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These notes are an expanded form of lectures presented at the C.I.M.E.
summer school in representation theory in Venice, June 2004. The sections of
this article roughly follow the five lectures given. The first three lectures (sec-
tions) are meant to give an introduction to an audience of mathematicians
(or mathematics graduate students) to quantum computing. No attempt is
given to describe an implementation of a quantum computer (it is still not
absolutely clear that any exist). There are also some simplifying assumptions
that have been made in these lectures. The short introduction to quantum
mechanics in the first section involves an interpretation of measurement that
is still being debated which involves the “collapse of the wave function” after
a measurement. This interpretation is not absolutely necessary but it simpli-
fies the discussion of quantum error correction. The next two sections give
an introduction to quantum algorithms and error correction through exam-
ples including fairly complete explanations of Grover’s (unordered search) and
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Shor’s (period search and factorization) algorithms and the quantum perfect
(five qubit) code. The last two sections present applications of representation
and Lie theory to the subject. We have emphasized the applications to entan-
glement since this is the most mathematical part of recent research in the field
and this is also the main area to which the author has made contributions.
The material in subsections 5.1 and 5.3 appears in this article for the first
time.

1 The Basics

In his seminal paper [F1] Richard Feynman introduced the idea of a com-
puter based on quantum mechanics. Of course, all modern digital computers
involve transistors that are by their very nature quantum mechanical. How-
ever, the quantum mechanics only plays a role in the theory that explains why
the transistor switches. The actual switch in the computer is treated as if it
were mechanical. In other words as if it were governed by classical mechan-
ics. Feynman had something else in mind. The basic operations of a quantum
computer would involve the allowable transformations of quantum mechanics,
that is, unitary operators and measurements. The analogue of bit strings for a
quantum computer are superpositions of bit strings (we will make this precise
later) and the analogue of a computational step (for example the operation
NOT on one bit) is a unitary operator on the Hilbert space of bit strings (say
of a fixed length). The reason that Feynman thought that there was a need
for such a “computer” is that quantum mechanical phenomena are extremely
difficult (if not impossible) to model on a digital computer. The reason why
the field of quantum computing has blossomed into one of the most active
parts of the sciences is the work of Peter Shor [S1] that showed that on a
(hypothetical) quantum computer there are polynomial time algorithms for
factorization and discrete logarithms. Since most of the security of the inter-
net is based on the assumption that these two problems are computationally
hard (that is, the only known algorithms are superpolynomial in complexity)
this work has attracted an immense amount of attention and trepidation. In
these lectures we will discuss a model for computation based on this idea and
discuss its power, ways in which it differs from standard computation and
its limitations. Before we can get started we need to give a crash course in
quantum mechanics.

1.1 Basic Quantum Mechanics

The states of a quantum mechanical system are the unit vectors of a Hilbert
space, V, over C ignoring phase. In other words the states are the elements
of the projective space of all lines through the origin in V. If v,w € V then
we write (v|w) for the inner product of v with w. We will follow the physics
convention so the form is conjugate linear in v and linear in w. Following Dirac
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a vector gives rise to a “bra”, (v| and a “ket” |v) the latter is exactly the same
as v the former is the linear functional that takes the value (v|w) on w. Thus if
v is a state then (v|v) = 1. In these lectures most Hilbert spaces will be finite
dimensional. For the moment we will assume that dim V' < co. An observable
is a self adjoint operator, A, on V. Thus A has a spectral decomposition

V:@V,\

AER

with Ay, = AI. We can write this as follows. The spaces V) are orthogonal
relative to the Hilbert space structure. Thus we can define the orthogonal
projection Py : V' — V). Then we have A = > AP). If v is a state then we set
vy = Py\v. A measurement of the state v with respect to an observable A yields
a number A that is an eigenvalue of A with the probability ||vx ||2 This leads to
the following problem. If we do another measurement almost instantaneously
we should get a value close to A. Thus one would expect the probability to
be very close to 1 for the state to be in V). In the standard formulation of
quantum mechanics this is “explained” by the collapse of the wave function.
That is, a measurement by an apparatus corresponding to the observable A
has two effects. The first is an eigenvalue, A of A (the measurement) with
probability [|vs]|> and the second is that the state has collapsed to

U
loall’

This is one of the least intuitive aspects of quantum mechanics. It has been the
subject of much philosophical discussion. We will not enter into this debate
and will merely take this as an axiom for our system.

If we have a quantum mechanical system then in addition to the Hilbert
space V we have a self adjoint operator H the Hamiltonian of the system.
The evolution of a state in this system is governed by Schroedinger’s equation

do

9 _iHe.
a e

Thus if we have the initial condition ¢(0) = v then
B(t) = ey,

Thus the basic dynamics is the operation of unitary operators. If U is a uni-
tary operator on V then |[Uv) = U |[v) and (Uv| = (v|U~!. This is the only
consistent way to have (Uv|Uv) = (v|v) for a unitary operator.

Of course, these finite dimensional Hilbert spaces do not exist in isolation.
The state of the entire universe, u, is a state in a Hilbert space, U, governed
by the Schroedinger equation with Hamiltonian Hy. We we will simplify the
situation and think of the finite dimensional space V as a tensor factor of U
that is
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U=V®FE

with F standing for the environment. This is not a tremendous assumption
since in practice the part of the universe that will have a real effect on V is
given by this tensor product. Now, the Hamiltonian Hy will not preserve the
tensor product structure. Thus, even though we are attempting to do only
operations on states in V' the environment will cause the states to change in
ways that are beyond the control of the experiment that we might be attempt-
ing to do on states in V. Thus if we prepare a state on which we will do a
quantum mechanical operation, that is, by applying a unitary transformation
or doing a measurement we can only assume that the state will not “morph”
into a quite different state for a very short time. This uncontrolled change of
the state is called decoherence caused by the environment.

The fact that our small Hilbert space V' is not completely isolated from the
rest of the universe is the reason why it is more natural to use density matrices
as the basic states. A density matriz (operator) is a self adjoint operator T on
V' that is positive semi-definite and has trace 1. In this context a state v € V'
would then be called a pure state and a density matrix a mized state. If v is
a pure state then its density matrix is |v) (v|. We note that this operator is
just the projection onto the line corresponding to the pure state v. Thus we
can identify the pure states with the mixed states that have rank 1. If T" is a
mixed state then T transforms under a unitary operator by T+ kTk~! if k is
unitary. If we have a pure state u in U then it naturally gives rise to a mixed
state on V which is called the reduced density matriz and is defined as follows.
Let {e;} be an orthonormal basis of E. Then u = Y v; ® ¢; with v; € V. The
reduced density matrix is Y |v;) (v;|. More generally, if T is a mixed state on
U then it gives rise to a mixed state Tro(7") on V' by the formula

(w|Tra(T)|v) = > (w@ Tl @e;) .

i

This mixed state is the reduced density matrix. One checks easily that since
unitary operators don’t necessarily preserve the tensor product structure that
a unitary transformation of the state, T, will not necessarily entail a unitary
transformation of the reduced density matrix. We will mainly deal with pure
states in these lectures. However, we should realize that this is a simplification
of what nature allows us to see.

1.2 Bits

Although it is not mandatory we will look upon digital computing as the
manipulation of bit strings. That is, we will only consider fixed sequences
of 0’s and 1’s. One bit is either 0 or it is 1. Two bits can have one of four
values 00,01, 10, 11. These four strings can be looked upon as the expansion
in base 2 of the integers 0, 1,2, 3, they can be looked upon as representatives
of the integers mod 4, or they can be considered to be the standard basis
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of the vector space Zs X Zs. In general, an n-bit computer can manipulate
bit strings of length n. We will call n the word length of our computer. Most
personal computers now have word length 32 (soon 64). We will not be getting
into the subtleties of computer science in these lectures. Also, we will not
worry about the physical characteristics of the machines that are needed to
do bit manipulations. A computer also can hold a certain number of words
in its memory. There are various forms of memory (fast, somewhat fast, less
fast, slow) but we will ignore the differences. We will look upon a computer
program as a sequence of steps (usually encoded by bit strings of length equal
to the word length) which implement a certain set of rules that we will call
the algorithm. The first step inputs a bit string into memory. Each succeeding
step operates on a sequence of words in memory that came from the operation
of the preceding step and produces another sequence of words, which may or
may not replace some of the words from the previous step and may or may
not put words into new memory locations. If properly designed the program
will have rules that terminate it and under each of the rules an output of bit
strings. That is the actual computation. There are, of course, other ways the
program might terminate, for example it runs out of memory, it is terminated
by the operating system for attempting to access protected memory locations,
or even that it is terminated by the user out of impatience. In these cases there
is no (intended) output except possibly an error message.

This is the von Neumann model of computation. The key is that the com-
puter does one step of a program at a time. Most computers can actually
do several steps at one time. But this is because the computers are actually
several von Neumann computers working simultaneously. For example, a com-
puter might have an adder and a multiplier that can work independently. Or it
might have several central processors that communicate with each other and
attempt to do program steps simultaneously. These modifications will only
lead to a parallelism that is determined by the number of processors and can
only lead to a constant speed-up of a computation. For example, assume we
have 10 von Neumann computers searching through a sequence of N elements
with the task of finding one with a specified property. For example you have
N — 1 red chips and 1 white one. The program might be set to divide the
sequence into 10 subsequences each of size % and then each processor is as-
signed the job of searching through one part. In the worst case each processor
will have to evaluate % elements. So we see a speed up of a factor of 10 over
using one processor in this simple problem (slightly less since the worst case
with one processor is N — 1).

We will come back to a few more aspects of digital computing as we develop
a model for quantum computation.

1.3 Qubits

The simplest description of the basic objects to be manipulated by a quantum
computer of word length n are complex superpositions of bit strings of length
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n. Since a bit string is a sequence of numbers and the coeflicients of the
superpositions can also be some of these numbers we will use the ket notation
for the bit strings as pure states. These superpositions will be called qubits.
Thus one qubit is an element of the two dimensional vector space over C with

states
a|0) +b]1)

and |a|? + |b]> = 1. We will be dealing with qubits quantum mechanically so
we ignore phase (multiples by complex numbers of norm 1). Thus our space of
qubits is one dimensional projective space over C. We will think of this qubit
as being in state |0) with probability |a|?> and in state |1) with probability
|b]2. Although this is a vast simplification we will take the simplest one step
operation on a qubit to be a unitary operator (projective unitary operator to
be precise).

Contrasting this with bits we see that on the set of bits {0,1} there are
exactly 2 basic reversible operations: the identity map and NOT that inter-
changes 0 and 1. In the case of qubits we have a 3 dimensional continuum
of basic operations that can be done. There is only one caveat. After doing
these operations which are difficult to impossible classically we must do a
measurement to retrieve a bit. This measurement will yield 0 or 1 with some
probability. Thus in a very real sense going to qubits and allowing unitary
transformations has not helped at all.

An element of 2 qubit space will be of the form

u=al00) + b|01) + ¢|10) + d|11)

with |a|? + |b]? + |c|? + |d|?> = 1. We interpret this as u is in state |00) with
probability |a|?, in state |01) with probability |b|?, etc. Similarly for n qubits.
The steps in a quantum computation will be unitary transformations. How-
ever, each unitary transformation given in a step will have to be broken up
into basic transformations that we can construct with a known and hopefully
small cost (time and storage).

A quantum program starts with an n qubit state, ug, the input, and then
does a sequence of unitary transformations T; on the state so the steps are
uy = Thug, ..., Uy = TinUm_1, and a rule for termination and at termination
a measurement. The output is the measurement of the state to which the
measured state has collapsed.
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2 Quantum Algorithms

In the last lecture we gave simple models for a classical and a quantum com-
putation. In this lecture we will give a very simple example of a quantum
algorithm that implements something that is impossible to do on a Von Neu-
mann computer. We will next give a more sophisticated example of a quantum
algorithm (Grover’s algorithm [G1]) that does an unstructured search of N
objects of the type described in the last lecture in v/ N steps. At the end of the
lecture we will introduce the quantum (fast) Fourier transform and explain
why on a (hypothetical) quantum computer it is exponentially faster than the
Fast Fourier transform

2.1 Quantum Parallelism

Suppose that we are studying a function, f, on bit strings that takes the values
1 and —1 and assume that it takes only one step on a classical computer to
calculate its value given a bit string. For example the function that takes
value 1 if the last bit is 0, —1 if it is 1. We will think of bit strings of length n
as binary expansions of the numbers 0,1,...,2" — 1. Thus our n qubit space,
V, has the orthonormal basis |0),[1),...,|N — 1) with N = 2" — 1. We can
replace f by the unitary operator defined by T'|j) = f(j) |j). T operates on a
state v € V,

N—-1 N—-1
v="Y a;lj), la;[? =1
=0 =0
by
N-1
Tv=">" f(j)a;j)
=0

Quantum mechanically this means that we have calculated f(j) with the
probability |aj|2. In other words the calculation of 7" on this superposition
seems to have calculated all of the values of f(j) simultaneously if all of
the |aj| > 0 in one quantum step. In a sense we have, but the rub is that
if we do a measurement then all we have after a measurement is f(j)|j)
with probability |aj|2 and since we ignore phase the value the object we are
calculating is lost. Perhaps it would be better to decide that we will operate
quantum mechanically and then read the coordinates classically? I assert that
we will still not be able to make direct use of this parallelism. The reason
is that we are only interested in very big N. In this situation the set of

states, > a; |j), with |a;|? all about the same size have a complement in the
§=0

sphere of extremely small volume. This implies that most of the states will

have probabilities, |a;|* ~ % If n is, say, 1000 then all the coordinates will

be too small to measure classically. We can see this as follows. We consider
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the unit sphere in real N dimensional space. Let wy be the O(N) invariant
volume element on SN~1 that is normalized so that

/ wN:1.

SN-—1

We write a state in the form v = cosfu 4 sinf [N — 1) with =5 < 0 < 7.
With u an element of the unit sphere in N — 1 dimensional space. Then we
have

wn = ey cos0" 2wn_1 Adb

and cy ~ C+v/ N with C independent of N. The set of all v in the sphere with
last coordinate ay_; that satisfies |ay_1|*> > 7% > % + ¢ with € > 0 has
volume at most

CVN(1 =) 5 = VN1 —o) ¥ 10— =5)3

which is extremely small for N large.

The upshot is that a quantum algorithm must contain a method of increas-
ing the size of the coeflicient of the desired output so that when a measurement
is made will have the output with high probability.

2.2 The Tensor Product Structure of n-qubit Space

Recall that the standard (sometimes called the computational) basis of the
space of 2 qubits is |00), |01),|10),|11). A physicist would also write |0) |1) =
|01). We mathematicians would rather think that the multiplication is a tensor
product. That is |0), |1) form the standard basis of C2. Then

0) @10),10) @ [1),[1) @ |0), [1) @ 1)

form an orthonormal basis of C? ® C? with the tensor product Hilbert space
structure. In other words we identify |ab) with |a) ® |b). In this form the
original bit strings are fully decomposable that is are tensor products of n
elements in C2. We will call an n-qubit state a product state if it is of the
form

vl®fv2®...®vn

with ||vl||2 =1 for ¢ = 1,...,n. One very important product state is the

uniform state (N = 2™):
N-1

1 .
Uzﬁ;m-

To see that it is indeed a product state we set u = %(|0) + [1)). Then

v=u® -+ ®u (n-fold tensor product). This formula also shows that the
uniform state can be constructed in n = log, (V) steps. This can be seen by
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making an apparatus that implements the one qubit unitary transformation
(called the Hadamard transformation)

P
V2 |-11

It has the property that H|0) = %,H 1) = % We write H (k) for
I®---®H®---I with all factors one qubit operations and all factors but one
the identity and in the k-th factor the Hadamard transformation. Thus on a
quantum computer that can implement a one qubit Hadamard transformation
in constant time can construct the uniform state in logarithmic time. We will
actually over simplify the model and assume that all one qubit operations can
be implemented is one step on a quantum computer, Then

w=H(1)H(2)-- H(n)0).

With this in mind we can give our first quantum algorithm. Set up an
apparatus that corresponds to an observable, A, with simple spectrum. Here
is the algorithm:

Make a uniform state v.
Measure A.
v collapses to |j) with j between 0 and N — 1 with probability %

In other words we are generating truly random numbers. The complexity
of this algorithm is n. On a digital computer the best one can do is generate
pseudo random numbers. The classical algorithms involve multiplication and
division. Thus they are slightly more complex. However they do not generate
random numbers and no deterministic algorithm can (since the numbers will
satisfy the property that they are given by the algorithm).

2.3 Grover’s Algorithm

We return to unstructured search. We assume that we have a function, f, on
n-bit strings that takes the value —1 on exactly one string and 1 on all of
the others. We assume that given a bit string the calculation of the value is
one step (in computer science f might be called an oracle). Here is Grover’s
algorithm:

Form the uniform state u = ﬁ > |7)- Let T be the unitary transformation
defined by T'|j) = f(j) |j). Let S be the orthogonal reflection about u. That
is

Syu(v) = v — 2 (u|v) u.

Then S, is a unitary operator that in theory can be implemented quantum
mechanically with logarithmic complexity (indeed Grover gave a formula for
Sy involving the order of n Hadamard transformations). If the number of bits
is 2 (we are searching a list of 4 elements) then we observe
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STu=—1j)

with f(j) = —1. Thus one quantum operation and one measurement yields the
answer. Whereas classically in the worst case we would have had to calculate
f three times and then printed the answer.

The general algorithm is just an iteration of this step. ug = v and 4,11 =
STuy,. A calculation using trigonometry shows that after [4mv/N] steps the
coefficient of |j) with f(j) = —1 has absolute value squared .99. (Here [x] is
the maximum of the set of integers less than or equal to z). Thus with almost
certainty a measurement at this step in the iteration will yield the answer.

2.4 The Quantum Fourier Transform

Interpreted as a map of L?(Z/NZ) to itself the fast Fourier transform can be
interpreted as a unitary operator on this Hilbert space. In general, if G is a
finite abelian group of order |G| then we define the Hilbert space L?(G) to be
the space of a complex valued functions on G with inner product

(floy =>_ f()

zeG

Let G denote the set of unitary characters of G. Then it is standard that the

set {\/llax\x € G} is an orthonormal basis of L2(G). If G = Z/NZ = Zy
and if we set x,,(n) = e 8™ form =0,...,N — 1 then we can define
1 | Nl
T = ( Jpenld ) = i 2 Fenn)”
and so

N-— 1 N-1
Z < Xmlf > T m(n X:O (n)
As in the case of the fast Fourier transform we will take NV = 2". The standard
orthonormal basis of L?(Zy) is the set of delta functions {&,,|m = 0,...,
N —1} with §,,(z) = 1 if £ = m and 0 otherwise. We will identify these delta
functions with the computational basis, that is |m) = d,,. We therefore have

N—

F|m) = Z )7 -

7=0

The linear extension to n qubit space is the quantum Fourier transform. The
discussion above makes it obvious that this is a unitary operator. What is
less obvious is that we can devise a quantum algorithm to implement this
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operator as (essentially) a tensor product of one qubit operators (which we
are assuming are easily implemented on our hypothetical quantum computer).
We will conclude this section with the factorization (due to Shor [S2]) that
suggests a fast quantum algorithm

n—1
If 0 <j < N —1 then we write j = Y. j;2" with j; € {0,1} so that with

1=0
our convention |j) = |jn—1Jn—2---Jo). If 0 <m < N — 1 then

m - _j
N = i:Zlmn,i2 '

and since
k-1

27 = 27" oy
=0

with ug; € Z. We have

= K=l
opim 278 Y Mp—k Y, Ji2
e Nl —¢ k=1 =0

This leads to the following factorization

F15) = un(f) @ un-1(j) ® - @ u1(j)

with
ori S ji2-
g e =
u = .
AW \/i
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3 Factorization and Error Correction

In this section we will study the complexity of the quantum Fourier transform
and indicate its relationship with Shor’s factorization algorithm. We will also
discuss the role of error correction in quantum computing and describe a
quantum error correcting code.
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3.1 The Complexity of the Quantum Fourier Transform

Recall that our simplified model takes a one qubit unitary operator to be one
computational step this is a simplification but the one qubit operators that
will come into the rest of the discussion of the quantum Fourier transform
are provably of constant complexity. We will also be using some two qubit
operations which are also each of constant complexity. In addition we assume
an implementation of the total flip, 7

VI QU2 Q- QUp = Uy, QUp1 Q- Q@03

One can show that the complexity of this operation is a multiple of n. We will
show how to implement the transformation

17) = un(J) @ up-1(j) ® - @u1(j) = Fj)

with
i 'S ji2—
u(g) = 2+
k\J /2

To describe the steps in the implementation we need the notion of a controlled
one qubit operation. Let U € U(2) we define a unitary operator, Cy, on
C? ® C? as follows

n

Cu |j1j2) = (U |71)) ® |j2)
if jo =1 and
Cu ljrj2) = |j12)
if jo = 0. We call jo the control bit. If we are operating on n qubits and
applying a controlled U operation with the control in the k-th factor and

the operation in the [-th factor then we will write C’Ilj’k (the reader should be
warned that this is not standard notation). Thus

C#10110) = [0) @ U |1) @ |1) ® |0)

and
C#10100) = |0100) .

If U is easily implemented then controlled U is also easily implemented. We

define
o]
U, = 27

0 e2F

and recall that the Hadamard operator acting on the k-th qubit was denoted
H(k) in section 2. We will now describe an operator the implements the
quantum Fourier transform. It will be a product 70 A, A,_1 -+ Ay o7 with

Ay =Cyregtt CpPHQ, L
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ko ~kn—1 K k1
Ay = CErCln—b L CEMUE () LA, = H(n).

We note that in this expression the operator Aj changes the k-th qubit but
doesn’t depend on the value of the j-th qubit for j < k. We leave it to
the reader to expand the product and see that it works. The operator Ay is
a product of k operators that we can assume are implemented in constant
time. Thus the complexity of the transform is a constant times @ This
is exponentially faster than the classical fast Fourier transform which has
complexity Nn.

Shor introduced this transform in order to give a generalization of an al-
gorithm of Deutch (cf. [NC]). Shor’s algorithm finds the period of a function
with an unknown period with complexity a power of the number of bits in-
volved. A very nice exposition of the period finding algorithm can be found
in [NC]. We will give a different approach here.

We begin with a periodic integer valued function, f of unknown period L
which we know is less than 2. We will work in 2n qubit space and consider
the values of the function to be between 0 and N —1 with N = 22" (this is not
necessary but is not a real restriction since we will know the range of values of
the function and for useful application we should be able to take n very large).

We can thus think of f as defining a unitary map from (®2n (C2) ® (®2n (Cz)
to itself by
F(lz) @ |y) = lz) @ |f(2) +y).

Here the addition is modulo 22”. We will think of each of the tensor factors
of 2n qubits as a register. The first step in the algorithm is to construct the

uniform state 1
= 3 welw
1<z,y<N-1
and then do a measurement in the second register (factor) getting
= X Mok
1<z<N-1

We now apply F and get

= X W@ +w).

Set g(z) = f(x) + yo. g is also a periodic function of period L projected into
Zo2n. Thus it doesn’t matter what y, occurred. We now measure the second
register and get

1
Vi{zlg(z) = g(z0)}] g(wgg:(%) |z) @ |g(x0)) -
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We write N = LM + r with 0 < r < L then [{z|g(z) = g(z)}| = M or
M + 1. Since we are assuming that IV is large compared to L in formulas we
will use the approximation |{z|g(z) = g(x,)}| = M. We will also ignore the
congruence modulo 22", Thus after the measurement in the second register

we have
(jM S oo+ sL>> ®19(w0))

where we may take as an approximation the sum over all 0 < s < M — 1. We
now apply the quantum Fourier transform in the first register getting

M—-1N-1

T (w0 + 5L)) |2) © lg(o)) -
s=0 z=0

If we now do a measurement in both registers we will obtain |z) ® |g(x,)) with

probability
M—1

VN Z T (o + 5L

We now observe that if ¢ is a strictly positive integer and c is a real number
then we have

qg—1

Z exp(2mijc)

§=0

is equal to

1 — exp(2migc)

1 — exp(2mic)
if ¢ is not an integer and it is equal to ¢ if ¢ € Z. Thus observing that
MN = M? (%) and we are approximating % by L we find that if ¢ = 2L /N
is not an integer then the probability of having collapsed to |z) ® |g(z,)) is
approximately

1 |1—exp(2riMc) |
MZ2L | 1— exp(2mic)

And the probability of obtaining z with zL/N an integer is ﬁ We therefore
see that after a measurement it is most probable that the state will have
collapsed to |z) ® |g(z,)) with 2 L/N very close to being an integer. That is, if
the integral part of % is an integer times L. One then checks if the outcome is
a period by substitution. If it is a period (i.e. a multiple of L) we must make
sure that we have found the minimal period. After on the order of log(L)
applications of this method one would have determined L with probability
close to 1

We note that this algorithm is probabilistic as are all known quantum
algorithms. This method of Shor is a special case of a larger class of algorithms
known as “hidden subgroup”problems. Here one starts with a group G, an
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unknown subgroup H and a function f on G such that f is constant on the
cosets of H. The problem is to construct an efficient algorithm to find H. This
has been done for G finite and commutative, for H a normal subgroup and
for some two step solvable groups.

3.2 Reduction of Factorization to Period Search

We will now describe the method Shor uses to reduce the problem of factor-
ization to period search for which he had devised a fast quantum algorithm.
Consider an integer N for which we want to find a nontrivial factor. We may
assume that it is odd and composite. Chose a number 1 < y < N — 1 ran-
domly. If the greatest common divisor (ged) of N and y is not one then we are
done. We can therefore assume that ged(y, N) = 1. Hence y is invertible as
an element of Zy (under multiplication). Consider f(m) = y™ mod N. Then
since the group of invertible elements of the ring Zy is a finite group the
function will have a minimum period. We can thus use Shor’s algorithm to
find the period, T. If T  is even we assert that y% + 1 and N have a common
factor larger than 1. We can thus use the Euclidean algorithm (which is easy
classically) to find a factor of N. Before we demonstrate that this works con-
sider N = 30 and y = 11. Then f(0) = 1, f(1) = 11, 112 = 121 = 1mod 30,
so f(2) =1 = f(0). Thus T = 2. Now 11! + 1 = 12. The greatest common
divisor of 12 and 30 is 6.

We will now prove the assertion about the greatest common divisor. We
first note that

(yT +1)2 =y7 +2y7 + 1.

But 47 = 1+m-N by the definition of 7. Thus (y +1)2 = 2(y% +1) mod N.
Hence . -
(y= +1)" —2(y= +1)

is evenly divisible by N. We therefore see that

(07 +0-8)(45+1) = 5 1) 1)

is evenly divisible by N. Hence, if y% 41 and N have no common factor then
T

y2 — 1 is evenly divisible by N. This would imply that % (which is smaller

than T') satisfies

flo+5) = (@)

This contradicts the choice of T" as the minimal period. This is still not enough
to get a non-trivial divisor of N. We must still show that y can be chosen so
that N doesn’t divide y% + 1 and that we can choose y so that T is even.
Neither can be done with certainty. What can be proved is that if N is not a
pure prime power then the probability of choosing 1 < y < N — 1 such that
ged(y, N) = 1, f has even period and N doesn’t divide y% + 1 is at least
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3. The proof of this would take us too far afield, a good reference is [NC.
We note that classically the test whether a number, N, is a pure power of a
number a > 2 and if so to calculate the number is polynomial in the number
of bits of N. The upshot is that a quantum computer will factor a number
with very large probability (if the algorithm is done say 10 times then the
probability of success would be 0.999999 in polynomial time).

3.3 Error Correction

So far we have ignored several of the difficulties that we had indicated in sec-
tion 1 having to do with two problems that are caused by the environment.
The first is that we can only really look at mixed states since we cannot com-
pute the actual action of the environment and the second is the decoherence
caused by the dynamics of the total system. We will assume that our quantum
computations are divided into steps that take so little time that our initial
pure states remain close enough to being pure states that we can ignore the
first difficulty. For the second we will look at the decoherence over this small
period as a small error. For most of the systems that are proposed the most
likely error is a one qubit error. Thus as in classical error correction we will
show how to set up a quantum error correcting code that corrects a one qubit
error. The standard procedure is to encode a qubit as an element of a two
dimensional subspace of a higher qubit space.

That is we take V to be the space of n qubits and we take ug and wu;
orthonormal in V and assign

al0) +b|1) — aug + buy.

The right hand side will be called the encoded qubit. The question is what is
the most likely error if we transmit the encoded qubit? The generally accepted
answer is that it would be a transformation of the form

F=1R QAR ---1

with all factors the identity except for an A in the k-th factor and this A is a
fairly arbitrary linear map on 1-qubit space that is close to the identity. The
problem is to fix the error which means change E (aug + bui) to aug + buy
without knowing which qubit has an error, what the error is and not collapsing
the wave function of the unknown qubit. Classically one can transmit one bit
in terms of 3 bits. 0 — 000, 1 — 111. The most likely error is a NOT in one bit.
To fix such an error one reads the sum of the entries of this possibly erroneous
output and if it is at most 1 then change it to 000 if it is at least 2 change it to
111. This will correct exactly one NOT in any position. Quantum mechanically
we must correct a continuum of possible errors. This seems to be impossible
and if it were impossible then quantum computation looked impossible also
since decoherence would set in before we could do any useful computation. As
usual, Shor [S3] found a method. We will describe a later development that
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yielded a quantum analog of a perfect code (such as the three bit classical
error correction scheme described above).

We will describe a special class of error correcting codes that are known
as orthogonal codes (or non-degenerate codes). In fact, Shor’s original exam-
ple was not an orthogonal code, but we feel that these codes are easier for
mathematicians to understand. We will need some additional notation.

If X,Y € Ms(C) then we define (X]Y) = 2tr(X*Y) (X* = X to a
physicist, is the Hermitian adjoint of X). Given j = 1,...,n we define Fj :
M,(C) —End(®" C?) by

FiA=I® A a1

where all of the factors on the right hand side are I except for the k-th term
which is A. We say that an isometry, T : C? — " C? defines an orthogonal
code space if it has the following properties:

1. The maps T : M(C) ® C? — @" C? given by Tj(X ®v) = F;(X)T'(v)
are isometries (onto their images) for i = 1,...,n.

2.tV ={X € M3(C)|tr(X) = 0}. Then the sum

Z=T(C)e P T;(VecC?

1<j<n

is an orthogonal direct sum.

We will now show how to correct a one qubit error if we have an orthogonal
code. Let X7, X5, X3 be an orthonormal basis of V' consisting of invertible
elements. For example we could choose the Pauli matrices

T

We write ®" C? = Z @ Z' with Z’ the orthogonal complement to Z. Let A
be an observable that acts by distinct scalars as indicated Aol on T(C?), \;;1
on T;(X; ®C?),1 <j<n1<i<3and ul on 7 . Tf we start with T(v)
and it has incurred an error and we have w rather than T'(v) then we do a
measurement of A on w. If the measurement is p then with high probability
the error wasn’t a one qubit error. Otherwise we assume a one qubit error
then there is j such that w = T;(X ® v). X = al 4+ bX1 + cX2 + dX,. Thus
with probability 1 the eigenvalue will be one of g, A1j, A2, Asj. If it is Ag
then w will have collapsed to v. If it is A;; then if w collapses to z then

F;(X; )z = T(v) we have thus corrected the error.

Obviously, to use this idea we must have a way of finding 7. We note first
of all that dimZ < 2™ and dimZ = 6n + 2 . If 6n + 2 < 2™ then n > 5 and
if n =5 then 2° = 6 -5 + 2. Thus the smallest n that we could use would be
n = 5. We will now give conditions on a map 7' that are equivalent to having
an orthogonal code. If w € @" C? then w = Y w; |5). Let 0 < p < ¢ < n be
two bit positions. Then we form a 4 x 2"~2 matrix as follows. The i = i +1;2,

j=7Jo+ 512+ ... 4 jn_32""3 entry is w; where
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k:j0+"'+jp—12p71+i02p+jp2p+1+"'+
jq722q_1 +4,29 +jq712q+1 + .- +jn732"—1.

If p=0, ¢ =1 this is just k = ig + 12 + 22(jo + j12 + -+ + jn_32""3). Let
W (p, ¢, w) denote this matrix. We have

Theorem 1. T : C? — ®" C? defines an orthogonal code if and only if

. N
W(paqu‘Z»W(paqu‘J» = Z(sZJI

For all p,q and 4,5 € {0,1}.

This can be written as a system of quadratic equations. If we put them
into Mathematica for n = 5 the first solution is given as follows: We define

Then set

T [0) = - (|0000) -+ (11000) — (10100) — (11110))

RNy

and

T (1) = = (|11111) + (00111) — (01011) — (00001)) .

1
4
Because of the symmetry it is easy to check that the condition of the theorem
is satisfied. This code was originally found by other methods (c.f. [KL]).
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4 Entanglement

As we have seen the only non-trivial reversible one bit operation is NOT which
interchanges 0 and 1. We have made the simplifying assumption that all one
qubit unitary operators are easily implementable on a quantum computer. The
operation NOT gives rise to the unitary operator in one qubit with matrix

1)
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relative to the computational basis |0) , |1). We will say that a transformation
of n bits that is given by applying either NOT or the identity to each bit is a
classical local transformation. A quantum local transformation in n qubits is
a unitary operator of the form

A1®A2®...®An

where A; € U(2). There is a major distinction between the classical and
the quantum cases. The classical local transformations act transitively on
the set of all n bit bit strings. Whereas the quantum local transformations
act transitively only in the case when n = 1. For example there is no local
transformation that takes the state

|00) + [11)
V2

to |00) (see the next section for a proof). We will call a state that is not a
product state (not in the orbit of |00) under local transformations) an en-
tangled state. The two code words of the five bit error correcting code are
entangled. Furthermore, entanglement explains some of the apparent para-
doxes that appeared in the early thought experiments of quantum mechanics.
It is also basic to quantum teleportation (a subject that we will not be cov-
ering in these sections). In this section we will study the orbit structure of
the local transformations on the pure states and in particular functions that
help to separate these orbits: the measures of entanglement. We will empha-
size methods that allow one to determine if two states are related by a local
transformation and to determine the extent of the entanglement of a state.

4.1 Measures of Entanglement

|00)+|11

We will first look at the example of an entangled state: ! One way that

one can see that it is entangled is by observing that if we act on C? @ C? by
G = SL(2,C)xSL(2,C) by the tensor product action, then G leaves invariant
a symmetric form, the tensor product of the symplectic forms on each of the
C? factors that are SL(2,C) invariant. This form, ( , ), is given by

(100),11)) = (|11),|00) = 1,
(101}, ]10)) = ([10),[01)) = —1

and all the other products are 0. We note that (‘00>j§|11>, |00>\J}2|11>) =1 and

(|00} ,00)) = 0 so there can’t be a local transformation taking one to another
since the function ¢(u) = |(u, )| is invariant under local transformations. It is
an example of a measure of entanglement. Indeed, one can prove that a state,
u, in 2 qubits is entangled if and only if ¢(u) > 0. Another property enjoyed
by this function is that for all pure 2 qubit states ¢(u) < 1 and ¢(u) = 1 if
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and only if w is in the orbit of w under local transformations. To prove

the upper bound we consider u = @ |00) +b|01) + ¢ |10) + d|11). Then ¢(u) =
2(ad—bc). Since 2|al|d| < |a|*+|d|* we have |¢(u)| < |a|>+|b]>+|c|>+|d|* = 1.
Although it is not hard to prove the assertion about the orbit directly we will
use a result of Kempf and Ness [KN] which is useful in other contexts. For
those of you who are unfamiliar with semisimple Lie groups take G to be the
product of n copies of SL(2,C) and K to be n copies of SU(2).

Theorem 2. Let G be a semisimple Lie group over C and let K be a mazimal
compact subgroup of G. Let (w,V) be a finite dimensional holomorphic repre-
sentation of G with the K-invariant Hilbert space structure { | ). Let v € V
and m = inf{(w(g)v|r(g)v)|g € G}. Then if u € 7(G)v and (ulu) = m then
7(K)u = {w € n(G)v|{w|w) = m}. Furthermore the infimum is actually
attained if and only if the orbit m(G)v is closed.

In words this says that the elements of minimal norm in a G orbit form a
single K-orbit.

We will now give an idea of the proof. We note that Lie(G) = Lie(K) +
iLie(K). We therefore have

G = K exp(iLie(K)).

If X € iLie(K) then dn(X)* = dn(X). Thus

d2
p7e] (m(exptX)v|m(exptX)v)
= 4 {dn(X)m(exptX)v|dm(X)m(exptX)v) > 0

With equality if and only if dw(X)v = 0. Everything follows from this.

We will now show how the Kempf-Ness result applies to our situation for
2 qubits. We first note that relative to G = SL(2,C)xSL(2,C) the space
V = C? ® C? has the following orbit structure. For each A € C — {0} the set
My = {w € V](v,v) = A} is a single orbit. The other orbits are 7(G)|00)
and {0}. The union of the latter two is My. We set ug = %. We note

that we have M) = 2m(G)ug with 22 = X\. We therefore see that the elements
in the unit sphere that maximize ¢ are contained in the set of elements the

_ i6_m(g)uo - 1
form w = e (el 9 € G. For such a w we have ¢(w) = O Thus

maximizing ¢ on the unit sphere means (up to phase) minimizing the norm
on 7(G)ug. The Kempf-Ness theorem implies that this subset of m(G)ug is
m(K)ug. This completes the proof of the assertion.

We note that the group of local transformations on ®" C? is the image
of S1 x SU(2)" with S* the circle group acting by scalar multiplication and
SU(2)™ acting by the tensor product action (i.e. by local transformations). We
will therefore concentrate on invariants for SU(2)™. We also note that if we
consider ¢(u)? rather than ¢(u) then it is a polynomial function on C? @ C? as
a real vector space. We will only consider measures of entanglement that are
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polynomials invariant under K = SU(2)"™ on @" C? as a real vector space.
We will use the term measure of entanglement for such a polynomial. We will
denote the algebra of such polynomials by Pr(®" C?)X. These are exactly
what we need to separate the K-orbits.

Theorem 3. If u,v € @" C? then u € w(K)v if and only if f(u) = f(v) for
all f € Pr(Q" CHXK.

We also note that if we look at the action of the circle group by mul-
tiplication on @" C? we can define a Z-grading on Pr(®" C*)X by f €
PLQQ"CHE if f e Pr(®"C?)K and f(zu) = 27 f(u) for all z € S and
ue@"C2

Theorem 4. If u,v € Q" C? then u € S'w(K)v if and only if f(u) = f(v)
for all f € PL(R" CH)E.

Both of these theorems are consequences of the following result.

Theorem 5. Let U be a compact Lie group. Let (p, W) be a finite dimensional
representation of U on a real Hilbert space. Let P(W)V be the algebra of all
complex valued polynomials on W that are invariant under U. If u,v € W

then u € p(U)v if and only if f(u) = f(v) for all f € P(W)Y.

Proof. The necessity is obvious. Since v — |[v||* is in P(W)V we will
prove that if ||v|| = ||u|| = r > 0 and f(u) = f(v) for all f € P(W)Y then u €
p(U)v. The Stone-Weierstrauss theorem implies that the restriction of P(WW)
to the sphere of radius r, S, is uniformly dense in the space of continuous
functions on S,.. Suppose that p(U)v N p(U)u is empty then Uryson’s Lemma
implies there is a continuous function ¢ on S, such that ¢|,), = 1 and
@1,y = 0. The uniform density implies that there exists an f € P(W) such
that |f(z) — ¢(z)| < 1 for all z € S,. Let du denote normalized invariant

measure on U. We define f(z) = [ f(p(z)z)dz. Then f € P(W)Y. We have
U

70) -~ 1= | [ ooz 1] < [17600ds - spl2p)lds < §
U U

hence [f(v)| > 2 similarly |f(u)| < 1. This proves the theorem.

4.2 Three Qubits

11
%under

These results make it reasonable to assert that the orbit of
local transformations consists of the most entangled two qubit states. In the
case of 3 qubits there is a similar result. First the ring of invariant (complex

polynomials) on C? ® C? @ C? under the tensor product action of
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G = SL(Z, (C)XSL(Q,(C)XSL(Z,(C)

is generated by one element, f, of degree 4 (here we will be stating several
results without proof in this case the details can be found in [GrW]). We can
define it as follows: if v € C? ® C? ® C? then we can write it as

v=1[0)®vo+ |1) ® vy

with vg,v1 € C? @ C2. If we use the symmetric form defined above we have

o) = e[ (1010 (o

(v1,v0) (v1,v1)

As in the case of two qubits most of the orbits under G are described by the
values of f. Here we set M, = {v € C*> ® C?* ® C?|f(v) = A}. Then if A # 0
we have M) consists of a single orbit. If A = 0 then there are 6 orbits in Mj.
We note that f(220HID) — 1 Thus My = 2G (%) with 2% = 4).
We will now describe the orbits in M. First there is the open orbit in this
quartic given as the orbit of

1001) 4 |010) + |100)
woy = .
V3

If we remove this orbit from M, then there are three open orbits in what
remains. They are the orbits of ‘000>+|011>, [000)+]101) g 1000+I10) 1f
2 2 2

addition these are removed then what we have left is the union of 0 and the
product states (which form a single orbit).
One can show by an argument similar to that in two qubits that if u is

a state then |f(u)| < 1 and if u, = % then f(u,) = %. Since the

set where f is non-zero is exactly the set of all elements C*G (%)
we see that if u is a state with |f(u)| # 0 then v = % with g € G.

Thus f(u) = f ( gto ) = #ﬁf(guo) = m. Thus the set of states with

llguoll ) = llguol ol
1

|f(u)] = ; are exactly the elements that minimize the value of lguo||* for

g € G. Thus Theorem 2 implies:

Proposition 6. If K = S1SU(2)xSU(2)xSU(2) then

(veC 8 a )] = vl =1} = & (L),

V2

Thus one value of one invariant is enough to determine if a state can be

gotten from % by local transformations. For example

. |111) 4 ]001) + |010) + |100)
o 2
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has the property that f(v) = %. So it can be obtained by a local transformation
from 1000)+[111)
A

So far we have been analyzing only one polynomial measure of entangle-

ment. There is the natural problem of determining a generating set for these
measures. To do this it is useful to reduce the problem to a problem involving
complex algebraic groups and complex polynomials. The basic idea is that
if G is a simply connected semi-simple Lie group over C then G is a linear
algebraic group. If K is a maximal compact subgroup of G and if (p,V) is
a finite dimensional unitary representation of K then p extends to a regular
representation of G on V. The real polynomials on V' are the complex poly-
nomials in both the bra and the ket vectors. The ket vectors give a copy of V'
as a complex vector space whereas the ket vectors give a copy of the complex
dual representation of V. This implies that the algebra Pr(V)¥ is naturally
isomorphic with P(V & V*)%. In the case when we are dealing with qubits the
representation of G = SL(2)" on ®" C? is self dual. We are thus looking at
the problem of determining the invariants of G acting on two copies of " C2
by the diagonal action. We analyze this problem for two and three qubits.

4.3 Measures of Entanglement for Two and Three Qubits

We first look at 2 qubits and continue the discussion begun in the previous
subsection. As we have observed G = SL(2,C)xSL(2,C) leaves invariant a
symmetric bilinear form on C?® C2. A dimension count shows that the image
of G on C?® C? is the full orthogonal group for this form. Thus the action on
C%2®C? can be interpreted as the action of SO(4, C) on C*. We are thus looking
at the invariants of SO(4,C) on two copies of C%. Classical invariant theory
implies that the algebra of invariants is generated by the three polynomials
av®w) = (v,v), B(v®w) = (v,w) and y(v ® w) = (w,w), This implies

Lemma 7. The algebra of measures of entanglement in 2 qubits is the set of
polynomials in (v,v), (v|v) and (v,v).

Thus in this case we were using the only “interesting” measure, since we
are only considering states which are assumed to satisfy (v|v) = 1.

The situation is different for three qubits. We will describe a set of gener-
ators in this case that was determined in [MW1] our method is a modification
which is an outgrowth of joint work with H. Kraft. As above we look upon
C?RC?®C?% as C2®C* and G = SL(2,C)xSL(2,C)xSL(2,C) acting as
SL(2,C)xS0(4,C). For the moment we will ignore the SL(2,C) factor and
look at I®S0(4,C) acting on two copies of C? @ C*. If we consider only the
action of SO(4,C) then we are looking at its action on 4 copies of C*. We
look at this as SO(4,C) acting on X € M,(C) under right multiplication by
the transpose of the matrix. Then the invariants for SO(4,C) are generated
by the matrix entries of X X7 (the upper T stands for transpose) and det(X)
(for these results and others stated without proof in this subsection please see
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[GW]). We now look at the action of the remaining SL(2,C). The SL(2,C)
is acting on the left on the matrix via multiplication by the block diagonal
matrix

Thus the SL(2,C) factor is acting on the generators of the SO(4, C) invariants
trivially on v = det X (an invariant under the full G of degree 4) and via
hXXThT with h as above, We write X X7 in block form

i

then the SL(2,C) is acting on the components via A +— gAgT,B
gBgT,C +— gCg". We note that A and C' are symmetric and completely
general and B is an arbitrary 2 x 2 matrix which we can write as
01
a {_1 0] +Z

with Z a general two by two symmetric matrix. The coefficient a defines
an invariant for G of degree 2 on the qubits which we will call . The rest
of the action is by three copies of the action of SL(2,C) on the symmetric
2 x 2 matrices. Using the trace form we see that this is just the action of
SO(3,C) on three copies of C3. Again we look upon this as the action of
SO(3,C) on Y = M3(C) via left multiplication. The invariants in this case
are generated by f = detY (an invariant of degree 6 on the qubits) and the
matrix coefficients of Y7'Y which yield 6 invariants of degree 4. The upshot
is the invariants are generated by an invariant of degree 2 («), an invariant
of degree 4 (), an invariant of degree 6 (3) and 6 invariants of degree 4 (the
matrix coefficients of YTY), p1, ..., ug. We note that the invariants v and 3
have the property that their squares are invariant under O(3) x O(4). Thus
~% and (2 are in the algebra generated by o and 1, ..., us. We can also
see from the invariant theory of SO(3) that the functions «, 1, ..., us are
algebraically independent. We therefore see that the full ring of invariants is

(C[O‘mula"',,uﬁ] @C[aaula'~'7”6]ﬁ@(c[anula"'7#6}7@(:[&)#17"'3#6]67'
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5 Four and More Qubits

In the cases of 2 and 3 qubits it is fairly clear what the maximally entangled
states should be or at least there are just a few candidates for that honor. We
will see that there is an immense variety of states that are highly entangled in
the case of 4 qubits. This and the calculation of Hilbert series for measures of
entanglement (see subsection 5.2) indicate that the search for all measures of
entanglement or the complete description of the orbit structure for arbitrary
numbers of qubits will be so hard and complicated as to become useless.
However the case of 4 qubits gives some indications of how to find more
invariants. Also, methods similar to the Kempf-Ness theorem can be used to
prove uniqueness theorems (for example the theorem of Rains [R] that implies
that the 5 bit error correcting code we discussed earlier is unique up to local
transformations).
As it turns out the orbit structure under

G = SL(2,C)xSL(2,C)x SL(2,C)x SL(2,C)

on C? ® C?> ® C?> ® C? can be determined using the results of Kostant
and Rallis [KR]. Since it fits in their theory in case of the symmetric pair
(S0(4,4),50(4) x SO(4)). We will now describe the outgrowth of this theory
purely in terms of qubits.

5.1 Four Qubits

We are therefore analyzing the action of G = SL(2) x SL(2) x SL(2) x SL(2)
on the space V = C2 ® C? @ C? ® C? via the tensor product action

(91,92, 93,94) (V1 ® V2 ® V3 ® V1) = G101 ® GoV2 ® g3U3 @ gaUs

We first note that if H = SL(2) x SL(2) and if W = C? ® C? and if we
have H act on W by the tensor product action then there is a H-invariant
non-degenerate symmetric bilinear form, (...,...), on W given as follows

wRw,z®y)=w,z)w(w,y).

Here w((z1,y1), (z2,y2)) = T1y2 — x2y1. This form allows us to define a linear
map, T, of V onto End(W) in the following way

T(v1 ® vg ® v3 ® vg) (W1 ® wa) = w(vs, wr)w(vy, Wa)vy ® Va.

We look upon G as H x H. Thus if g = (hy, h2) then
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T(gv)(w) = T (v)(hy 'w).

If A€ End(W) then we define A# by (Awy,ws) = (w1, A#*ws). We note that
if h € H then h#* = h~!. This implies that

T(gv)T(gv)* = T (v)hy ' (M T(v)hy 1)*
= T (v)hy *heT(v)#*hit = by T(v)T (v)#*hit.

We therefore have invariants fo;(v) = tr((T(v)T(v)#)7), j = 1,2,... and
g4(v) = det(T'(v)).

Theorem 8. The ring of invariants under the action of G on V is generated
by the algebraically independent elements fo, fa, g4, f6.

The following discussion gives a sketch of a proof.
We will use qubit notation for elements of V. Thus V has a basis consisting
of elements |igiiiziz) with i; =0,1. We set

vy = %(|0000> +[1111) 4 |0011) + |1100)),
vy = %(|0000> +[1111) — [0011) — [1100)),
vs = (1010 + 0101) + 0110) + [1001)),
vy = %(|1010> +1(0101) — |0110) — |1001}).

These states can be described in terms of the Bell states for 2 qubits. Let
_ 001 g e = J0DE0)
V2 * V2

VI = U QUyp, V2 =U_ QU_, V3 =Vy QVUy, Vg =V_ QU_.

We note that if v = 2101 + 2209 + 23V3 + 2404 then

T1—T2 T1+xo
2 xT Oa: xOer 2
4—L3 __Z3 4
Twy=| Y .2 3 Y
0 _ T3+®T4 Ta—x3 0
T1+x 2 2 ri1+x
Z1+To Z1t+@o
2 0 0 2
Hence
_ 27
foj(v) =Y
and

94(v) = T1T22324.
We note that this implies that the functions fa, f4, g4, f¢ are algebraically
independent. Set a = {v = z1v1 + x2v2 + 23v3 + T4v4lz; € C} and o =
{v = z1v1 + @202 + 23V3 + Tavalx; # Ex; for i # j}. One can check that
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the map G x o’ — V given by g,v — gv is regular. Furthermore, if z € o
then the set of ¢ € G such that gr = =z is finite. Since dimG = 12 and
dima = 4 we see that if f is a G invariant polynomial then f is completely
determined by its restriction to a (since Gg’ has interior). We also note that
if N = {g € G|ga = a} then the group W = N|, is the subgroup of the group
generated by the linear maps given by the permutations of vy, v, v3,v4 and
those that involve an even number of sign changes. For example,

01 10 01 10
10[7]01]’]40]7|01
corresponds to v| — v3, V9 — U4, V3 — V1, Vg — Vs,

1 11 1 11 1 11 1 11
CARH I RN E I EY)
corresponds to v — v1,v3 — —v3,U3 — —Vg,U4 — v4. Thus W is the
subgroup of the group of signed permutations with an even number of sign
changes. One can check directly that every invariant under W is a polynomial
in (f2)ja> (f4)ja> (94)}a,(f6)ja This completes the sketch of the proof of the
theorem.

Remark 9. This result is an explicit form of the Chevalley restriction theorem
for the group SO(4,4).

We will now relate the space a to the orbit structure. For this we need
another construct. If v,w € C? then we write vw for the product of v, w in
S2(C?). We set

[u1 ® uz ® uz ® ug, w1 ® wa @ wz @ wyl; =

Hw(uj,wj) ww;, 1 =1,2,3,4.
J#i

We say that v,w € V commute if [v,w], = 0 for i = 1,2,3,4. We note
that [v;,v] = 0 for 4,4,k = 1,2,3,4. We also observe that if v,w € V and
g = (91,-..,94) € G then [gv,gw]; = gi[v, w]; with the latter given by the
action of SL(2) on S?(C?). If v € V we will say that v is nilpotent if T'(v)T (v)#
is nilpotent (that is, some power of T'(v)T'(v)# is 0). This is the same as saying
that fo;(v) =0 for all j =1,2,.... Hilbert’s criterion for this condition is

Theorem 10. v is nilpotent if and only if there is a rational homomorphism,
@, of the group C* = {z € C|z # 0} into G such that lim,_,o ¢(z)v = 0. We
note that the action of G stabilizes the set of nilpotent elements.

If v eVset G, ={g € Glgv = v}. We can now state the basic result
on the orbit structure of G on V. We will call an element of Ga semi-simple.
Then the Jordan decomposition of [KR] implies
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Theorem 11. An element v € V is semi-simple if and only if Gv is closed.
Let v be an element of V' then v = s + n with s semi-simple and n nilpotent
such that [s,n]; = 0 for i = 1,2,3,4. If s,s" are semi-simple and n,n’ are
nilpotent and commute with s, s’ respectively then s +n = s’ +n’ if an only
ifs=s andn=n'.Ifg € G, v € aand gv € a then there exists w € W
such that wv = gv. If s € a and n,n’ € V are nilpotent and commute with s
then if there exists g € G such that g(s+mn) = s+n' then there exists h € Gy
such that hn = n'. Finally, if s € a and if Ny = {v € V|v is nilpotent and
commutes with s} then Ny consists of a finite number of G4 orbits.

We will next give a quantitative version of this theorem. We will first
establish a bit more terminology.

We will say that a nilpotent element, n, is regular if setting U=T(n)T'(n)#,
R =T(n)* then R, RU+UR, RU?+U?R, RU® +U?R are linearly indepen-
dent operators. A family of such examples is

@0011) + b]0100) + ¢|1001) + d |1010)

with abed # 0. It is easily seen that all of the regular elements of the above
form are in the G orbit of the element with a,b,c,d all equal to 1. Let us
call this element n,. It turns out that there are 4 distinct regular nilpotent
orbits. There are 20 distinct nilpotent orbits. The general theory also allows
us to determine the general orbits. The number of different “types” of orbits
is 90. The term “type” will become clear in the course of the discussion below
leading to an explanation of the quantitative statement.

For each i = 1,2,3,4 we define ¢; € V* by ¢;(v;) = 0;;. Let & = {£(e; +
gl <i<j<4tU{e;—¢j|l <i#j <4} Set A={a; =¢1 —e2,00 =
€9 — 3,3 = €3 — €4,04 = €3 + £4}. If s € a then we define ¢, = {«a €
®@|a(s) = 0}. One can show that if s € a then there exists w € W such that
Dys = PN spanz(AND,,s). The main theorem implies that we need only look
at elements s satisfying

&, = DN spang (AN Dy).
Here are the possibilities with |A N @] < 1.

AND, =0, s =101 + Tov2 + 2303 + T4y, T; # ta; for all i # j,
AN®; ={a}, s =x1(v1 +v2) + 2303 + zavs, x; # ta; for all i # j,
AND, ={a}, s =x101 + 22(v2 + v3) + z4v4, x; # *a; for all i # 7,
AND, ={as}, s =x101 + 2202 + x3(v3 + v4), x; # £x; for all i # 7,
AND, ={ou}, s =x101 + T2v2 + x3(v3 — v4), x; # La; for all i # j.
We note that the permutation (123) maps the set {s|s = z1(v1 4+ v2) + 2303 +
x4y, x; # Fa;} for all @ # j bijectively onto the set {s|s = z1v1 + z2(ve +

v3)+x4v4, T; # L for all ¢ # j}. Similarly, there is a permutation that maps
the set indicated by AN @, = {as} onto the set indicated by AN &, = {as}.
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Finally, the sign change vy — wvi,v9 — —v9,v3 — v3,v4 — —vy takes the
set indicated by AN @, = {az} onto the set indicated by AN &, = {au}.
Thus by the basic theorem we need only consider the first two in our list. For
|AN®;| > 2 we will only list the cases up to the action of signed permutations
involving an even number of sign changes. Here are all of the examples

1. AND, =10, s = x101 + 2202 + 2303 + T4v4, z; # £, for all ¢ # j.

2. ANDs = {a1}, s =x1(v1 +v2) + 303 + 2404, x; # Ea; for all ¢ # j.

3. AN®, ={aj,as}, s=2x1(v) +v2 + v3) + T4vs4, T F# Ta4.

4. ANP; ={ag,as}, s =x1(v1 +v2) + x3(vs + v4), 21 # Las.

5. AN®, ={ai, a4}, s=x1(v1 +v2) + x3(v3 —v4), 21 # Lx3.

6. AND, = {a1,2,a3}, s =x1(v1 +v2 + v3 + v4), 1 # 0.

7. AN @s = {Oél,ag,()é4}, S = 1171(1}1 —+ vy +v3 — U4), T 7& 0.

8. AN®; ={ag,a3,a4}, s = w101, 1 # 0.

9. ANP, ={ay,as,04}, s =x1(v1 + v2), 21 #0.

10. AN®; = {ay, a2, a3,04}, s =0.

We now count the number of GG, orbits in Ny in each of the 10 cases above.
Case 1 yields 1 since Ny = {0}. Case 2 yields 2. Case 3 yields 3. Cases 4 and
5 yield 8. Cases 6, 7 and 8 yield 7. Case 9 yields 27. Case 10 yields 20. The
total is our promised 90.

Here are some examples. The extremes in case 10 of the list involving the
non-zero orbits are the 4 regular nilpotent orbits and the orbit of product
states

{Ul QU2 @ us @ U4‘ui eC?- {O}}

We now look at the so called WHZ state. This is (up to normalization) s =
|0000) + |1111) = vy + vo. It appears in case 9. Thus there are 26 additional
orbits with s-component the WHZ state. Here is how you find them. We note
that

G = a1 0 a2 0 as 0 ay 0 | _q
° Oafl ’ 0(151 ’ Oagl 1o a;l a102.a4304 =

The space of all elements v € V such that [s,v]; = 0 for all 4 is spanned by s
and
{‘0’0717]‘>’|O7 ]‘70’ 1>7|170507 1>7|17O7]‘70>’|1’ 17050>}'

Let
S1=1{[0,0,1,1),[1,1,0,0)},
Sy =1{[0,1,0,1),[1,0,1,0)},
S3 =1{]1,0,0,1),]0,1,1,0)}.

Then the orbits corresponding to s are the orbits through s+ ZjeJ n; where
J is a subset of {1,2,3} and n; € S;. There are 27 such orbits. The orbits
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with minimal stability groups are the ones corresponding to |J| = 3. There
are 8 of them.
We note that for 2 and 3 qubits the state

most entangled. In the case of 4 qubits this state is just “1"’7”"‘ and so it is not

W was arguably the

even in a’.

This discussion indicates that the measures of entanglement for 4 qubits
will form a complicated algebra. One useful invariant of such an algebra is the
Hilbert series.

5.2 Some Hilbert Series of Measures of Entanglement

If V is a real vector space then we set P (V') equal to the complex vector space
of all polynomials on V' that are homogeneous of degree j. If W is a complex
vector space, then P%(W) = PI(V) where V is W as a real vector space. We
say that a subalgebra, A, of (Pﬂ%(W) is homogeneous if it is the direct sum of
Al = T{Q(W) NA. If A is a homogeneous subalgebra of Pg(W) then the formal
power series
ha(q) = qu dim A’
j=0
is called the Hilbert series of A.
The results we have described for 2 and 3 qubits imply that

1
e = (= gy

and
B A+ )+ 4%
Pr(C2RC2RC2)K — (1 _ q2)(1 _ q4)6'

As we predicted the case of 4 qubits is much more complicated. Here is
the series (see [W])

Numerator: 1+ 3¢* + 20¢% + 76¢® + 219¢'° 4 654¢'2 + 1539¢** + 3119¢'6+

5660¢'® + 9157¢%° + 12876¢%2 + 16177¢** + 18275¢%0 + 18275¢*8 +

16177¢%° 4+ 12876432 + 9157¢>* + 5660436 + 3119¢38 + 1539¢°+

654q42 +219q44 +76q46 +20q48 +3q50 +q54

Denominator: (1 — ¢%)3(1 — ¢*)*(1 — ¢%)S.

5.3 A Measure of Entanglement for n Qubits

In this subsection we will describe a specific measure of entanglement intro-
duced in [M-W2] that has been used experimentally as test of entanglement.
We will give a formula for it in terms of representation theory and show how
it can be slightly modified to be an entanglement monotone.

Let V = C?*®---®C? n-fold product. We look upon V@V as (C? ® C?) ®
- (C?®C?). Let
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S:C?®C%— S%(C?)
and
A:C*eC*—C*AC?

be the canonical orthogonal projections. If ' C {1,...,n} then we define pp
to be the product
Ri® R,

with R; = Aifi € F and R; = S otherwise. Then if v € V we have
VRV = Z pr(v @ ).

|F| even
The pg are orthogonal projections so we have in particular
4 2
ll*= > lprlwev)’.
|F| even
We set
4 2
T(v) = [lv]I” = llpa(v @ 0)[|”.

The following result is not completely obvious. We will sketch a reduction to
the same assertion for another measure of entanglement.

Theorem 12. A state v € V is a product state if and only if T(v) = 0.

This measure of entanglement is related to one denoted @ in [MW?2] (they
are the same for 2 and 3 qubits) and which was defined as follows. If 0 < j <

n—1
N=2"and j = Y jm2™ then if 0 < i < n define ;(j) = Y. jm2™+
m=0

0<m<i
Yo gm2m L Ifu= Y wjl|j) then we set v;o= > v;|t;(4)) and v;; =
i<m<n 0<j<N ji=0
> v [ti(j)). Thus if
ji=1

. |111) 4-]001) + [010) + |100)
B 2

then
|01) + |10) _100) +[11)

V2,0 = Vg1 =
2 ’ 2

n—1
We set Q(v) = 3 |lvio Avia|®. Here in W @ W, u Aw = LW wBL and we
i=0

use the tensor product inner product. We note that (%) = %

Q (W) = 1. One can show that if v € ®" C? then

and

V3

NE

QW) =3k Y lprlve ).

k=1 |F|=2k
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We note that in [MW2] we proved the (relatively easy) result that the
Theorem above is true for @ replacing 7. Since Q(v) = 0 if and only if
|lpr (v ®v)]|* = 0 for all |F| > 0 and T has the same property. Hence 7'(v) = 0
if and only if Q(v) = 0.

In a forthcoming article we will prove that 1" is an entanglement monotone.
This essentially means that quantum operations (such as measurements and
local transformations) cannot increase its value. This condition is sometimes
included in the definition of a measure of entanglement.
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