Skip to main content

Amenability and Margulis Super-Rigidity

  • Chapter
Representation Theory and Complex Analysis

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1931))

  • 2027 Accesses

Amenability was introduced in 1929 by J. von Neumann [vN29] for discrete groups, and in 1950 by M. Day [Day50] for general locally compact groups. Originating from harmonic analysis and representation theory, amenability extended to a well-established body of mathematics, with applications in: dynamical systems, operator algebras, graph theory, metric geometry,… One definite advantage of amenability for groups is the equivalence of various, apparently remote, characterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Bekka, P. de la Harpe and A. Valette. Kazhdan’s Property (T). Book to appear, Cambridge Univ. Press, 2008.

    Google Scholar 

  2. B. Bekka and M. Mayer. Ergodic theory and topological dynamics of group actions on homogeneous spaces. Cambridge Univ. Press, London Math. Soc. Lect. Note Ser. 269, 2000.

    Google Scholar 

  3. A. Borel. Density properties for certain subgroups of semi-simple groups without compact components. Ann. Math., 72:62-74, 1960.

    Article  MathSciNet  Google Scholar 

  4. A. Borel. Introduction aux groupes arithmétiques. Hermann, Actu. sci. et industr. 1341, 1969.

    MATH  Google Scholar 

  5. R. Brooks The fundamental group and the spectrum of the Laplacian. Comment. Math. Helv. 56:581-598, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Corlette. Archimedean superrigidity and hyperbolic rigidity. Ann. of Math., 135:165-182, 1992.

    Article  MathSciNet  Google Scholar 

  7. M. Day. Amenable groups. Bull. Amer. Math. Soc., 56: 46, 1950.

    Google Scholar 

  8. P. Deligne and G.D. Mostow. Monodromy of hypergeometric functions and non-lattice integral monodromy. Publ. Math. IHES, 63:5-89, 1986.

    MATH  MathSciNet  Google Scholar 

  9. H. Furstenberg A Poisson formula for semisimple Lie groups Annals of Math. 77: 335-383, 1963.

    MathSciNet  Google Scholar 

  10. H. Furstenberg. Boundary theory and stochastic processes in homoge- neous spaces. in: Harmonic analysis on homogeneous spaces, Symposia on Pure and Applied Math., Williamstown, Mass. 1972, Proceedings, 26: 193-229, 1973.

    MathSciNet  Google Scholar 

  11. M. Gromov and I. Piatetski-Shapiro. Nonarithmetic groups in Lobachev- sky spaces. Publ. Math. IHES, 66:93-103, 1988.

    MATH  MathSciNet  Google Scholar 

  12. M. Gromov and R. Schoen. Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Publ. Math. IHES, 76:165-246, 1992.

    MATH  MathSciNet  Google Scholar 

  13. R.E. Howe and C.C. Moore. Asymptotic properties of unitary represen- tations. Journal of Functional Analysis, 32:72-96, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  14. B.O. Koopman. Hamiltonian systems and transformations in Hilbert spaces. Proc. Nat. Acad. Sci. (USA), 17:315-318, 1931.

    Article  Google Scholar 

  15. G.A. Margulis. Discrete subgroups of semisimple Lie groups. Springer- Verlag, Ergeb. Math. Grenzgeb. 3 Folge, Bd. 17, 1991.

    Google Scholar 

  16. C.C. Moore. Ergodicity of flows on homogeneous spaces. Amer. J. Math., 88:154-178, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  17. G.D. Mostow. Strong rigidity of locally symmetric spaces. Annals of Math. studies 78, Princeton Univ. Press, 1973.

    Google Scholar 

  18. J. von Neumann. Zur allgemeinen Theorie des Masses. Fund. Math., 13:73-116, 1929.

    MATH  Google Scholar 

  19. H. Reiter. Investigations in harmonic analysis. Trans. Amer. Math. Soc., 73:401-427, 1952.

    Article  MATH  MathSciNet  Google Scholar 

  20. H. Reiter. Sur la propriété (P1 ) et les fonctions de type positif. C.R.Acad. Sci. Paris, 258A:5134-5135, 1964.

    MathSciNet  Google Scholar 

  21. W. Rudin. Functional analysis. McGraw Hill, 1973.

    Google Scholar 

  22. A. Weil. L’intégration dans les groupes topologiques et ses applications. Hermann, Paris, 1965.

    Google Scholar 

  23. D. Witte-Morris. Introduction to arithmetic groups. Pre-book, February 2003.

    Google Scholar 

  24. R.J. Zimmer. Induced and amenable actions of Lie groups. Ann. Sci. Ec. Norm. Sup. 11:407-428, 1978.

    MATH  MathSciNet  Google Scholar 

  25. R.J. Zimmer. Ergodic theory and semisimple groups. Birkhauser, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Valette, A. (2008). Amenability and Margulis Super-Rigidity. In: Tarabusi, E.C., D'Agnolo, A., Picardello, M. (eds) Representation Theory and Complex Analysis. Lecture Notes in Mathematics, vol 1931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76892-0_4

Download citation

Publish with us

Policies and ethics