6

Expectations with Respect to the Ground
State of the Harmonic Oscillator

We consider a harmonic oscillator with a finite number of degrees of freedom.
The classical action for the time interval [0,¢] is given by (5.1) with V' = 0.
The corresponding action for the whole trajectory is given by

1 OC. 1 i
SO(W):i /7(7)2 dT—§/’YA27 dr, (6.1)

where (1) and A? are as in (5.1) and we have set, for typographical reasons,
m = 1. Let now H be the real Hilbert space of real square integrable functions
on R with values in R™ and norm given by

b = [P ars [ o2 an (6.2)
Let B be the symmetric operator in H given by
(v, Bv) = / (3(1)? = vA%y) dr (6.3)

with domain D(B) equal to the functions v in H with compact support. We
then have, for any v € D(B), that

1

where (,) is the inner product in H. The Fourier transform of an element ~y
in H is given by

i) =1/VER [ 67t (6.5)
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and the mapping 7 — 4 is then an isometry of H onto the real subspace of
functions in Lo ((p2 + 1) dp) satisfying

(p) =4(-p) (6.6)

2>

and we have, for any v € D(B),

So(v) = %(% By) = /W (%pQ — %A2> A(p) dp. (6.7)
R

Moreover the range R(B) of B counsists of functions whose Fourier transforms
are smooth functions and in Lo [(p2 + 1) dp} . Let D be the real Banach space
of functions in H whose Fourier transforms are continuously differentiable
functions with norm given by

dy
I = o+ sup |0 (65

We have obviously that the norm in D is stronger than the norm in H and
that D contains the range of B. We now define on D x D the symmetric form

A (1,72) = gig%/%—(m (p° — A% +ie) " Aa(p) (PP +1)" dp. (6.9)
R

That this limit exists follows from the fact that 41 (p)32(p) is continuously dif-
ferentiable and in L [(p2 + 1) dp] . That the form is continuous and bounded
on D x D follows by standard results and (6.8). That the form is symmetric,

A(%ﬁz) = A('Y%Vl)»

follows from (6.9) and (6.6). In fact the limit (6.9) has the following decom-
position into its real and imaginary parts

A, ) = P/%—(M(p2 — A%) T 35(p) (0P +1)° dp
R

—iﬂ/%_(PM (r° — A%) 42(p) (P* +1)* dp,  (6.10)

where the first integral is the principal value and hence real by (6.6). We see
therefore that

ImA(vy,7) <0. (6.11)
Let now 71 € D and 5 € D(B), then

A (71, By) = gigg)/%(p) (p° — A2 +ie) " (p° — A2) 4a(p) (P> +1) dp
R

= / A1 (p)32(p) (> +1) dp.
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So that

A (1, By2) = (1,72) - (6.12)

We have now verified that H, D, B and A satisfy the conditions in the Defi-
nition 4.1 for the Fresnel integral with respect to A.
Hence for any function f € F (D*) we have that

N
/ez“ B f() (6.13)
H
is well defined and given by (4.12). It follows from (6.8) that ¢, given by
(y,7) = (1),
isin D x R™, since
1 eipt
() =) — - ———. 14
Ye(p) or 211 (6.14)
So that
i3 ay(t)
fly)=e=! (6.15)
is in F (D*).
Hence we may compute (6.13) with f(y) given by (6.15) and we get
A
/e%(%BV)f(W) dy = o7 Zik=1 4 A7 7)o (6.16)
H

From the definition of A we easily compute

1
A (s ye) = e 10 6.17
(Y55 ve) = % Ae ( )
Hence we get that
4 Ll n
i i aj J -1 a;(2A —lg—iltj—tgla,
/e%(’y’BV)e ng ) dy=e RPN =it 1(24) " (6.18)
H

Let now {2y be the vacuum i.e. the function given by (5.21), and let us set in
this section

1,01 L, 1
Hy = 75A + ixA x— §trA, (6.19)



66 6 Expectations with Respect to the Ground State of the Harmonic Oscillator
where we have changed the notation so that
Hyf20=0. (6.20)

Let t1 < ... <t,, then we get from (6.18) and (5.32) that

(QO; eloaz(ty) eia"w(t”)go) _ e%('Y’BV)ei j;l a;y(ts) dy

i
e -

8 —8

142 1.42.) dr fj a;y(ts)
(347 =47a) dr i 5 dy, (6.21)

:\D i\p

where!

elaw(t) — e—ltHo elaweltHg )

Theorem 6.1. Let H be the real Hilbert space of real continuous and square
integrable functions such that the norm given by

? = 7%)? ar + 77@2 dr

is finite. Let B be the symmetric operator with domain equal to the functions
in H with compact support and given by

oo

(7, By) =250(v) = / (3(1)? —yA%y) dr,

— 00

and let D be the real Banach space of functions in 'H with differentiable Fourier
transforms and norm given by (6.8), and let A\ be given by (6.9). Then (H,
D, B, A) satisfies the condition of Definition 4.1 for the integral normalized
with respect to AN. Let f, g and V be in F(R™), then f(~(0))g(y(t)) and

exp [—ifot V(v(1)) dr] are all in F (D*) and

A t
i ; ifV(y(r)) dr—
(100,67 ) = [ @0 0 0)g(a0) o
H

where

H=Hy+V

! This is (5.33) written in a different way.
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Proof. The first part of the theorem is already proved. Let therefore f be in
F(R™) ie.

flx) = /eim dv(a), (6.22)
then
£60)) = [ ¢ dv(a),

which is in F (D*) by the definition of F (D*), since v(0) = (vo,7) and we
already proved that vy € D. Hence also g(v(¢)) is in F (D*). Now

j V(y(r)) dr = j / () du(a) dr (6.23)
0 0

is again in F (D*) and therefore also exp [ fo dr} belongs to F (D*)

by Proposition 4.1 (which states that F (D*) is a Banach algebra). Since, also
by Proposition 4.1, the Fresnel integral with respect to A is a continuous
linear functional on this Banach algebra we have

A

/eisme—ié O 0)a(r () dy
H

n=0

t t A
/ / / SOV (1)) ... V(y(tn)) dy dty ... dt,. (6.24)
0

H

Utilizing now (6.23), (6.21) and the perturbation expansion (5.35) the theorem
is proved. O

Theorem 6.2. Let the notations be the same as in Theorem 6.1, and let t; <
. < tm, then for f; e SR™),i=1,...m

(Qo, flefi(t27t1)Herfi(t3ftz)HfB o efi(t,,,Lft,,,L,I)HmeO)

A tfm Vin( m
. —i (7)) dr
= [esoe T
H j=1

This theorem is proved by the series expansion of the function
t"il
exp —i/V('y(T)) dr
t1

and the fact that this series converges in F(D*), in the same way as in the
proof of Theorem 6.1.
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Notes

This section, first presented in the first edition of this book, is geared towards quan-
tum field theory (looking at nonrelativistic quantum mechanics as a “zero dimen-
sional” quantum field theory). Formulae like (6.21) are typical of this view, see e.g.
[425] for similar formulae in the “Euclidean approach” to quantum fields.





