Expectations with Respect to the Ground State of the Harmonic Oscillator

We consider a harmonic oscillator with a finite number of degrees of freedom. The classical action for the time interval [0,t] is given by (5.1) with V=0. The corresponding action for the whole trajectory is given by

$$S_0(\gamma) = \frac{1}{2} \int_{-\infty}^{\infty} \dot{\gamma}(\tau)^2 d\tau - \frac{1}{2} \int_{-\infty}^{\infty} \gamma A^2 \gamma d\tau, \tag{6.1}$$

where $\gamma(\tau)$ and A^2 are as in (5.1) and we have set, for typographical reasons, m=1. Let now \mathcal{H} be the real Hilbert space of real square integrable functions on \mathbb{R} with values in \mathbb{R}^n and norm given by

$$|\gamma|^2 = \int_{-\infty}^{\infty} \dot{\gamma}(\tau)^2 d\tau + \int_{-\infty}^{\infty} \gamma(\tau)^2 d\tau.$$
 (6.2)

Let B be the symmetric operator in \mathcal{H} given by

$$(\gamma, B\gamma) = \int_{-\infty}^{\infty} (\dot{\gamma}(\tau)^2 - \gamma A^2 \gamma) d\tau$$
 (6.3)

with domain D(B) equal to the functions γ in \mathcal{H} with compact support. We then have, for any $\gamma \in D(B)$, that

$$S_0(\gamma) = \frac{1}{2}(\gamma, B\gamma), \tag{6.4}$$

where (,) is the inner product in \mathcal{H} . The Fourier transform of an element γ in \mathcal{H} is given by

$$\hat{\gamma}(p) = 1/\sqrt{2\pi} \int_{-\infty}^{\infty} e^{ipt} \gamma(t) dt$$
 (6.5)

and the mapping $\gamma \to \hat{\gamma}$ is then an isometry of \mathcal{H} onto the real subspace of functions in $L_2\left(\left(p^2+1\right) \ \mathrm{d}p\right)$ satisfying

$$\overline{\hat{\gamma}(p)} = \hat{\gamma}(-p) \tag{6.6}$$

and we have, for any $\gamma \in D(B)$,

$$S_0(\gamma) = \frac{1}{2}(\gamma, B\gamma) = \int_{\mathcal{P}} \overline{\hat{\gamma}(p)} \left(\frac{1}{2}p^2 - \frac{1}{2}A^2\right) \hat{\gamma}(p) \, \mathrm{d}p. \tag{6.7}$$

Moreover the range R(B) of B consists of functions whose Fourier transforms are smooth functions and in $L_2[(p^2+1)]$ dp. Let D be the real Banach space of functions in \mathcal{H} whose Fourier transforms are continuously differentiable functions with norm given by

$$\|\gamma\| = |\gamma| + \sup_{p} \left| \frac{\mathrm{d}\hat{\gamma}}{\mathrm{d}p}(p) \right|.$$
 (6.8)

We have obviously that the norm in D is stronger than the norm in \mathcal{H} and that D contains the range of B. We now define on $D \times D$ the symmetric form

$$\triangle (\gamma_1, \gamma_2) = \lim_{\varepsilon \to 0} \int_{\mathcal{P}} \overline{\hat{\gamma}_1(p)} \left(p^2 - A^2 + i\varepsilon \right)^{-1} \hat{\gamma}_2(p) \left(p^2 + 1 \right)^2 dp. \tag{6.9}$$

That this limit exists follows from the fact that $\overline{\hat{\gamma}_1(p)}\hat{\gamma}_2(p)$ is continuously differentiable and in $L_1\left[\left(p^2+1\right) \ dp\right]$. That the form is continuous and bounded on $D\times D$ follows by standard results and (6.8). That the form is symmetric,

$$\triangle (\gamma_1, \gamma_2) = \triangle (\gamma_2, \gamma_1),$$

follows from (6.9) and (6.6). In fact the limit (6.9) has the following decomposition into its real and imaginary parts

$$\Delta (\gamma_1, \gamma_2) = P \int_R \overline{\hat{\gamma}_1(p)} \left(p^2 - A^2 \right)^{-1} \hat{\gamma}_2(p) \left(p^2 + 1 \right)^2 dp$$
$$-i\pi \int \overline{\hat{\gamma}_1(p)} \delta \left(p^2 - A^2 \right) \hat{\gamma}_2(p) \left(p^2 + 1 \right)^2 dp, \qquad (6.10)$$

where the first integral is the principal value and hence real by (6.6). We see therefore that

$$\operatorname{Im}\triangle(\gamma,\gamma) \le 0. \tag{6.11}$$

Let now $\gamma_1 \in D$ and $\gamma_2 \in D(B)$, then

$$\Delta(\gamma_1, B\gamma_2) = \lim_{\varepsilon \to 0} \int_R \overline{\hat{\gamma}_1(p)} \left(p^2 - A^2 + i\varepsilon \right)^{-1} \left(p^2 - A^2 \right) \hat{\gamma}_2(p) \left(p^2 + 1 \right) dp$$
$$= \int_R \overline{\hat{\gamma}_1(p)} \hat{\gamma}_2(p) \left(p^2 + 1 \right) dp.$$

So that

$$\triangle (\gamma_1, B\gamma_2) = (\gamma_1, \gamma_2). \tag{6.12}$$

We have now verified that \mathcal{H} , D, B and \triangle satisfy the conditions in the Definition 4.1 for the Fresnel integral with respect to \triangle .

Hence for any function $f \in \mathcal{F}(D^*)$ we have that

$$\int_{\mathcal{H}}^{\Delta} e^{\frac{i}{2}(\gamma, B\gamma)} f(\gamma) d\gamma \qquad (6.13)$$

is well defined and given by (4.12). It follows from (6.8) that γ_t , given by

$$(\gamma_t, \gamma) = \gamma(t),$$

is in $D \times \mathbb{R}^n$, since

$$\hat{\gamma}_t(p) = \sqrt{\frac{1}{2\pi}} \cdot \frac{e^{ipt}}{p^2 + 1}.$$
 (6.14)

So that

$$f(\gamma) = e^{i \sum_{j=1}^{n} \alpha_j \cdot \gamma(t_j)}$$
(6.15)

is in $\mathcal{F}(D^*)$.

Hence we may compute (6.13) with $f(\gamma)$ given by (6.15) and we get

$$\int_{\mathcal{H}}^{\Delta} e^{\frac{i}{2}(\gamma, B\gamma)} f(\gamma) d\gamma = e^{\frac{i}{2} \sum_{jk=1}^{n} \alpha_j \Delta(\gamma_{t_j}, \gamma_{t_k}) \alpha_k}.$$
 (6.16)

From the definition of \triangle we easily compute

$$\triangle (\gamma_s, \gamma_t) = \frac{1}{2iA} e^{-i|t-s|A}. \tag{6.17}$$

Hence we get that

$$\int_{\mathcal{H}}^{\Delta} e^{\frac{i}{2}(\gamma, B\gamma)} e^{i\sum_{j=1}^{n} \alpha_j \gamma(t_j)} d\gamma = e^{-\frac{1}{2}\sum_{j,k=1}^{n} \alpha_j (2A)^{-1} e^{-i|t_j - t_k| A} \alpha_k}.$$
 (6.18)

Let now Ω_0 be the vacuum i.e. the function given by (5.21), and let us set in this section

$$H_0 = -\frac{1}{2}\triangle + \frac{1}{2}xA^2x - \frac{1}{2}\text{tr}A,$$
(6.19)

where we have changed the notation so that

$$H_0 \Omega_0 = 0. ag{6.20}$$

Let $t_1 \leq \ldots \leq t_n$, then we get from (6.18) and (5.32) that

$$\left(\Omega_{0}, e^{i\alpha_{1}x(t_{1})} \dots e^{i\alpha_{n}x(t_{n})}\Omega_{0}\right) = \int_{\mathcal{H}}^{\Delta} e^{\frac{i}{2}(\gamma, B\gamma)} e^{i\sum_{j=1}^{n} \alpha_{j}\gamma(t_{j})} d\gamma$$

$$= \int_{\mathcal{H}}^{\Delta} e^{i\int_{-\infty}^{\infty} \left(\frac{1}{2}\dot{\gamma}^{2} - \frac{1}{2}\gamma A^{2}\gamma\right) d\tau} e^{i\sum_{j=1}^{n} \alpha_{j}\gamma(t_{j})} d\gamma, (6.21)$$

 $where^{1}$

$$e^{i\alpha x(t)} = e^{-itH_0}e^{i\alpha x}e^{itH_0}$$

Theorem 6.1. Let \mathcal{H} be the real Hilbert space of real continuous and square integrable functions such that the norm given by

$$|\gamma|^2 = \int_{-\infty}^{\infty} \dot{\gamma}(\tau)^2 d\tau + \int_{-\infty}^{\infty} \gamma(\tau)^2 d\tau$$

is finite. Let B be the symmetric operator with domain equal to the functions in \mathcal{H} with compact support and given by

$$(\gamma, B\gamma) = 2S_0(\gamma) = \int_{-\infty}^{\infty} (\dot{\gamma}(\tau)^2 - \gamma A^2 \gamma) d\tau,$$

and let D be the real Banach space of functions in \mathcal{H} with differentiable Fourier transforms and norm given by (6.8), and let \triangle be given by (6.9). Then $(\mathcal{H}, D, B, \triangle)$ satisfies the condition of Definition 4.1 for the integral normalized with respect to \triangle . Let f, g and V be in $\mathcal{F}(\mathbb{R}^n)$, then $f(\gamma(0))g(\gamma(t))$ and $\exp\left[-\mathrm{i}\int_0^t V(\gamma(\tau)) \,\mathrm{d}\tau\right]$ are all in $\mathcal{F}(D^*)$ and

$$(f\Omega_0, e^{-itH}g\Omega_0) = \int_{\mathcal{H}}^{\Delta} e^{iS_0(\gamma)} e^{i\int_0^t V(\gamma(\tau)) d\tau} \overline{f}(\gamma(0))g(\gamma(t)) d\gamma,$$

where

$$H = H_0 + V$$

¹ This is (5.33) written in a different way.

Proof. The first part of the theorem is already proved. Let therefore f be in $\mathcal{F}(\mathbb{R}^n)$ i.e.

$$f(x) = \int e^{i\alpha x} d\nu(\alpha), \qquad (6.22)$$

then

$$f(\gamma(0)) = \int e^{i\alpha\gamma(0)} d\nu(\alpha),$$

which is in $\mathcal{F}(D^*)$ by the definition of $\mathcal{F}(D^*)$, since $\gamma(0) = (\gamma_0, \gamma)$ and we already proved that $\gamma_0 \in D$. Hence also $g(\gamma(t))$ is in $\mathcal{F}(D^*)$. Now

$$\int_{0}^{t} V(\gamma(\tau)) d\tau = \int_{0}^{t} \int e^{i\alpha\gamma(\tau)} d\mu(\alpha) d\tau$$
 (6.23)

is again in $\mathcal{F}(D^*)$ and therefore also $\exp\left[-\mathrm{i}\int_0^t V(\gamma(\tau)) \ \mathrm{d}\tau\right]$ belongs to $\mathcal{F}(D^*)$ by Proposition 4.1 (which states that $\mathcal{F}(D^*)$ is a Banach algebra). Since, also by Proposition 4.1, the Fresnel integral with respect to Δ is a continuous linear functional on this Banach algebra we have

$$\int_{\mathcal{H}}^{\Delta} e^{iS_0(\gamma)} e^{-i\int_0^t V(\gamma(\tau)) d\tau} \overline{f}(\gamma(0)) g(\gamma(t)) d\gamma$$

$$= \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int_0^t \dots \int_0^t \int_{\mathcal{H}}^{\Delta} e^{iS_0(\gamma)} V(\gamma(t_1)) \dots V(\gamma(t_n)) d\gamma dt_1 \dots dt_n. (6.24)$$

Utilizing now (6.23), (6.21) and the perturbation expansion (5.35) the theorem is proved.

Theorem 6.2. Let the notations be the same as in Theorem 6.1, and let $t_1 \leq \ldots \leq t_m$, then for $f_i \in \mathcal{S}(\mathbb{R}^n)$, $i = 1, \ldots m$

$$\left(\Omega_0, f_1 e^{-i(t_2 - t_1)H} f_2 e^{-i(t_3 - t_2)H} f_3 \dots e^{-i(t_m - t_{m-1})H} f_m \Omega_0\right)
= \int_{\mathcal{H}}^{\triangle} e^{iS_0(\gamma)} e^{-i\int_{t_1}^{t_m} V(\gamma(\tau)) d\tau} \prod_{j=1}^m f_j(\gamma(t_j)) d\gamma.$$

This theorem is proved by the series expansion of the function

$$\exp\left(-i\int_{t_1}^{t_m} V(\gamma(\tau)) d\tau\right)$$

and the fact that this series converges in $\mathcal{F}(D^*)$, in the same way as in the proof of Theorem 6.1.

Notes

This section, first presented in the first edition of this book, is geared towards quantum field theory (looking at nonrelativistic quantum mechanics as a "zero dimensional" quantum field theory). Formulae like (6.21) are typical of this view, see e.g. [425] for similar formulae in the "Euclidean approach" to quantum fields.