
3

The Geometric Setting and an Alternative

We go back to equation

ut − div |∇u|p−2∇u = 0 (3.1)

and focus on the degenerate case p > 2. Results on the continuity of solutions
at a point consist basically in constructing a sequence of nested and shrinking
cylinders with vertex at that point, and in showing that the essential oscilla-
tion of the solution in those cylinders converges to zero as the cylinders shrink
to the point.

•
(x0, t0)

This iterative procedure is based on energy and logarithmic estimates and
works well with the standard parabolic cylinders if these estimates are homo-
geneous. The idea goes back to the work of De Giorgi, Moser and the Russian
school (cf. [10], [42] and [37]), as explained in the introduction.

For degenerate or singular equations, the energy and logarithmic estimates
are not homogeneous, as we have seen in the previous chapter. They involve
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integral norms corresponding to different powers, namely the powers 2 and p.
To go about this difficulty, the equation has to be analyzed in a geometry
dictated by its own degenerate structure. This amounts to rescale the standard
parabolic cylinders by a factor that depends on the oscillation of the solution.
This procedure of intrinsic scaling, which can be seen as an accommodation
of the degeneracy, allows for the restoration of the homogeneity in the energy
estimates, when written over the rescaled cylinders. We can say heuristically
that the equation behaves in its own geometry like the heat equation. Let us
make this idea precise.

3.1 A Geometry for the Equation

The standard parabolic cylinders

(x0, t0) + Q(R2, R)

reflect the natural homogeneity between the space and time variables for the
heat equation. Indeed, if u(x, t) is a solution, then u(εx, ε2t), ε ∈ R, is also a
solution, i.e., the equation remains invariant through a similarity transforma-
tion of the space-time variables that leaves constant the ratio |x|2/t.

When dealing with the degenerate PDE (3.1), one might think, at first
sight, that the adequate cylinders to perform the iterative method described
above were cylinders of the form Q(Rp, R), that correspond to the similarity
scaling |x|p/t of the equation. But a more careful analysis shows that this is
not to be expected. Indeed, it would work for the homogeneous equation

(up−1)t − div |∇u|p−2∇u = 0

but not for the inhomogeneous equation (3.1). By analogy, and in order to
gain some hindsight on how to proceed, we recast (3.1) in the form

(u

c

)2−p

(up−1)t − div |∇u|p−2∇u = 0,

for an appropriate constant c. This shows that the homogeneity can be re-
covered at the expense of a scaling factor, that depends on the solution itself
and, modulo a constant, looks like u2−p. The following is a sophisticated and
rigorous way of implementing this heuristic reasoning.

Consider 0 < R < 1, sufficiently small so that Q(R2, R) ⊂ ΩT , and define
the essential oscillation of the solution u within this cylinder

ω := ess osc
Q(R2,R)

u = µ+ − µ−,

where
µ+ := ess sup

Q(R2,R)

u and µ− := ess inf
Q(R2,R)

u.
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Then construct the rescaled cylinder

Q(a0R
p, R) = KR(0) × (−a0R

p, 0) , with a0 =
( ω

2λ

)2−p

, (3.2)

where λ > 1 is to be fixed later depending only on the data (see (4.15)).
Note that for p = 2, i.e., in the non-degenerate case, these are the standard
parabolic cylinders reflecting the natural homogeneity between the space and
time variables.

We will assume, without loss of generality, that

R <
ω

2λ
. (3.3)

Indeed, if this does not hold, we have ω ≤ 2λR and there is nothing to prove
since the oscillation is then comparable to the radius. Now, (3.3) implies the
inclusion

Q(a0R
p, R) ⊂ Q(R2, R)

and the relation

ess osc
Q(a0Rp,R)

u ≤ ω (3.4)

which will be the starting point of an iteration process that leads to the
main results. The schematics below give an idea of the stretching procedure,
commonly referred to as accommodation of the degeneracy (the pictures are
distorted on purpose in the t-direction).

•
(0, 0) R

Rp

Q(Rp, R)

Q(R2, R)

•
(0, 0) R

a0Rp

Q(a0Rp, R)

Q(R2, R)
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Note that we had to consider the cylinder Q(R2, R) and assume (3.3), so that
(3.4) would hold for the rescaled cylinder Q(a0R

p, R). This is in general not
true for a given cylinder, since its dimensions would have to be intrinsically
defined in terms of the essential oscillation of the function within it.

We now consider subcylinders of Q(a0R
p, R) of the form

(0, t∗) + Q(θRp, R) , with θ =
(ω

2

)2−p

(3.5)

that are contained in Q(a0R
p, R) provided

(
2p−2 − 2λ(p−2)

) Rp

ωp−2
< t∗ < 0. (3.6)

Once λ is chosen, we may redefine it, putting

λ∗ =
[p − 1]
p − 2

[λ] + 1 > λ,

and assume that

N0 =
a0

θ
=
( ω

2λ

ω
2

)2−p

= 2 (λ−1)(p−2) (3.7)

is an integer. Thus, we consider Q(a0R
p, R) as being divided in subcylinders,

all alike and congruent with Q(θRp, R):

•
(0, 0)

•
(0, t∗)

θRp

Q(a0Rp, R)

(0, t∗) + Q(θRp, R)

The proof of the Hölder continuity of a weak solution u now follows from
the analysis of two complementary cases. We briefly describe them in the
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following way: in the first case we assume that there is a cylinder of the type
(0, t∗)+Q(θRp, R) where u is essentially away from its infimum. We show that
going down to a smaller cylinder the oscillation decreases by a small factor
that we can exhibit. If that cylinder can not be found then u is essentially
away from its supremum in all cylinders of that type and we can compound
this information to reach the same conclusion as in the previous case. We
state this in a precise way.

For a constant ν0 ∈ (0, 1), that will be determined depending only on the
data, either

The First Alternative:

there is a cylinder of the type (0, t∗) + Q(θRp, R) for which
∣∣{(x, t) ∈ (0, t∗) + Q(θRp, R) : u(x, t) < µ− + ω

2

}∣∣
|Q(θRp, R)| ≤ ν0 (3.8)

or this does not hold. Then, since µ+ − ω
2 = µ− + ω

2 , it holds

The Second Alternative:

for every cylinder of the type (0, t∗) + Q(θRp, R)
∣∣{(x, t) ∈ (0, t∗) + Q(θRp, R) : u(x, t) > µ+ − ω

2

}∣∣
|Q(θRp, R)| < 1 − ν0. (3.9)

3.2 The First Alternative

We start the analysis assuming the first alternative holds.

Lemma 3.1. Assume (3.3) is in force. There exists a constant ν0 ∈ (0, 1),
depending only on the data, such that if (3.8) holds for some t∗ as in (3.6)
then

u(x, t) > µ− +
ω

4
, a.e. in (0, t∗) + Q

(
θ

(
R

2

)p

,
R

2

)
.

Proof. Take the cylinder for which (3.8) holds and assume, by translation,
that t∗ = 0. Let

Rn =
R

2
+

R

2n+1
, n = 0, 1, . . . ,

and construct the family of nested and shrinking cylinders Q(θRp
n, Rn). Con-

sider piecewise smooth cutoff functions 0 ≤ ζn ≤ 1, defined in these cylinders,
and satisfying the following set of assumptions:



26 3 The Geometric Setting and an Alternative

ζn = 1 in Q
(
θRp

n+1, Rn+1

)
; ζn = 0 on ∂pQ (θRp

n, Rn) ;

|∇ζn| ≤
2n+1

R
; 0 ≤ (ζn)t ≤

2p(n+1)

θRp
.

Observe that the family of cylinders starts with Q(θRp, R) and converges to
Q
(
θ
(

R
2

)p
, R

2

)
and that the bounds on the gradient and the time derivative

of ζn are strictly related to the dimensions of the cylinders.
Write the energy inequality (2.6) over the cylinders Q (θRp

n, Rn), for the
functions (u − kn)−, with

kn = µ− +
ω

4
+

ω

2n+2
, n = 0, 1, . . . ,

and ζ = ζn. They read, taking into account that ζn vanishes on ∂pQ (θRp
n, Rn),

sup
−θRp

n<t<0

∫
KRn×{t}

(u − kn)2−ζp
n dx +

∫ 0

−θRp
n

∫
KRn

|∇(u − kn)−ζn|p dx dt

≤ C

∫ 0

−θRp
n

∫
KRn

(u − kn)p
−|∇ζn|p dx dt + p

∫ 0

−θRp
n

∫
KRn

(u − kn)2−ζp−1
n (ζn)t dx dt

≤ C
2p(n+1)

Rp

{∫ 0

−θRp
n

∫
KRn

(u − kn)p
− dx dt +

1
θ

∫ 0

−θRp
n

∫
KRn

(u − kn)2− dx dt

}
.

Next, observe that either (u − kn)− = 0 or

(u − kn)− = (µ− − u) +
ω

4
+

ω

2n+2
≤ ω

2
,

and thus, since 2 − p < 0,

(u − kn)2− = (u − kn)2−p
− (u − kn)p

−

≥
(ω

2

)2−p

(u − kn)p
−

= θ (u − kn)p
−,

recalling that θ =
(ω

2

)2−p

. We obtain, homogenizing the powers in the inte-
gral norms,

θ sup
−θRp

n<t<0

∫
KRn×{t}

(u − kn)p
−ζp

n dx +
∫ 0

−θRp
n

∫
KRn

|∇(u − kn)−ζn|p dx dt

≤ C
2p(n+1)

Rp

{(ω

2

)p

+
1
θ

(ω

2

)2
}∫ 0

−θRp
n

∫
KRn

χ{(u−kn)−>0} dx dt,

where χE denotes the characteristic function of the set E. Finally, divide
throughout by θ to get
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sup
−θRp

n<t<0

∫
KRn×{t}

(u − kn)p
−ζp

n dx +
1
θ

∫ 0

−θRp
n

∫
KRn

|∇(u − kn)−ζn|p dx dt

≤ C
2p(n+1)

Rp

(ω

2

)p 1
θ

∫ 0

−θRp
n

∫
KRn

χ{(u−kn)−>0} dx dt. (3.10)

The next step, in which the intrinsic geometric framework is crucial, is to
perform a change in the time variable, putting t = t/θ, and to define

u(·, t) := u(·, t) , ζn(·, t) := ζn(·, t).

We obtain the simplified inequality

∥∥(u − kn)− ζn

∥∥p

V p(Q(Rp
n,Rn))

≤ C
2pn

Rp

(ω

2

)p
∫ 0

−Rp
n

∫
KRn

χ{(u−kn)−>0} dx dt,

(3.11)
which reveals the appropriate functional framework.

To conclude, define, for each n,

An =
∫ 0

−Rp
n

∫
KRn

χ{(u−kn)−>0} dx dt

and observe that

1
2p(n+2)

(ω

2

)p

An+1 = |kn − kn+1|p An+1

≤ ‖(u − kn)−‖p
p,Q(Rp

n+1,Rn+1)

≤
∥∥(u − kn)−ζn

∥∥p

p,Q(Rp
n,Rn)

≤ C
∥∥(u − kn)− ζn

∥∥p

V p(Q(Rp
n,Rn))

A
p

d+p
n

≤ C
2pn

Rp

(ω

2

)p

A
1+ p

d+p
n . (3.12)

[The first two inequalities follow from the definition of An and the fact that
kn+1 < kn; the third inequality is a consequence of Theorem 2.11 and the last
one follows from (3.11).] Next, define the numbers

Xn =
An

|Q(Rp
n, Rn)| ,

divide (3.12) by
∣∣Q(Rp

n+1, Rn+1)
∣∣ and obtain the recursive relation

Xn+1 ≤ C 4pn X
1+ p

d+p
n ,

for a constant C depending only upon d and p. By Lemma 2.9 on fast geometric
convergence, if

X0 ≤ C− d+p
p 4−

(d+p)2

p =: ν0 (3.13)
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then
Xn −→ 0. (3.14)

But (3.13) is precisely our hypothesis (3.8), for the indicated choice of ν0, and
from (3.14) we immediately obtain, returning to the original variables,

∣∣∣
{

(x, t) ∈ Q
(
θ(R

2 )p, R
2

)
: u(x, t) ≤ µ− +

ω

4

}∣∣∣ = 0.

��

Remark 3.2. The constant ν0, that appears in the formulation of the alterna-
tive, is now fixed by (3.13). Note that indeed ν0 ∈ (0, 1).

3.3 The Role of the Logarithmic Estimates:
Expansion in Time

Our next aim is to show that the conclusion of Lemma 3.1 holds in a full
cylinder Q(τ, ρ). The idea is to use the fact that at the time level

−t̂ := t∗ − θ
(

R
2

)p
(3.15)

the function u(x,−t̂ ) is strictly above the level µ− + ω
4 in the cube KR

2
, and

look at this time level as an initial condition to make the conclusion hold up
to t = 0 in a smaller cylinder, as sketched in the following diagram:

•
(0, 0)

•
(0, t∗)

θRp−−t̂

•
(0, 0)

•
(0, t∗)

θRp−−t̂

As an intermediate step we need the following lemma, in which the use of the
logarithmic estimates is crucial.
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Lemma 3.3. Assume (3.8) holds for some t∗ as in (3.6) and that (3.3) is in
force. Given ν∗ ∈ (0, 1), there exists s∗ ∈ N, depending only on the data, such
that

∣∣∣
{

x ∈ KR
4

: u(x, t) < µ− +
ω

2s∗

}∣∣∣ ≤ ν∗

∣∣∣KR
4

∣∣∣ , ∀t ∈ (−t̂, 0).

Proof. We use the logarithmic estimate (2.8) applied to the function (u−k)−
in the cylinder Q(t̂, R

2 ), with the choices

k = µ− +
ω

4
and c =

ω

2n+2
,

where n ∈ N will be chosen later. In this cylinder, we have

k − u ≤ H−
u,k = ess sup

Q(t̂, R
2 )

∣∣∣∣
(
u − µ− − ω

4

)
−

∣∣∣∣ ≤ ω

4
. (3.16)

If H−
u,k ≤ ω

8 , the result is trivial for the choice s∗ = 3. Assuming H−
u,k > ω

8 ,

recall from section 2.3 that the logarithmic function ψ−(u) is defined in the
whole of Q(t̂, R

2 ) and it is given by

ψ−
{H−

u,k,k, ω

2n+2 }(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln

{
H−

u,k

H−
u,k + u − k + ω

2n+2

}
if u < k − ω

2n+2

0 if u ≥ k − ω
2n+2 .

From (3.16), we estimate

ψ−(u) ≤ n ln 2 since
H−

u,k

H−
u,k + u − k + ω

2n+2

≤
ω
4
ω

2n+2

= 2n (3.17)

and ∣∣∣(ψ−)′ (u)
∣∣∣2−p

=
(
H−

u,k + u − k + c
)p−2

≤
(ω

2

)p−2

. (3.18)

Now observe that, as a consequence of Lemma 3.1, we have u(x,−t̂ ) > k in
the cube KR

2
, which implies that

[
ψ−(u)

]
(x,−t̂) = 0 , x ∈ KR

2
.

Choosing a piecewise smooth cutoff function 0 < ζ(x) ≤ 1, defined in KR
2

and
such that

ζ = 1 in KR
4

and |∇ζ| ≤ 8
R

,
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inequality (2.8) reads

sup
−t̂<t<0

∫
K R

2
×{t}

[
ψ−(u)

]2
ζp dx

≤ C

∫ 0

−t̂

∫
K R

2

ψ−(u)
∣∣∣(ψ−)′(u)

∣∣∣2−p

|∇ζ|p dx dt. (3.19)

The right hand side is estimated above, using (3.17) and (3.18), by

C n(ln 2)
(ω

2

)p−2
(

8
R

)p

t̂
∣∣∣KR

2

∣∣∣ ≤ C n 2λ(p−2)
∣∣∣KR

4

∣∣∣ ,

since, by (3.15),

t̂ ≤ a0R
p =

( ω

2λ

)2−p

Rp.

We estimate below the left hand side of (3.19) by integrating over the
smaller set

S =
{

x ∈ KR
4

: u(x, t) < µ− +
ω

2n+2

}
⊂ KR

2
,

and observing that in S, ζ = 1 and

H−
u,k

H−
u,k + u − k + ω

2n+2

is a decreasing function of H−
u,k because u− k + ω

2n+2 < 0. Thus, from (3.16),

H−
u,k

H−
u,k + u − k + ω

2n+2

≥
ω
4

ω
4 + u − k + ω

2n+2

=
ω
4

u − µ− + ω
2n+2

>
ω
4
ω

2n+1

= 2n−1

since u − µ− <
ω

2n+2
in S. Therefore,

[
ψ−(u)

]2 ≥
[
ln
(
2n−1

)]2
= (n − 1)2(ln 2)2 in S.

Combining these estimates in (3.19), we get
∣∣∣
{

x ∈ KR
4

: u(x, t) < µ− +
ω

2n+2

}∣∣∣ ≤ C
n

(n − 1)2
2λ(p−2)

∣∣∣KR
4

∣∣∣ ,

for all t ∈ (−t̂, 0), and to prove the lemma we choose

s∗ = n + 2 with n > 1 +
2C

ν∗
2λ(p−2).

��
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3.4 Reduction of the Oscillation

We now state the main result in the context of the first alternative.

Proposition 3.4. Assume (3.8) holds for some t∗ as in (3.6) and that (3.3)
is in force. There exists s1 ∈ N, depending only on the data, such that

u(x, t) > µ− +
ω

2s1+1
, a.e. in Q

(
t̂,

R

8

)
.

Proof. Consider the cylinder for which (3.8) holds, let

Rn =
R

8
+

R

2n+3
, n = 0, 1, . . .

and construct the family of nested and shrinking cylinders Q(t̂, Rn), where
t̂ is given by (3.15). Take piecewise smooth cutoff functions 0 < ζn(x) ≤ 1,
independent of t, defined in KRn

and satisfying

ζn = 1 in KRn+1 ; |∇ζn| ≤
2n+4

R
.

Write the local energy inequalities (2.6) for the functions (u − kn)−, in the
cylinders Q

(
t̂, Rn

)
, with

kn = µ− +
ω

2s1+1
+

ω

2s1+1+n
, n = 0, 1, . . . ,

s1 to be chosen, and ζ = ζn. Observing that, due to Lemma 3.1, we have

u(x,−t̂) > µ− +
ω

4
≥ kn in KR

2
⊃ KRn

,

which implies that

(u − kn)−(x,−t̂) = 0 in KRn
, n = 0, 1, . . . ,

the estimates read

sup
−t̂<t<0

∫
KRn×{t}

(u − kn)2−ζp
n dx +

∫ 0

−t̂

∫
KRn

|∇(u − kn)−ζn|p dx dt

≤ C

∫ 0

−t̂

∫
KRn

(u − kn)p
−|∇ζn|p dx dt

≤ C
2p(n+4)

Rp

∫ 0

−t̂

∫
KRn

(u − kn)p
− dx dt. (3.20)

From (3.15), we estimate

t̂ ≤ a0R
p =

( ω

2λ

)2−p

Rp,
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where a0 is defined in (3.2). From this,

(u − kn)2− ≥
( ω

2s1

)2−p

(u − kn)p
−

≥
(

2s1

2λ

)p−2
t̂

Rp
(u − kn)p

−

≥ t̂(
R
2

)p (u − kn)p
−,

provided s1 > λ + p
p−2 . Dividing now by

t̂

(R
2 )p

throughout (3.20) gives

sup
−t̂<t<0

∫
KRn×{t}

(u − kn)p
−ζp

n dx +

(
R
2

)p

t̂

∫ 0

−t̂

∫
KRn

|∇(u − kn)−ζn|p dx dt

≤ C
2pn

t̂

∫ 0

−t̂

∫
KRn

(u − kn)p
− dx dt.

The change of the time variable t = t
( R

2 )p

t̂
, along with defining the new

function
u(·, t) := u(·, t),

leads to the simplified inequality

‖(u − kn)− ζn‖p

V p(Q(( R
2 )p,Rn)) ≤ C

2pn

(R
2 )p

( ω

2s1

)p
∫ 0

−( R
2 )p

∫
KRn

χ{u<kn} dx dt.

Define, for each n,

An =
∫ 0

−( R
2 )p

∫
KRn

χ{(u−kn)−>0} dx dt.

By a reasoning similar to the one leading to (3.12), we obtain

1
2p(n+2)

( ω

2s1

)p

An+1 = |kn − kn+1|p An+1

≤ ‖(u − kn)−‖p

p,Q(( R
2 )p,Rn+1)

≤ ‖(u − kn)−ζn‖p

p,Q(( R
2 )p,Rn)

≤ C ‖(u − kn)− ζn‖p

V p(Q(( R
2 )p,Rn)) A

p
d+p
n

≤ C
2pn

(R
2 )p

( ω

2s1

)p

A
1+ p

d+p
n .



3.4 Reduction of the Oscillation 33

Next, define the numbers

Xn =
An∣∣Q (

(R
2 )p, Rn

)∣∣ ,

and divide the previous inequality by
∣∣Q (

(R
2 )p, Rn+1

)∣∣ to obtain the recursive
relations

Xn+1 ≤ C 4pn X
1+ p

d+p
n .

By Lemma 2.9 on fast geometric convergence, if

X0 ≤ C− d+p
p 4−

(d+p)2

p =: ν∗ ∈ (0, 1) (3.21)

then

Xn −→ 0. (3.22)

Apply Lemma 3.3 with such a ν∗ and conclude that there exists s∗ =: s1,
depending only on the data, such that

∣∣∣
{

x ∈ KR
4

: u(x, t) < µ− +
ω

2s1

}∣∣∣ ≤ ν∗

∣∣∣KR
4

∣∣∣ , ∀t ∈ (−t̂, 0),

which is exactly (3.21). Since (3.22) implies that An → 0, we conclude that

∣∣∣∣
{

(x, t) ∈ Q

((
R
2

)p
,
R

8

)
: u(x, t) ≤ µ− +

ω

2s1+1

}∣∣∣∣
=
∣∣∣∣
{

(x, t) ∈ Q

(
t̂,

R

8

)
: u(x, t) ≤ µ− +

ω

2s1+1

}∣∣∣∣ = 0.

��

We finally reach the conclusion of the first alternative, namely the reduc-
tion of the oscillation.

Corollary 3.5. Assume (3.8) holds for some t∗ as in (3.6) and that (3.3) is
in force. There exists a constant σ0 ∈ (0, 1), depending only on the data, such
that

ess osc
Q(θ( R

8 )p, R
8 )

u ≤ σ0 ω. (3.23)

Proof. By Proposition 3.4, there exists s1 ∈ N such that

ess inf
Q(t̂, R

8 )
u ≥ µ− +

ω

2s1+1
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and thus

ess osc
Q(t̂, R

8 )
u = ess sup

Q(t̂, R
8 )

u − ess inf
Q(t̂, R

8 )
u

≤ µ+ − µ− − ω

2s1+1

=
(

1 − 1
2s1+1

)
ω.

Since θ
(

R
8

)p ≤ t̂ = −t∗ + θ
(

R
2

)p
, with t∗ < 0, we have

Q

(
θ

(
R

8

)p

,
R

8

)
⊂ Q

(
t̂,

R

8

)
,

and the corollary follows with σ0 =
(
1 − 1

2s1+1

)
. ��




