges with the order 4 if
the initial condition (3.129) holds, where cn = 1/(2n + 1).

We emphasize that the initial condition (3.129) (with cn given by (3.130))
that guarantees the convergence of the PEB methods (3.124)–(3.120),
(3.124)–(3.121), and (3.124)–(3.122) depends only on attainable data, which
is of great practical importance.

Computational Aspects

In the continuation of this section, we give some practical aspects in the
implementation of the proposed methods. As mentioned above, the compu-
tational cost significantly decreases if the quantities W

(0)
i ,W

(1)
i , . . . (i ∈ In),

necessary in the calculation of the radii ρ
(m)
i = |W (m)

i |/(1−ncn), are applied
in the calculation of the centers z

(m+1)
i defined by the employed iterative

formula from the W -class. Regarding the iterative formulae (3.120)–(3.122),
we observe that this requirement is satisfied. A general calculating procedure
can be described by the following algorithm.
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Calculating Procedure (I)

Given z
(0)
1 , . . . , z

(0)
n and the tolerance parameter τ .

Set m = 0.
1◦ Calculate Weierstrass’ corrections W

(m)
1 , . . . , W

(m)
n at the points z

(m)
1 ,

. . . , z
(m)
n .

2◦ Calculate the radii ρ
(m)
i = |W (m)

i |/(1 − ncn) (i = 1, . . . , n).
3◦ If max

1≤i≤n
ρ
(m)
i < τ , then STOP

otherwise, GO TO 4◦.
4◦ Calculate the new approximations z

(m+1)
1 , . . . , z

(m+1)
n by a suitable iterative

formula from the W -class (for instance, by (3.120), (3.121), or (3.122)).
5◦ Set m := m + 1 and GO TO the step 1◦.

Following the procedure (I), we have realized many numerical examples
and, for demonstration, we select the following one.

Example 3.1. We considered the polynomial

P (z) = z13 − (5 + 5i)z12 + (5 + 25i)z11 + (15 − 55i)z10 − (66 − 75i)z9

+ 90z8 − z5 + (5 + 5i)z4 − (5 + 25i)z3 − (15 − 55i)z2

+ (66 − 75i)z − 90
= (z − 3)(z8 − 1)(z2 − 2z + 5)(z − 2i)(z − 3i).

Starting from sufficiently close initial approximations z
(0)
1 , . . . , z

(0)
13 , we first

calculated the radii ρ
(0)
i = |W (z(0)

i |/(1 − ncn) of initial disks D
(0)
1 , . . . , D

(0)
13 .

These disks were applied in the implementation of a posteriori error bound
methods (3.124) as well as interval methods (3.125)–(3.127). We obtained
max ρ

(0)
i = 0.3961 for the methods (3.125), (I-W), (3.126), (I-BS) and

max ρ
(0)
i = 0.3819 for (3.127) and (I-BSW). The approximations z

(m)
i (m ≥ 1)

were calculated by the iterative formulae (3.120)–(3.122) and the correspond-
ing inclusion methods are referred to as (I-W), (I-BS), and (I-BSW), respec-
tively. The largest radii of the disks obtained in the first four iterations may
be found in Table 3.3, where A(−q) means A × 10−q.

Table 3.3 Resulting disks obtained by Procedure I

Methods max ρ
(1)
i max ρ

(2)
i max ρ

(3)
i max ρ

(4)
i

(I-W) (3.124)–(3.120) 1.26(−1) 1.74(−2) 1.33(−4) 1.59(−8)

Interval W (3.125) 1.05 No inclusions – –

(I-BS) (3.124)–(3.121) 1.83(−2) 3.61(−6) 1.32(−17) 7.06(−52)

Interval BS (3.126) 1.99(−1) 2.41(−4) 2.39(−15) 2.38(−49)

(I-BSW) (3.124)–(3.122) 6.94(−3) 4.92(−10) 1.83(−38) 3.20(−152)

Interval BSW (3.127) 2.98(−1) 1.47(−5) 1.81(−24) 2.68(−100)
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In our calculation, we employed multiprecision arithmetic in Mathematica
6.0 since the tested methods converge extremely fast producing very small
disks. From Table 3.3, we observe that the PEB methods are equal or better
than the corresponding methods (of the same order) (3.125)–(3.127) realized
in complex interval arithmetic. A number of numerical experiments showed
similar convergence behavior of the tested methods.

The Weierstrass’ interval method (3.125) exhibits rather poor results. The
explanation lies in the fact that this method uses the product of disks which
is not an exact operation in circular arithmetic and produces oversized disks
(see Sect. 1.3).

Calculation Procedure (I) assumes the knowledge of initial approxima-
tions z

(0)
1 , . . . , z

(0)
n in advance. The determination of these approximations

is usually realized by a slowly convergent multistage composite algorithm.
Sometimes, the following simple approach gives good results in practice.

Calculating Procedure (II)

1◦ Find the disk centered at the origin with the radius

R = 2 max
1≤k≤n

∣∣an−k

∣∣1/k (see (1.58) or (5.72)),

which contains all zeros of the polynomial P (z) = zn + an−1z
n−1 + · · · +

a1z + a0.
2◦ Calculate Aberth’s initial approximations [1]

z(0)
ν = −an−1

n
+ r0 exp(iθν), i =

√−1, θν =
π

n

(
2ν − 3

2
)

(ν = 1, . . . , n),

equidistantly distributed along the circle |z + an−1/n| = r0, r0 ≤ R (see
Sect. 4.4).

3◦ Apply the simultaneous method (3.120) or (3.121) starting with Aberth’s
approximations; stop the iterative process when the condition

max
1≤i≤n

|W (z(m)
i )| < cn min

i �=j
|z(m)

i − z
(m)
j | (3.131)

is satisfied.
4◦–8◦ The same as the steps 1◦–5◦ of Procedure I.

We applied Procedure II on the following example.

Example 3.2. To find approximations to the zeros of the polynomial

z15 + z14 + 1 = 0

satisfying the condition (3.131) (with cn = 1/(2n)), we applied the
Börsch-Supan’s method (3.121) with Aberth’s initial approximations taking
an−1 = 1, n = 15, and r0 = 2. The condition (3.131) was satisfied after seven
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iterative steps. The obtained approximations were used to start the PEB
methods (I-W), (I-BS), and (I-BSW). After three iterations, we obtained
disks whose largest radii are given in Table 3.4.

Table 3.4 Resulting disks obtained by (I-W), (I-BS), and (I-BSW): Procedure II

Methods max ρ
(0)
i max ρ

(1)
i max ρ

(2)
i

(I-W) (3.124)–(3.120) 1.51(−3) 3.79(−6) 2.27(−11)

(I-BS) (3.124)–(3.121) 1.51(−3) 4.10(−9) 8.31(−26)

(I-BSW) (3.124)–(3.122) 1.46(−3) 9.64(−12) 1.60(−44)

From Tables 3.3 and 3.4, we observe that the results obtained by the
methods (I-W), (I-BS), and (I-BSW) coincide with the theoretical results
given in Corollary 3.1 and Theorems 3.13–3.15; in other words, the or-
der of convergence in practice matches very well the order expressed in
Theorems 3.13–3.15.

At the beginning of the section, we mentioned that the PEB methods re-
quire less numerical operations compared with their counterparts in complex
interval arithmetic. In Table 3.5, we give the total number of numerical oper-
ations per one iteration, reduced to real arithmetic operations. We have used
the following abbreviations:

– AS(n) (total number of additions and subtractions)
– M(n) (multiplications)
– D(n) (divisions)

Table 3.5 The number of basic operations

AS(n) M(n) D(n)

(I-W) (3.124)–(3.120) 8n2 + n 8n2 + 2n 2n

Interval W (3.125) 22n2 − 6n 25n2 − 6n 8n2 − n

(I-BS) (3.124)–(3.121) 15n2 − 6n 14n2 + 2n 2n2 + 2n

Interval BS (3.126) 23n2 − 4n 23n2 + 2n 7n2 + 2n

(I-BSW) (3.124)–(3.122) 15n2 − 4n 14n2 + 2n 2n2 + 2n

Interval BSW (3.127) 23n2 − 2n 23n2 + 2n 7n2 + 2n

From Table 3.5, we observe that the PEB methods require significantly less
numerical operations with respect to the corresponding interval methods.
One of the reasons for this advantage is the use of the already calculated
Weierstrass’ corrections Wi in the evaluation of the radii ρi.

Parallel Implementation

It is worth noting that the error bound method (3.124) for the simultaneous
determination of all zeros of a polynomial is very suitable for the implemen-
tation on parallel computers since it runs in several identical versions. In this
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manner, a great deal of computation can be executed simultaneously. An
analysis of total running time of a parallel iteration and the determination of
the optimal number of processors points to some undoubted advantages of the
implementation of simultaneous methods on parallel processing computers,
see, e.g., [22]–[24], [44], [115]. The parallel processing becomes of great inter-
est to speed up the determination of zeros when one should treat polynomials
with degree 100 and higher, appearing in mathematical models in scientific
engineering, including digital signal processing or automatic control [66], [92].

The model of parallel implementation is as follows: It is assumed that the
number of processors k (≤ n) is given in advance. Let

W (m) =
(
W

(m)
1 , . . . , W (m)

n

)
,

ρ(m) =
(
ρ
(m)
1 , . . . , ρ(m)

n

)
,

z (m) =
(
z
(m)
1 , . . . , z(m)

n

)
denote vectors at the mth iterative step, where ρ

(m)
i = |W (z(m)

i )|/(1 − ncn),
and z

(m)
i is obtained by the iterative formula z

(m)
i = ΦW (z(m−1)

i ) (i ∈ In).
The starting vector z (0) is computed by all processors C1, . . . , Ck using some
suitable globally convergent method based on a subdivided procedure and
the inclusion annulus {z : r ≤ |z| ≤ R} which contains all zeros, given later
by (4.72).

In the next stage, each step consists of sharing the calculation of W
(m)
i ,

ρ
(m)
i , and z

(m+1)
i among the processors and in updating their data through

a broadcast procedure (shorter BCAST (W (m), ρ(m)), BCAST (z (m+1))).
As in [23], let I1, . . . , Ik be disjunctive partitions of the set {1, . . . , n}, where
∪Ij = {1, . . . , n}. To provide good load balancing between the processors,
the index sets I1, . . . , Ik are chosen so that the number of their components
N(Ij) (j = 1, . . . , k) is determined as N(Ij) ≤

[
n
k

]
. At the mth iterative step,

the processor Cj (j = 1, ..., k) computes W
(m)
i , ρ

(m)
i , and, if necessary, z

(m+1)
i

for all i ∈ Ij and then it transmits these values to all other processors using
a broadcast procedure. The program terminates when the stopping criterion
is satisfied, say, if for a given tolerance τ the inequality

max
1≤i≤n

∣∣ρ(m)
i

∣∣ < τ

holds. A program written in pseudocode for a parallel implementation of the
error bound method (3.124) is given below.

Program A POSTERIORI ERROR BOUND METHOD
begin

for all j = 1, . . . , k do determination of the approximations z (0);
m := 0
C :=false
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do
for all j = 1, . . . , k do in parallel
begin

Compute W
(m)
i , i ∈ Ij ;

Compute ρ
(m)
i , i ∈ Ij ;

Communication: BCAST
(
W (m),ρ (m)

)
;

end
if max

1≤i≤n
ρ
(m)
i < τ ; C :=true

else
m := m + 1
for all j = 1, . . . , k do in parallel
begin

Compute z
(m)
i , i ∈ Ij , by (3.123);

Communication: BCAST
(
z (m)

)
;

end
endif

until C
OUTPUT z (m),ρ(m)

end


