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1 Sets of finite perimeter

Symmetrization is one of the most powerful mathematical tools with several
applications both in Analysis and Geometry. Probably the most remarkable
application of Steiner symmetrization of sets is the De Giorgi proof (see [14],
[25]) of the isoperimetric property of the sphere, while the spherical sym-
metrization of functions has several applications to PDEs and Calculus of
Variations and to integral inequalities of Poincaré and Sobolev type (see for
instance [23], [24], [19], [20]).

The two model functionals that we shall consider in the sequel are: the
perimeter of a set E in IRn and the Dirichlet integral of a scalar function
u. It is well known that on replacing E or u by its Steiner symmetral or its
spherical symmetrization, respectively, both these quantities decrease. This
fact is classical when E is a smooth open set and u is a C1 function ([22],
[21]). Moreover, on approximating a set of finite perimeter with smooth open
sets or a Sobolev function by C1 functions, these inequalities can be easily
extended by lower semicontinuity to the general setting ([19], [25], [2], [4]).
However, an approximation argument gives no information about the equality
case. Thus, if one is interested in understanding when equality occurs, one has
to carry on a deeper analysis, based on fine properties of sets of finite perimeter
and Sobolev functions.

Let us start by recalling what the Steiner symmetrization of a measurable
set E is. For simplicity, and without loss of generality, in the sequel we shall
always consider the symmetrization of E in the vertical direction. To this aim,
it is convenient to denote the points x in IRn also by (x′, y), where x′ ∈ IRn−1

and y ∈ IR. Thus, given x′ ∈ IRn−1, we shall denote by Ex′ the corresponding
one-dimensional section of E

Ex′ = {y ∈ IR : (x′, y) ∈ E} .

The distribution function µ of E is defined by setting for all x′ ∈ IRn−1
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µ(x′) = L1(Ex′) .

Here and in the sequel we denote by Lk the Lebesgue measure in IRk. Then,
denoting the essential projection of E by π(E)+ = {x′ ∈ IRn−1 : µ(x′) > 0},
the Steiner symmetral of E with respect to the hyperplane {y = 0} is the set

Es = {(x′, y) : x′ ∈ π(E)+, |y| < µ(x′)/2} .

Notice that by Fubini’s theorem we get immediately that µ is a Ln−1-
measurable function in IRn−1, hence Es is a measurable set in IRn and
Ln(E) = Ln(Es). Moreover, it is not hard to see that the diameter of E de-
creases under Steiner symmetrization, i.e., diam(Es) ≤ diam(E), an inequal-
ity which in turn implies ([1, Proposition 2.52]) the well known isodiametric
inequality

Ln(E) ≤ ωn

(
diam(E)

2

)n

,

where ωn denotes the measure of the unit ball in IRn.
Denoting by P (E) the perimeter of a measurable set in IRn, the following

result states that the perimeter too decreases under Steiner symmetrization.

Theorem 1.1. Let E ⊂ IRn be a measurable set. Then,

P (Es) ≤ P (E) . (1.1)

As we said before, inequality (1.1) is classic when E is a smooth set and can
be proved by a simple approximation argument in the general case of a set of
finite perimeter. However, following [9], we shall give here a different proof of
Theorem 1.1, which has the advantage of providing valuable information in
the case when (1.1) reduces to an equality.

Let us now recall the definition of perimeter. If E is a measurable set in
IRn and Ω ⊂ IRn is an open set, we say that E is a set of finite perimeter
in Ω if the distributional derivative of the characteristic function of E, DχE ,
is a vector-valued Radon measure in Ω, with finite total variation |DχE |(Ω).
Thus, denoting by (D1χE , . . . , DnχE) the components of DχE , we have that
for all i = 1, . . . , n and all test functions ϕ ∈ C1

0 (Ω)∫
Ω

χE(x)
∂ϕ

∂xi
(x) dx = −

∫
Ω

ϕ(x) dDiχE(x) . (1.2)

From this formula it follows that the total variation of DχE in Ω can be
expressed as

|DχE |(Ω) = sup
{ n∑

i=1

∫
Ω

ψi(x) dDiχE : ψ ∈ C1
0 (Ω; IRn), ‖ψ‖∞ ≤ 1

}
(1.3)

= sup
{∫

E

divψ(x) dx : ψ ∈ C1
0 (Ω; IRn), ‖ψ‖∞ ≤ 1

}
.



Geometrical Aspects of Symmetrization 157

Notice that, if E is a smooth bounded open set, equation (1.2) reduces to∫
E∩Ω

∂ϕ

∂xi
(x) dx = −

∫
∂E∩Ω

ϕ(x)νE
i (x) dHn−1(x) ,

where νE denotes the inner normal to the boundary of E. Here and in the
sequel Hk, 1 ≤ k ≤ n− 1, stands for the Hausdorff k-dimensional measure in
IRn. Thus, for a smooth set E,

DiχE = νE
i Hn−1 ∂E i = 1, . . . , n ,

|DχE |(Ω) = Hn−1(∂E ∩Ω) .

Last equation suggests to define the perimeter of E in Ω by setting P (E;Ω) =
|DχE |(Ω). More generally, if B ⊂ Ω is any Borel subset of Ω, we set

P (E;B) = |DχE |(B) .

If Ω = IRn, the perimeter of E in IRn will be denoted simply by P (E).
Notice that the last supremum in (1.3) makes sense for any measurable set E.
Indeed, if for some E that supremum is finite, then an application of Riesz’s
theorem on functionals on C0(Ω; IRn) yields that DχE is a Radon measure
and (1.3) holds. Thus, we may set for any measurable set E ⊂ IRn and any
open set Ω

P (E;Ω) = sup
{∫

E

divψ(x) dx : ψ ∈ C1
0 (Ω; IRn), ‖ψ‖∞ ≤ 1

}
. (1.4)

Clearly E a set of finite perimeter according to the definition given above if
and only if the right hand side of (1.4) is finite. Notice also that from (1.4)
it follows that if Eh is a sequence of measurable sets converging locally in
measure to E in Ω, i.e., such that χEh

→ χE in L1
loc(Ω), then

P (E;Ω) ≤ lim inf
h→∞

P (Eh;Ω) . (1.5)

Another immediate consequence of the definition of perimeter is that P (E;Ω)
does not change if we modify E by a set of zero Lebesgue measure. Moreover,
it is straightforward to check that

P (E;Ω \ ∂E) = |DχE |(Ω \ ∂E) = 0 ,

i.e., DχE is concentrated on the topological boundary of E.
Next example shows that in general DχE may be concentrated on a much
smaller set. Let us denote by Br(x) the ball with center x and radius r and
set E = ∪∞

i=1B1/2i(qi), where {qi} a dense sequence in IRn. Then E is an
open set of finite measure such that Ln(∂E) = ∞. However, E is a set of
finite perimeter in IRn. In fact, given ψ ∈ C1

0 (IRn; IRn) with ‖ψ‖∞ ≤ 1, by
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applying the classical divergence theorem to the Lipschitz open sets Ek =
∪k

i=1B1/2i(qi), with k ≥ 1, we have∫
E

divψ dx = lim
k→∞

∫
Ek

divψ dx = − lim
k→∞

∫
∂Ek

〈ψ, νEk〉 dHn−1

≤ lim
k→∞

Hn−1(∂Ek) ≤
∞∑

i=1

nωn

2i(n−1)
<∞ .

To identify the set of points where the measure “perimeter” P (E; ·) is con-
centrated, we may use the Besicovitch derivation theorem (see [1, Theorem
2.22]), which guarantees that if E is a set of finite perimeter in IRn, then for
|DχE |-a.e. point x ∈ supp|DχE | (the support of the total variation of DχE)
there exists the derivative of DχE with respect to |DχE |,

lim
r→0

DχE(Br(x))
|DχE |(Br(x))

= νE(x) , (1.6)

and that
|νE(x)| = 1 . (1.7)

The set of points where (1.6) and (1.7) hold is called the reduced boundary
of E and denoted by ∂∗E. If x ∈ ∂∗E, νE(x) is called the generalized inner
normal to E at x. Since from Besicovitch theorem we have that DχE =
νE |DχE | ∂∗E, formula (1.2) can be written as∫

E

∂ϕ

∂xi
dx = −

∫
∂∗E

ϕνE
i d|DχE | for all ϕ ∈ C1

0 (IRn) and i = 1, . . . , n .

(1.8)
The following theorem ([13] or [1, Theorem 3.59]) describes the structure of
the reduced boundary of a set of finite perimeter.

Theorem 1.2 (De Giorgi). Let E ⊂ IRn be a set of finite perimeter in IRn,
n ≥ 2. Then

(i) ∂∗E =
∞⋃

h=1

Kh ∪N0 ,

where each Kh is a compact subset of a C1 manifold Mh and Hn−1(N0) = 0;

(ii) |DχE | = Hn−1 ∂∗E ;

for Hn−1-a.e. x ∈ Kh, νE(x) is orthogonal to the tangent plane to Mh at x .

From this theorem it is clear that for a set of finite perimeter the reduced
boundary plays the same role of the topological boundary for smooth sets. In
particular, the integration by parts formula (1.8) becomes
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E

∂ϕ

∂xi
dx = −

∫
∂∗E

ϕνE
i dHn−1 for all ϕ ∈ C1

0 (IRn) and i = 1, . . . , n ,

(1.9)
an equation very similar to the one we have when E is a smooth open set.

In the one-dimensional case sets of finite perimeter are completely charac-
terized by the following result (see [1, Proposition 3.52]).

Proposition 1.1. Let E ⊂ IR be a measurable set. Then E has finite perime-
ter in IR if and only if there exist −∞ ≤ a1 < b1 < a2 < · · · < bN−1 < aN <

bN ≤ +∞, such that E is equivalent to
N⋃

i=1

(ai, bi). Moreover, if Ω is an open

set in IR,
P (E;Ω) = #{i : ai ∈ Ω}+ #{i : bi ∈ Ω} .

Notice that from this characterization we have that if E ⊂ IR is a set of finite
perimeter with finite measure, then P (E) ≥ 2. Moreover, P (E) = 2 if and
only if E is equivalent to a bounded interval. Notice also that Proposition 1.1
yields immediately Theorem 1.1 and the characterization of the equality case
in (1.1).

If we translate Theorem 1.2 in the language of Geometric Measure theory,
then assertion (i) says that the reduced boundary ∂∗E of a set of finite perime-
ter E in IRn is a countably Hn−1-rectifiable set (see [1, Definition 2.57]), while
(iii) states that for Hn−1-a.e. x ∈ ∂∗E the approximate tangent plane to ∂∗E
at x (see [1, Section 2.11]) is orthogonal to νE(x). Therefore, from the coarea
formula for rectifiable sets ([1, Remark 2.94]), we get that if g : IRn → [0,+∞]
is a Borel function, then∫

∂∗E

g(x)|νn(x)| dHn−1(x) =
∫

IRn−1
dx′

∫
(∂∗E)x′

g(x′, y) dH0(y) , (1.10)

where H0 denotes the counting measure.
Setting V = {x ∈ ∂E∗ : νE

n (x) = 0} and g(x) = χV (x), from (1.10) we get
that∫

IRn−1
dx′

∫
(∂∗E)x′

χV (x′, y) dH0(y) =
∫

∂∗E

χV (x)|νn(x)| dHn−1(x) = 0 .

Therefore, if E is a set of finite perimeter, then Vx′ = ∅ for Ln−1-a.e. x′ ∈
IRn−1, i.e.,

for Ln−1-a.e. x′ ∈ IRn−1, νE
n (x′, y) �= 0 for all y such that (x′, y) ∈ ∂∗E .

(1.11)
Let Ω be an open subset of IRn and u ∈ L1(Ω). We say that u is a function of
bounded variation (shortly, a BV -function) in Ω, if the distributional deriv-
ative Du is a vector-valued Radon measure in Ω with finite total variation.
Thus, denoting by Diu, i = 1, . . . , n, the components of Du we have that
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Ω

u
∂ϕ

∂xi
dx = −

∫
Ω

ϕdDiu for all ϕ ∈ C1
0 (Ω) . (1.12)

The space of functions of bounded variation in Ω will be denoted by BV (Ω).
Notice that if u ∈ BV (Ω), then, as in (1.3), we have

|Du|(Ω) = sup
{ n∑

i=1

∫
Ω

ψi(x) dDiu : ψ ∈ C1
0 (Ω; IRn), ‖ψ‖∞ ≤ 1

}
= sup

{∫
Ω

udivψ(x) dx : ψ ∈ C1
0 (Ω; IRn), ‖ψ‖∞ ≤ 1

}
.

Moreover, it is clear that if E is a measurable set such that Ln(E ∩Ω) <∞,
then χE ∈ BV (Ω) if and only if E has finite perimeter in Ω.

In the sequel, we shall denote by Dau the absolutely continuous part of
Du with respect to Lebesgue measure Ln. The singular part of Du will be
denoted by Dsu. Moreover, we shall use the symbol ∇u to denote the density
of Dau with respect to Ln. Therefore,

Du = ∇uLn + Dsu .

Notice also that a function u ∈ BV (Ω) belongs to W 1,1(Ω) if and only if Du
is absolutely continuous with respect to Ln, i.e., |Du|(B) = 0 for all Borel
sets B ⊂ Ω such that Ln(B) = 0. In this case, the density of Du with respect
to Ln reduces to the usual weak gradient ∇u of a Sobolev function.

Next result is an essential tool for studying the behavior of Steiner sym-
metrization with respect to perimeter.

Lemma 1.1. Let E a set of finite perimeter in IRn with finite measure. Then
µ ∈ BV (IRn−1) and for any bounded Borel function ϕ : IRn−1 → IR∫

IRn−1
ϕ(x′) dDiµ(x′) =

∫
∂∗E

ϕ(x′)νE
i (x) dHn−1(x), i = 1, . . . , n−1 .

(1.13)
Moreover, for any Borel set B ⊂ IRn−1,

|Dµ|(B) ≤ P (E;B × IR) . (1.14)

Proof. Let us fix ϕ ∈ C1
0 (IRn−1) and a sequence {ψj} of C1

0 (IR) functions,
such that 0 ≤ ψj(y) ≤ 1 for all y ∈ IR and j ∈ IN, with limj→∞ ψj(y) = 1 for
all y. For any i ∈ {1, . . . , n− 1}, from Fubini’s theorem and formula (1.9), we
get immediately∫

IRn−1

∂ϕ

∂xi
(x′)µ(x′) dx′ =

∫
IRn−1

dx′
∫

IR

∂ϕ

∂xi
(x′)χE(x′, y) dy

= lim
j→∞

∫
E

∂ϕ

∂xi
(x′)ψj(y) dx′dy (1.15)

= − lim
j→∞

∫
∂∗E

ϕ(x′)ψj(y)νE
i (x) dHn−1

= −
∫

∂∗E

ϕ(x′)νE
i (x) dHn−1 .
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This proves that the distributional derivatives of µ are real measures with
bounded variation. Therefore, since Ln(E) < ∞, hence µ ∈ L1(IRn−1), we
have that µ ∈ BV (IRn−1) and thus, by applying (1.12) to µ, from (1.15) we
get in particular that (1.13) holds with ϕ ∈ C1

0 (IRn−1). The case of a bounded
Borel function ϕ then follows easily by approximation (see [9, Lemma 3.1]).

Finally, when B is an open set of IRn−1, (1.14) follows immediately from
(1.13) and (ii) of Theorem 1.2. Again, the general case of a Borel set B ⊂
IRn−1, follows by approximation. !"

Next result provides a first estimate of the perimeter of Es. Notice that in
the statement below we have to assume that Es is a set of finite perimeter, a
fact that will be proved later.

Lemma 1.2. Let E be any set of finite perimeter in IRn with finite measure.
If Es is a set of finite perimeter, then

P (Es;B × IR) ≤ P (E;B × IR) + |DnχEs |(B × IR) (1.16)

for every Borel set B ⊂ IRn−1.

Proof. Since µ ∈ BV (IRn−1), by a well known property of BV functions (see
[1, Theorem 3.9], we may find a sequence {µj} of nonnegative functions from
C1

0 (IRn−1) such that µj → µ in L1(IRn−1), µj(x′) → µ(x′) for Ln−1-a.e. x′ in
IRn−1, |Dµj |(IRn−1) → |Dµ|(IRn−1) and |Dµj | → |Dµ| weakly* in the sense
of measures. Then, setting

Es
j = {(x′, y) ∈ IRn−1 × IR : µj(x′) > 0, |y| < µj(x′)/2} ,

we easily get that χEs
j
(x) → χEs(x) in L1(IRn). Fix an open set U ⊂ IRn−1 and

ψ ∈ C1
0 (U × IR, IRn). Then, Fubini’s theorem and a standard differentiation

of integrals yield∫
U×IR

χEs
j
divψ dx =

∫
U

dx′
∫ µj(x

′)/2

−µj(x′)/2

n−1∑
i=1

∂ψi

∂xi
dy +

∫
Ω×IR

χEs
j

∂ψn

∂y
dx

= −1
2

∫
π(suppψ)

n−1∑
i=1

[
ψi

(
x′,

µj(x′)
2

)
−ψi

(
x′,−µj(x′)

2

)]∂µj

∂xi
dx′

+
∫

Ω×IR

χEs
j

∂ψn

∂y
dx ,

where π : IRn → IRn−1 denotes the projection over the first n−1 components.
Thus∫

U×IR

χEs
j
divψ dx ≤

≤
∫

π(suppψ)

√√√√n−1∑
i=1

[
1
2

(
ψi

(
x′,

µj(x′)
2

)
−ψi

(
x′,−µj(x′)

2

))]2

|∇µj | dx′ +

+
∫

U×IR

χEs
j

∂ψn

∂y
dx. (1.17)
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If ‖ψ‖∞ ≤ 1, from (1.17) we get∫
U×IR

χEs
j
divψ dx ≤

∫
π(suppψ)

|∇µj | dx′ +
∫

U×IR

χEs
j

∂ψn

∂y
dx . (1.18)

Since χEs
j
→ χEs in L1(IRn−1) and π(suppψ) is a compact subset of U ,

recalling that |Dµj | → |Dµ| weakly* in the sense of measure and taking the
lim sup in (1.18) as j →∞, we get∫

U×IR

χEsdivψ dx ≤ |Dµ|(π(suppψ)) +
∫

U×IR

χEs

∂ψn

∂y
dx

≤ |Dµ|(U) + |DnχEs |(U × IR) (1.19)
≤ P (E;U × IR) + |DnχEs |(U × IR) ,

where the last inequality follows from (1.14). Inequality (1.19) implies that
(1.16) holds whenever B is an open set, and hence also when B is any Borel
set. !"
Remark 1.1. Notice that the argument used in the proof of Lemma 1.2 above
yields that if E is a bounded set of finite perimeter, then Es is a set of finite
perimeter too. In fact, in this case, by applying (1.18) with U = IRn−1 and
‖ψ‖∞ ≤ 1 we get

∫
IRn

χEs
j
divψ dx ≤

≤
∫

IRn−1
|∇µj | dx′ +

∫
IRn−1

[
ψn(x′, µj(x′)/2)− ψn(x′,−µj(x′)/2)

]
dx′ .

Hence, passing to the limit as j →∞, we get, from (1.14) and the assumption
that E is bounded,∫

IRn

χEsdivψ dx ≤ |Dµ|(IRn−1)+
∫

IRn−1

[
ψn(x′, µ(x′)/2)−ψn(x′,−µ(x′)/2)

]
dx′

≤ P (E) + 2Ln−1(π(E)+) <∞ .

Next result, due to Vol’pert ([26], [1, Theorem 3.108]), states that for Ln−1-
a.e. x′ the section Ex′ is equivalent to a finite union of open intervals whose
endpoints belong to the corresponding section (∂∗E)x′ of the reduced bound-
ary.

Theorem 1.3. Let E be a set of finite perimeter in IRn. Then, for Ln−1-a.e.
x′ ∈ IRn−1,

(i) Ex′ has finite perimeter in IR ;

(ii) ∂∗Ex′ = (∂∗E)x′ ;
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(iii) νE
n (x′, y) �= 0 for all y such that (x′, y) ∈ ∂∗E ;

(iv) χE(x′, ·) coincides L1-a.e. with a function gx′ such that for all y ∈ ∂∗Ex′⎧⎨⎩ lim
z→y+

gx′(z) = 1, lim
z→y−

gx′(z) = 0 if νE
n (x′, y) > 0 ,

lim
z→y+

gx′(z) = 0, lim
z→y−

gx′(z) = 1 if νE
n (x′, y) < 0 .

The meaning of (i) and (ii) is clear. Property (iii) states that the section
(∂∗E)x′ of the reduced boundary contains no vertical parts. As we have ob-
served in (1.11), this is a consequence of the coarea formula (1.10). Finally,
(iv) states that the normal νE(x) at a point x ∈ ∂∗E has a positive vertical
component if and only if Ex′ lies locally above x.

Notice also that from (ii) it follows that (∂∗E)x′ = ∅ for Ln−1-a.e. x′ �∈
π(E)+ and that there exists a Borel set GE ⊂ π(E)+ such that

the conclusions (i)-(iv) of Theorem 1.3 hold for every
x′ ∈ GE , Ln−1(π(E)+ \GE) = 0. (1.20)

Let us now give a useful representation formula for the absolutely continuous
part of the gradient of µ.

Lemma 1.3. Let E ⊂ IRn be a set of finite perimeter with finite measure.
Then, for Ln−1-a.e. x′ ∈ π(E)+,

∂µ

∂xi
(x′) =

∑
y∈∂∗Ex′

νE
i (x′, y)
|νE

n (x′, y)| , i = 1, . . . , n− 1 . (1.21)

Proof. Let GE be a Borel set satisfying (1.20) and g any function in
C0(IRn−1). Set ϕ(x′) = g(x′)χGE

(x′). From (1.13) and (1.10), recalling also
(iii) and (ii) of Theorem 1.3, we have∫

GE

g(x′) dDiµ =
∫

∂∗E

g(x′)χGE
(x′)νE

i (x) dHn−1(x) =

=
∫

∂∗E

g(x′)χGE
(x′)

νE
i (x)
|νE

n (x)| |ν
E
n (x)| dHn−1(x)

=
∫

GE

g(x′)
∑

y∈∂∗Ex′

νE
i (x′, y)
|νE

n (x′, y)| dx′ .

Thus from this equality we get that

Diµ GE =

( ∑
y∈∂∗Ex′

νE
i (x′, y)
|νE

n (x′, y)|

)
Ln−1 GE .

Hence the assertion follows, since by (1.20) Ln−1(π(E)+ \GE) = 0. !"
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Remark 1.2. If Es is a set of finite perimeter, since E and Es have the same
distribution function µ, we may apply Lemma 1.3 thus getting

∂µ

∂xi
(x′) = 2

νEs

i (x′, 1
2µ(x′))

|νEs

n (x′, 1
2µ(x′))| for Ln−1-a.e. x′ ∈ π(E)+ . (1.22)

2 Steiner Symmetrization of Sets of Finite Perimeter

Let us start by proving the following version of Theorem 1.1.

Theorem 1.1 (Local version) Let E ⊂ IRn be a set of finite perimeter,
n ≥ 2. Then Es is also of finite perimeter and for every Borel set B ⊂ IRn−1,

P (Es;B) ≤ P (E;B) . (2.1)

Proof. Let E ⊂ IRn be a set of finite perimeter. If Ln(E) = ∞, by the
isoperimetric inequality (3.6) below, IRn \E has finite measure, hence L1(IR\
Ex′) < ∞ for Ln−1-a.e. x′ ∈ IRn−1, Es = IRn and the assertion follows
trivially.
Thus we may assume that E has finite measure. For the moment, let us assume
also that Es is a set of finite perimeter (we shall prove this fact later). Let
us set G = GE ∩GEs , where GE and GEs are defined as in (1.20). To prove
inequality (2.1) it is enough to assume B ⊂ G or B ⊂ IRn−1 \G.
In the first case, using Theorem 1.2 (ii), Theorem 1.3 (iii), coarea formula
(1.10) and formulas (1.22) and (1.21), we get easily

P (Es;B × IR) =
∫

∂∗Es∩(B×IR)

1
|νEs

n | |ν
Es

n | dHn−1 =
∫

B

∑
y∈∂∗Es

x′

1
|νEs

n (x′, y)| dx′

= 2
∫

B

1
|νEs

n (x′, 1
2µ(x′))| dx′ (2.2)

= 2
∫

B

√√√√1 +
n−1∑
i=1

( |νEs

i (x′, 1
2µ(x′))|

|νEs

n (x′, 1
2µ(x′))|

)2

dx′

=
∫

B

√√√√4 +
n−1∑
i=1

(
∂µ

∂xi
(x′)

)2

dx′

=
∫

B

√√√√4 +
n−1∑
i=1

( ∑
y∈∂∗Ex′

νE
i (x′, y)
|νE

n (x′, y)|
)2

dx′ .

Notice that, since E has finite measure, for a.e. x′ ∈ IRn−1, L1(Ex′) < ∞ and
thus P (Ex′) ≥ 2. Hence from the equality above, using the discrete Minkowski
inequality, we get
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P (Es;B × IR) =
∫

B

√√√√4 +
n−1∑
i=1

( ∑
y∈∂∗Ex′

νE
i (x′, y)
|νE

n (x′, y)|
)2

dx′ (2.3)

≤
∫

B

√√√√(
#{y : y ∈ ∂∗Ex′}

)2

+
n−1∑
i=1

( ∑
y∈∂∗Ex′

νE
i (x′, y)
|νE

n (x′, y)|
)2

dx′

≤
∫

B

∑
y∈∂∗Ex′

√√√√1 +
n−1∑
i=1

(
νE

i (x′, y)
|νE

n (x′, y)|
)2

dx′

=
∫

B

∑
y∈∂∗Ex′

1
|νE

n (x′, y)| dx′ = P (E;B × IR) ,

where the last two equalities, as in (2.2), are a consequence of the coarea
formula and of the assumption B ⊂ GE .
When B ⊂ IRn−1 \ G, we use (1.6), Theorem 1.2 (ii), coarea formula again,
Theorem 1.3 (ii) and the fact that Ln−1(π(E)+ ∩B) = 0, thus getting

|DnχEs |(B × IR) =
∫

∂∗Es∩(B×IR)

|νEs

n |dHn−1 =
∫

B

#{y∈∂∗Es
x′}dx′

=
∫

B\π(E)+
#{y∈∂∗Es

x′}dx′ = 0 ,

where the last equality is a consequence of the fact that Es
x′ = ∅ for all

x′ �∈ π(E)+. Then (2.1) immediately follows from (1.16).
Let us now prove now that Es is a set of finite perimeter. If E is bounded,
this property follows from what we have already observed in Remark 1.1. If
E is not bounded, we may always find a sequence of smooth bounded open
sets Eh such that Ln(E∆Eh) → 0 and P (Eh) → P (E) as h → ∞ (see [1,
Theorem 3.42]). Notice that, by Fubini’s theorem,

Ln(Es∆(Eh)s) =
∫

IRn−1
|L1(Es

x′)− L1((Eh)s
x′)| dx′

=
∫

IRn−1
|L1(Ex′)− L1((Eh)x′)| dx′

≤
∫

IRn−1
|L1(Ex′∆(Eh)x′)| dx′ = Ln(E∆Eh) .

Therefore, from the lower semicontinuity of perimeters with respect to con-
vergence in measure (1.5) and from what we have proved above we get

P (Es) ≤ lim inf
h→∞

P ((Eh)s) ≤ lim
h→∞

P (Eh) = P (E)

and thus Es has finite perimeter. !"
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The result we have just proved was more or less already known in the
literature though with a different proof (see for instance [25]). The interesting
point of the above proof is that it provides almost immediately some non
trivial information about the case when equality holds in (1.1), as shown by
the next result.

Theorem 2.1. Let E be a set of finite perimeter in IRn, with n ≥ 2, such that
equality holds in (1.1). Then, either E is equivalent to IRn or Ln(E) <∞ and
for Ln−1-a.e. x′ ∈ π(E)+

Ex′ is equivalent to a segment (y1(x′), y2(x′)) , (2.4)

(νE
1 , . . . , νE

n−1, ν
E
n )(x′, y1(x′)) = (νE

1 , . . . , νE
n−1,−νE

n )(x′, y2(x′)) . (2.5)

Proof. If Ln(E) = ∞, as we have already observed in the previous proof,
Es = IRn. Then, since P (E) = P (Es) = 0, it follows that also E is equivalent
to IRn.
If Ln(E) <∞, from the assumption P (E) = P (Es) and from inequality (2.1)
it follows that P (Es;B × IR) = P (E;B × IR) for all Borel sets B ⊂ IRn−1.
By applying this equality with B = G, where G is the set introduced in the
proof above, it follows that both inequalities in (2.3) are indeed equalities.
In particular, since the first inequality holds as an equality, we get

#{y : y ∈ ∂∗Ex′} = 2 for Ln−1-a.e. x′ ∈ G .

Hence (2.4) follows, recalling that, by (1.20), Ln−1(π(E)+ \G) = 0.
The fact that also the second inequality in (2.3) is an equality implies that

νE
i (x′, y1(x′))
|νE

n (x′, y1(x′))| =
νE

i (x′, y2(x′))
|νE

n (x′, y2(x′))|

for i = 1, . . . , n− 1 and for Ln−1-a.e. x′ ∈ G .

From this equation, since |νE | = 1, we have that νE
i (x′, y1(x′)) = νE

i (x′, y2(x′))
and |νE

n (x′, y1(x′))| = |νE
n (x′, y2(x′))| for Ln−1-a.e. x′ ∈ G. Then, equality

νE
n (x′, y1(x′)) = −νE

n (x′, y2(x′) is an easy consequence of assertion (iv) of
Theorem 1.3. Hence, (2.5) follows. !"

As we have just seen, Theorem 2.1 states that if E has the same perimeter
of its Steiner symmetral Es, then almost every section of E in the y direction is
a segment and the two normals at the endpoints of the segment are symmetric.
However, this is not enough to conclude that E coincides with Es (up to a
transaltion), as it is clear by looking at the picture below.



Geometrical Aspects of Symmetrization 167

y

x′

E Es

y

x′

E Es

Thus, in order to deduce from the equality P (E) = P (Es) that E and Es

coincide, up to a translation in the y direction, we need to make some as-
sumption on the set E or on Es. To this aim let us start by assuming that,
given an open set U ⊂ IRn−1,

(H1) Hn−1({x ∈ ∂∗Es : νEs

n (x) = 0} ∩ (U × IR)} = 0 ,

i.e., the (reduced) boundary of Es has no flat parts parallel to the y direction.
Notice that this assumption rules out the example shown on the upper part
of the picture. Moreover, as we shall see in a moment, (H1) holds in an open
set U if and only if the distribution function is a W 1,1 function in U . To this
aim, let us recall the following well known result concerning the graph of a
BV function (see, for instance, [18, Ch. 4, Sec. 1.5, Th. 1, and Ch. 4, Sec. 2.4,
Th. 4]).

Theorem 2.2. Let U ⊂ IRn−1 be a bounded open set and u ∈ L1(U). Then
the subgraph of U ,

Su = {(x′, y) ∈ U × IR : y < u(x′)} ,
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is a set of finite perimeter in U × IR if and only if u ∈ BV (U). Moreover, in
this case,

P (Su;B × IR) =
∫

B

√
1 + |∇u|2dx′ + |Dsu|(B) (2.6)

for every Borel set B ⊂ U .

Notice that if E is a bounded set of finite perimeter, since µ ∈ BV (IRn−1) by
Lemma 1.1, and

Es = {(x′, y) ∈ IRn−1 × IR : −µ(x′)/2 < y < µ(x′)/2} , (2.7)

from Theorem 2.2 we get immediately that Es is a set of finite perimeter, being
the intersection of the two sets of finite perimeter {(x′, y) : y > −µ(x′)/2}
and {(x′, y) : y < µ(x′)/2}.
Proposition 2.1. Let E be any set of finite perimeter in IRn, n ≥ 2, with
finite measure. Let U be an open subset of IRn−1. Then the following conditions
are equivalent:

(i) Hn−1
({x ∈ ∂∗Es : νEs

n (x) = 0} ∩ (U × IR)
)

= 0 ,
(ii) P (Es;B × IR) = 0 for every Borel set B ⊂ U such that Ln−1(B) = 0 ,
(iii)µ ∈W 1,1(U) .

Proof. Let us assume that (i) holds and fix a Borel set B ⊂ U such that
Ln−1(B) = 0. Using coarea formula (1.10) we get

P (Es;B × IR) = Hn−1(∂∗Es ∩ (B × IR))
= Hn−1({x ∈ ∂∗Es : νEs

n (x) �= 0} ∩ (B × IR))

=
∫

∂∗Es

1
|νEs

n (x)|χ{νEs
n �=0}∩(B×IR)(x)|νEs

n (x)| dHn−1

=
∫

B

dx′
∫

(∂∗Es)x′

χ{νEs
n �=0}(x′, y)
|νEs

n (x′, y)| dH0(y) = 0 ,

hence (ii) follows.
If (ii) holds and B is a null set in U , by applying (1.14) with E replaced by
Es we get |Dµ|(B) = 0. Thus, Dµ is absolutely continuous with respect to
Ln−1, hence µ ∈ W 1,1(U).
Notice that, if E1, E2 are two sets of finite perimeter and B is an open set,
then (see [1, Proposition 3.38]) P (E1∩E2;B) ≤ P (E1;B)+P (E2;B) and, by
approximation, the same inequality holds also when B is a Borel set. There-
fore, recalling (2.7) and (2.6) we get that, if (iii) holds, for any Borel set B
in U

P (Es;B × IR) ≤ 2P (Sµ/2;B × IR) =
∫

B

√
4 + |∇µ|2 dx′ . (2.8)

Set B0 = π(∂∗Es) \GEs , where GEs ⊂ π(E)+ is a Borel set satisfying (1.20)
with E replaced by Es. Since by Theorem 1.3 (∂∗Es)x′ = ∅ for Ln−1-a.e.
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x′ �∈ π(E)+, we have Ln−1(B0) = Ln−1(π(∂∗Es) \ π(E)+) + Ln−1(π(E)+ \
GEs) = 0. Therefore, from (2.8) we get that P (Es; (B0 ∩ U) × IR) = 0,
i.e. Hn−1 ((∂∗Es \ (GEs × IR)) ∩ (U × IR)) = 0. Then, (i) follows since by
definition {x ∈ ∂∗Es : νEs

n (x) = 0} ⊂ ∂∗Es \ (GEs × IR). !"
It may seem strange that assumption (H1) is made on the Steiner symme-

tral Es. Alternatively, we could make a similar assumption on E by requiring
that

(H ′
1) Hn−1({x ∈ ∂∗E : νE

n (x) = 0} ∩ (U × IR)} = 0 .

Actually, it is not difficult to show that (H ′
1) implies (H1), while the converse

is false in general, as one can see by simple examples. In fact, if (H ′
1) holds,

arguing exactly as in the proof of the implication ‘(i)⇒(ii)’ in Proposition 2.1
we get that P (E;B×IR) = 0 for any Borel set B ⊂ U with zero measure. Then
(2.1) implies that the same property holds also for Es and thus, by Proposition
2.1, we get that Es satisfies (H1). Notice also that when P (E) = P (Es),
then by (2.1) we have that P (E;B × IR) = P (Es;B × IR) for any Borel set
B ⊂ IRn−1. Thus one immediately gets that in this case the two conditions
(H1), (H ′

1) are equivalent.
Let us now comment on the example on the lower part of the picture above.

It is clear that in that case things go wrong, in the sense that E and Es are not
equal, because even though the set E is connected in a strict topological sense
it is ‘essentially disconnected’. Therefore, to deal with similar examples one
could device to use a suitable notion of connectedness set up in the context
of sets of finite perimeter (see, for instance, [1, Example 4.18]). However, we
will not follow this path. Instead, we will use the information provided by
Proposition 2.1.

If the distribution function µ is of class W 1,1(U), then forHn−2-a.e. x′ ∈ U
we can define its precise representative µ̃(x′) (see [15] or [27]) as the unique
value such that

lim
r→0

−
∫

Bn−1
r (x′)

|µ(y)− µ̃(x′)| dx′ = 0 , (2.9)

where by Bn−1
r (x′) we have denoted the (n−1)-dimensional ball with centre

x′ and radius r. Then, in order to rule out a situation like the one on the
bottom of the picture above, we make the assumption

(H2) µ̃(x′) > 0 for Hn−2-a.e. x′ ∈ U .

Next result, proved in [9], shows that the two examples in the picture are
indeed the only cases where the equality P (E) = P (Es) does not imply that
the two sets are equal. As for Theorem 1.1, we state the result in a local form.

Theorem 2.3. Let E be a set of finite perimeter IRn, with n ≥ 2, such that

P (Es) = P (E) . (2.10)



170 N. Fusco

Let us assume that (H1) and (H2) hold in some open set U ⊂ IRn−1. Then,
for every connected open subset Uα of U , E ∩ (Uα × IR) is equivalent to Es ∩
(Uα × IR), up to a translation in the y direction.
In particular, if (H1) and (H2) hold in a connected open set U such that
Ln−1(π(E)+ \ U) = 0, then E is equivalent to Es, up to a translation in the
y direction.

As far as I know, this result was known in the literature only for convex sets,
where it can be proved with a simple argument. In fact, let us assume that E
is an open convex set such that P (E) = P (Es) < ∞. Then, π(E) is also an
open convex set and there exist two functions y1, y2 : π(E) → IR, y1 convex,
and y2 concave, such that

E = {(x′, y) : x′ ∈ π(E), y1(x′) < y < y2(x′)} .

Let us now fix an open set U ⊂⊂ π(E). From assumption (2.10) and from (2.1)
we have that P (Es;U × IR) = P (E;U × IR). Since y1 and y2 are Lipschitz
continuous in U , we can write this equality as

2
∫

U

√
1 +

|∇(y2 − y1)|2
4

dx′ =
∫

U

√
1 + |∇y1|2 dx′ +

∫
U

√
1 + |∇y1|2 dx′ .

From this equality, the strict convexity of the function t �→ √
1 + t2 and the

arbitrariness of U , we get that ∇y2 = −∇y1 in π(E) and thus y2 = −y1 +
const.. This shows that E coincides with Es, up to a translation in y direction.

The proof of Theorem 2.3, for which we refer to [9], uses delicate tools from
Geometric Measure theory. However, in the special case considered below it
can be greatly simplified.

Proof of Theorem 2.3 in a Special Case. Let us assume that E is an
open set, that π(E) is connected and that E is bounded in y direction.
Notice that since E is open, then µ is a lower semicontinuous function and
for any open set U ⊂⊂ π(E) there exists a constant c(U) > 0 such that

µ(x′) ≥ c(U) for all x′ ∈ U . (2.11)

Moreover, since E is bounded in the y direction, the function

x′ ∈ π(E) �→ m(x′) =
∫

Ex′
y dy

is bounded in π(E). Then, the same arguments used in the proofs of Lemmas
1.1 and 1.3 yield that m ∈ BVloc(π(E)) and that for Ln−1-a.e. x′ ∈ π(E),
i = 1, . . . , n− 1,

∂m

∂xi
(x′) =

∑
y∈∂∗Ex′

y νE
i (x′, y)

|νE
n (x′, y)| , (2.12)
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where we have denoted by ∂m/∂xi the absolutely continuous part of the
derivative Dim.

By Proposition 2.1 we have that (H1) implies that the distribution
function µ is a Sobolev function. The same assumption implies also that
m ∈ W 1,1

loc (π(E)). In fact, the argument used to prove (1.14) shows that if
B ⊂ π(E) is a Borel set, then |Dm|(B) ≤ MP (E;B × IR), where M is a
constant such that E ⊂ IRn−1 × (−M,M). Therefore, if Ln−1(B) = 0, from
(2.1) and Proposition 2.1 we have that P (E;B × IR) = P (Es;B × IR) = 0,
hence Dm is absolutely continuous with respect to Ln−1.
Let us now denote, for any x′ ∈ π(E) by b(x′) the baricenter of the section
Ex′ , i.e.,

b(x′) =

∫
Ex′

ydy

µ(x′)
.

From (2.11) and Proposition 2.1 we have that b too belongs to the space
W 1,1

loc (π(E)). Thus, to prove the assertion, since π(E) is a connected open set,
it is enough to show that ∇b ≡ 0, hence b is constant on π(E). To this aim,
let us evaluate the partial derivatives of b, using the representation formulas
(2.12) and (1.21). We have, for any i = 1, . . . , n−1 and for Ln−1-a.e. x′ ∈ π(E),

∂b

∂xi
(x′) =

1
µ(x′)

( ∑
y∈∂∗Ex′

y νE
i (x′, y)

|νE
n (x′, y)| −

∫
Ex′

ydy

µ(x′)

∑
y∈∂∗Ex′

νE
i (x′, y)
|νE

n (x′, y)|

)
. (2.13)

Since for Ln−1-a.e. x′ ∈ π(E) (2.4) and (2.5) hold, the right hand side of
(2.13) is equal to

1
µ(x′)

[(
y2(x′)+y1(x′)

) νE
i (x′, y2(x′))
|νE

n (x′, y2(x′))| −
1
2

y2
2(x′)−y2

1(x′)
y2(x′)−y1(x′)

2νE
i (x′, y2(x′))

|νE
n (x′, y2(x′))|

]
=0.

Hence, the assertion follows. !"

3 The Pòlya–Szegö Inequality

We are going to present the classical Pòlya–Szegö inequality for the spherical
rearrangement of a Sobolev function u and discuss what can be said about
the function u when the equality holds. In order to simplify the exposition,
we shall assume that u is a nonnegative measurable function from IRn, with
compact support. However, most of the results presented here, like Theorem
3.1, still hold with no restrictions on the support or on the sign of u.

Given u, we set, for any t ≥ 0,

µu(t) = Ln({x ∈ IRn : u(x) > t}) .
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The function µu is called the distribution function of u. Clearly µu is a de-
creasing, right-continuous function such that

µu(0)=Ln(suppu), µu(esssup u)=0, µu(t−)=Ln({u ≥ t}) for all t > 0 .
(3.1)

Notice that from the last equality we have that when t > 0

µu is continuous in t iff Ln({u = t}) = 0 .

Let us now introduce the decreasing rearrangement of u, that is the function
u∗ : [0,+∞) → [0,+∞) defined, for any s ≥ 0, by setting

u∗(s) = sup{t ≥ 0 : µu(t) > s} .

Clearly, u∗ is a decreasing, right-continuous function. The following elemen-
tary properties of u∗ are easily checked:

(j) u∗(µu(t)) ≤ t ≤ u∗(µu(t)−) for all 0 ≤ t < esssup u ;
(jj) µu(u∗(s)) ≤ s ≤ µu(u∗(s)−) for all 0 ≤ s < Ln(suppu) ;
(jjj)L1({s : u∗(s) > t} = µu(t) for all t ≥ 0 .

Notice that (jjj) states that the functions u and u∗ are equi-distributed, i.e.,
µu = µu∗ . Let us now define the spherical symmetric rearrangement of u, that
is the function u� : IRn → [0,+∞), such that for all x ∈ IRn

u�(x) = u∗(ωn|x|n) . (3.2)

By definition and by (jjj) we have

Ln({u� > t}) = Ln({u > t}) for all t ≥ 0 ,

i.e., µu = µu� . Thus also u and u� are equi-distributed. As a simple conse-
quence of this equality and Fubini’s theorem we have, for all p ≥ 1,∫

IRn

|u�(x)|p dx =
∫

IRn

|u(x)|p dx ,

and, letting p → +∞, esssup u = esssup u�.
If u is a smooth function, in general its symmetric rearrangement will be

no longer smooth (actually the best we may expect from Theorem 3.1 below
is that u� is Lipschitz continuous). However, the symmetric rearrangement
behaves nicely on Sobolev functions, as shown by the next result.

Theorem 3.1 (Pòlya–Szegö Inequality). Let u ∈ W 1,p(IRn), p ≥ 1, be a
nonnegative function with compact support. Then u� ∈W 1,p(IRn) and∫

IRn

|∇u�(x)|p dx ≤
∫

IRn

|∇u(x)|p dx . (3.3)
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The proof of this result relies upon two main ingredients, the isoperimetric
inequality and the coarea formula for BV functions. Let us start by recalling
the latter.

Let u be a BV (Ω) function. Then, for L1-a.e. t ∈ IR, the set {u > t} has
finite perimeter in Ω. Moreover, for any Borel function g : Ω → [0,+∞], the
following formula holds (see [1, Theorem 3.40]).∫

Ω

g(x) d|Du| =
∫ ∞

−∞
dt

∫
∂∗{u>t}

g(x) dHn−1 . (3.4)

In the special case u ∈W 1,1(Ω), it can be shown that for L1-a.e. t the reduced
boundary ∂∗{u > t} coincides, modulo a set of Hn−1-measure zero, with the
level set {ũ = t}, where ũ denotes the precise representative of u, which is
defined Hn−1-a.e. in Ω as in (2.9). Therefore, if u ∈W 1,1(Ω), (3.4) becomes∫

Ω

g(x)|∇u(x)| dx =
∫ ∞

−∞
dt

∫
{ũ=t}

g(x) dHn−1(x) . (3.5)

The isoperimetric inequality states that if E be a set of finite perimeter, then(
min {Ln(E),Ln(IRn \ E)}

)n−1
n ≤ 1

nω
1/n
n

P (E) . (3.6)

Moreover, the equality holds if and only if E is (equivalent to) a ball.
Next lemma shows that if u is a Sobolev function, then the same is also

true for u�.

Lemma 3.1. Let u be a nonnegative function with compact support from the
space W 1,1(IRn). Then u� belongs to W 1,1(IRn) and∫

IRn

|∇u�| dx ≤
∫

IRn

|∇u| dx . (3.7)

Proof. Let us first prove that for any 0 < a < b, the function u∗ is absolutely
continuous in (a, b) and∫ b

a

|u∗′(s)| ds ≤ 1

nω
1/n
n a

n−1
n

∫
{u∗(b)<u<u∗(a)}

|∇u| dx . (3.8)

To this aim, we start by observing that from the third equality in (3.1) and
from inequality (jj) we have

Ln({x ∈ IRn : u∗(b) < u(x) < u∗(a)}) = µu(u∗(b))− µu(u∗(a)−) ≤ b− a .
(3.9)

Let us denote by ω : [0,∞) → [0,+∞) the modulus of continuity of the
integral of |∇u|, i.e., a continuous function, vanishing at zero and such that
for any set of finite measure E
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E

|∇u| dx ≤ ω(Ln(E)) .

Using the coarea formula (3.5), the isoperimetric inequality (3.6) and (jj)
again, we obtain the following estimate for the integral of |∇u| between two
level sets,∫

{u∗(b)<u<u∗(a)}
|∇u| dx =

∫ u∗(a)

u∗(b)

P ({u > t}) dt

≥ nω1/n
n

∫ u∗(a)

u∗(b)

(
Ln({u > t}

)n−1
n

dt

≥ nω1/n
n [µu(u∗(a)−)]

n−1
n (u∗(a)− u∗(b)) (3.10)

≥ nω1/n
n a

n−1
n (u∗(a)− u∗(b)) .

Let us now take a finite number of pairwise disjoint intervals (ai, bi) ⊂ (a, b),
i = 1, . . . , N . By applying (3.9) and (3.10) to each interval (ai, bi), we get

N∑
i=1

|u∗(bi)− u∗(ai)| ≤ 1

nω
1/n
n a

n−1
n

N∑
i=1

∫
{u∗(bi)<u<u∗(ai)}

|∇u| dx

≤ 1

nω
1/n
n a

n−1
n

ω
( N∑

i=1

(bi − ai)
)

. (3.11)

From this inequality it follows immediately that u is absolutely continuous in
(a, b), since the left hand side is smaller than a given ε > 0 as soon as the sum
of the lengths of the intervals (ai, bi) is sufficiently small. Moreover, by taking
the supremum of the left hand side of (3.11) over all possible partitions of the
interval (a, b), from the first inequality in (3.11) we get immediately (3.8).
Notice that from (3.8) it follows that u� is in W 1,1

loc (IRn\{0}). To prove the
assertion, we fix σ > 1 and estimate the integral of |∇u| in the annuli Ak,σ =
{x ∈ IRn : ω

−1/n
n σk/n < |x| < ω

−1/n
n σ(k+1)/n}, for k ∈ ZZ. Using (3.8) again,

and recalling the definition (3.2), we get, for any k ∈ ZZ,∫
Ak,σ

|∇u�| dx = nωn

∫
Ak,σ

|x|n−1|u∗′(ωn|x|n)| dx

= n2ω2
n

∫ ω−1/n
n σ(k+1)/n

ω
−1/n
n σk/n

r2n−2|u∗′(ωnrn)| dr

= nω1/n
n

∫ σk+1

σk

s
n−1

n |u∗′(s)| ds

≤ σ
n−1

n

∫
{u∗(σk)<u<u∗(σk+1)}

|∇u| dx .

Then the assertion immediately follows by summing up both sides of this
inequality over all k ∈ ZZ and then letting σ → 1+. !"
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Notice that the lemma we have just proved provides the Pólya–Szegö in-
equality for p = 1. However, for the general case p ≥ 1 we present a different
proof which has the advantage of giving better information when the inequal-
ity becomes an equality.

To this aim let us introduce a few quantities that will be useful later. If
u ∈ W 1,1

loc (IRn), we set

D+
u = {x ∈ IRn : ∇u(x) �= 0}, D0

u = IRn \ D+
u .

We can now give a representation formula for the derivative of µu. Notice that
the formula stated in (3.12) uses the fact that the |∇u�| is Hn−1-a.e. constant
on L1-a.e. level set {u� = t}.
Lemma 3.2. Let u ∈ W 1,1(IRn) be a nonnegative function with compact sup-
port. Then, for L1-a.e. t > 0,

µ′
u(t) = −H

n−1({u� = t})
|∇u�||{u�=t}

≤ −
∫
{ũ=t}

1
|∇u| dH

n−1 . (3.12)

Proof. First of all let us evaluate µu(t) using the coarea formula (3.5). We
get, for all t ≥ 0,

µu(t) = Ln
({u > t} ∩ D0

u

)
+ Ln

({u > t} ∩ D+
u

)
= Ln

({u > t} ∩ D0
u

)
+

∫
D+

u

χ{u>t}(x) dx (3.13)

= Ln
({u > t} ∩ D0

u

)
+

∫ +∞

t

ds

∫
{ũ=s}

χD+
u

|∇u| dH
n−1

= Ln
({u > t} ∩ D0

u

)
+

∫ +∞

t

ds

∫
{ũ=s}

1
|∇u| dH

n−1 ,

where the last equality follows by observing that coarea formula (3.5) implies
that Hn−1({ũ = t} ∩ D0

u) = 0 for L1-a.e. t ≥ 0. By applying (3.13) to u�, we
get also that for all t ≥ 0

µu(t) = Ln
({u� > t} ∩ D0

u�

)
+

∫ +∞

t

Hn−1({u� = t})
|∇u�||{u�=t}

(3.14)

Let us now recall a nice property of absolutely continuous functions (see for
instance [10, Lemma 2.4]).
If g is an absolutely continuous function in a bounded open interval I and,
for all t ∈ IR, we set φg(t) = L1({g > t} ∩ D0

g), then φg is a nondecreasing
function such that φ′

g(t) = 0 for L1-a.e. t.
By applying this result with g = u∗ and observing that Ln

({u� > t} ∩ D0
u�

)
=

L1
({u∗ > t} ∩ D0

u∗
)
, for all t > 0, from (3.14) we get immediately the equality

in (3.12). On the other hand, the inequality
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µ′
u(t) ≤ −

∫
{ũ=t}

1
|∇u| dH

n−1

follows immediately from (3.13). !"
We are now ready to prove the Pólya–Szegö inequality (3.3).

Proof of Theorem 3.1. Let us fix a nonnegative function u ∈ W 1,p(IRn)
with compact support and let us assume, without loss of generality, that u
coincides with its precise representative ũ. From Lemma 3.1 we know already
that u� belongs to the space W 1,1(IRn). Thus, using the coarea formula (3.5)
with u replaced by u� and recalling that |∇u�| is constant on the level sets of
u�, we get ∫

IRn

|∇u�|p dx =
∫ +∞

0

dt

∫
{u�=t}

|∇u�|p−1 dHn−1

=
∫ +∞

0

Hn−1({u� = t})|∇u�|p−1
|{u�=t} dt .

From this equation, using twice (3.12), the isoperimetric inequality (3.6),
Hölder’s inequality and coarea formula again, we get∫

IRn

|∇u�|p dx =
∫ +∞

0

[Hn−1({u� = t})]p

[−µ′
u(t)]p−1 dt

≤
∫ +∞

0

[Hn−1({u� = t})]p(∫
{u�=t}

dHn−1

|∇u|
)p−1 dt (3.15)

≤
∫ +∞

0

[Hn−1({u = t})]p(∫
{u=t}

dHn−1

|∇u|
)p−1 dt

≤
∫ +∞

0

dt

∫
{u=t}

|∇u|p−1 dHn−1 =
∫

IRn

|∇u|p dx .

Hence (3.3) follows. !"
Let us now discuss the equality case in (3.3). First, notice that if this is

the case, then all inequalities in (3.15) are in fact equalities. In particular, if
the second inequality in (3.15) holds as an equality, then we can conclude that
the set {u > t} is (equivalent to) a ball for L1-a.e. t ≥ 0. Moreover, if the
equality holds in the third inequality (where we have used Hölder inequality),
the conclusion is that for L1-a.e. t ≥ 0, |∇u| is Hn−1-a.e. constant on the level
set {u = t}.
These are the immediate consequences of the equality case. However, with
some extra work, one can prove the following, more precise, result (see [5] or
[11, Theorem 2.3]).
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Proposition 3.1. Let u ∈ W 1,p(IRn), p ≥ 1, a nonnegative function with
compact support such that∫

IRn

|∇u�|p dx =
∫

IRn

|∇u|p dx . (3.16)

Then there exist a function v, equivalent to u, i.e. such that v(x) = u(x) for
Ln-a.e. x ∈ IRn, and a family of open balls {Ut}t≥0 such that:

(i) {v > t} = Ut for t ∈ [0, esssup u);

(ii) {v = esssup u} =
⋂

0≤t<esssup u

U t, and is a closed ball (possibly a point);

(iii) v is lower semicontinuous in {v < esssup u};
(iv) if v(x) ∈ (0, esssup u) and Ln({u = v(x)}) = 0, then x ∈ ∂Uv(x);

(v) for every t ∈ (0, esssup u) there exists at most one point x ∈ ∂Ut such
that v(x) �= t;

(vi) the coarea formula (3.5) holds with ũ replaced by v;

(vii) for L1-a.e. t ∈ (0, esssup u), |∇v(x)| = |∇u�||{u�=t} for Hn−1-a.e.
x ∈ ∂Ut .

This proposition contains all the information that we can extract from equality
(3.16). However it is not true in general that (3.16) implies that u coincides
with u�, up to a translation in x. This can be easily seen by considering any
spherically symmetric nonnegative function w, such that Ln({w = t0}) > 0
for some t0 ∈ (0, esssup w) and another function u whose graph agrees with
the graph of w where u < t0 and with a slight translated of the graph of
w where u > t0. Then u� = w and (3.16) holds, but u is not spherically
symmetric. What goes wrong in this example is the fact that the gradient of
w (and of u) vanishes in a set of positive measure. Thus, this example suggests
to introduce the following assumption,

(H) Ln({0 < u� < esssup u} ∩ D0
u�) = 0 .

Notice that we are in a situation similar to the one we were in the previous
lecture when dealing with the assumption (H1). In fact, it can be proved (see
for instance [10, Lemma 3.3]) that (H) is implied by the stronger assumption

(H ′) Ln({0 < u < esssup u} ∩ D0
u) = 0 .

Moreover, (H) is equivalent to the absolute continuity in (0,+∞) of the dis-
tribution function µu and the two conditions (H) and (H ′) are equivalent if
(3.16) holds (see [10, Lemma 3.3] again).

The following result was proved for the first time in the Sobolev setting
by Brothers and Ziemer ([5]). It shows that when equality holds in (3.3),
assumption (H) guarantees that u and u� agree.
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Theorem 3.2. Let u ∈ W 1,p(IRn), p > 1, be a nonnegative function with
compact support such that (3.16) and (H) hold. Then u� = u, up to a trans-
lation in x.

Notice that the above result is in general false if p = 1, even in one dimension.
To see this it is enough to take a function which is increasing in the interval
(−∞, a) and decreasing in (a,+∞).
The starting point of the proof of Brothers and Ziemer is to observe, as we have
done before, that the equality (3.1) yields that Ln-a.e. set {u > t} is a ball and
that |∇u| is constant on the corresponding boundary. Then the difficult part
of the proof consists in exploiting assumption (H) to deduce that all these
balls are concentric, i.e. u is spherically symmetric. To prove this, we shall not
follow the original argument contained in ([5]), but a somewhat simpler one
used in [11], which is in turn inspired to an alternative proof of Theorem 3.2
given in [17].
To this aim from now on we shall assume, without loss of generality, that u
agrees with the representative v provided by Proposition 3.1 and that U0 =
{u > 0} is a ball centered at the origin. Then, for all 0 < t < esssup u we
denote by Rt the radius of the ball Ut and set, for all x ∈ U0,

Φ(x) =
(µu(u(x))

ωn

)1/n

. (3.17)

To understand the role of the function Φ, observe that if x ∈ U0 is a point
such that u(x) = t, then µu(u(x)) = Ln(Ut). Therefore, Φ(x) is equal to the
radius of the ball Ut.

The following lemma is a crucial step toward the proof of Theorem 3.2.

Lemma 3.3. Under the assumptions of Theorem 3.2, Φ ∈ W 1,∞(U0) and

|∇Φ(x)| = 1 for Ln-a.e. x ∈ U0 \ {u = esssup u} . (3.18)

Proof. We claim that µu ◦ u ∈ W 1,∞(U0) and that

∇(µu◦u)(x)=−Hn−1({u=u(x)}) ∇u(x)
|∇u||{u=u(x)}

χD+
u
(x) for Ln-a.e. x ∈ U0.

(3.19)
From assumption (H), which is equivalent by (3.16) to (H ′), using (3.13) and
Proposition 3.1 (vii), we get that for all 0 ≤ t ≤ esssup u,

µu(t) = Ln({u = esssup u}) +
∫ +∞

t

Hn−1({u = s})
|∇u||{u=s}

ds .

For ε > 0, we set

µu,ε(t) = Ln({u = esssup u}) +
∫ +∞

t

Hn−1({u = s})
|∇u||{u=s} + ε

ds .
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Clearly, µu,ε(t) ↑ µu(t) for every t ≥ 0 as ε ↓ 0. Moreover, µu,ε is Lipschitz
continuous in [0,+∞), and

µ′
u,ε(t) = −H

n−1({u= t})
|∇u||{u=t} + ε

for L1-a.e. t ≥ 0 ,

whence

|µ′
u,ε(t)− µ′

u(t)| ≤ εHn−1({u= t})
|∇u||{u=t}

(|∇u||{u=t} + ε
) for L1-a.e. t ≥ 0 .

Thus, µ′
u,ε(t) → µ′

u(t) L1-a.e. in [0,+∞) as ε → 0, since |∇u||{u=t} �= 0 for

L1-a.e. t ≥ 0, in as much as
Hn−1({u= t})
|∇u||{u=t}

∈ L1(0,∞). This membership and

the fact that

|µ′
u,ε(t)− µ′

u(t)| ≤ Hn−1({u= t})
|∇u||{u=t}

for L1-a.e. t ≥ 0

entail that µ′
u,ε → µ′

u in L1(0,∞). Hence, µu,ε → µu uniformly in (0,∞).
Consequently, the functions µu,ε◦u converge uniformly to µu◦u. Furthermore,
by the chain rule for Sobolev functions (see e.g. [1, Theorem 3.96]),

∇(µu,ε ◦ u)(x) = µ′
u,ε(u(x))∇u(x) = −Hn−1({u = u(x)}) ∇u(x)

|∇u||{u=u(x)} + ε

for Ln-a.e. x ∈ U0 .

The last expression clearly converges to the right-hand side of (3.19). More-
over, from Theorem 3.1, we have that Hn−1({u = t}) = Hn−1(∂Ut) ≤
nωnRn−1

0 for L1-a.e. t ∈ (0, esssup u). Thus,

|∇(µu,ε ◦ u)(x)| ≤ nωnRn−1
0 for Ln-a.e. x ∈ U0 .

By dominated convergence, ∇(µu,ε ◦ u) converges to the right-hand side of
(3.19) in L1(U0). Hence, the claim follows.
To conclude the proof let us now observe that for all t ∈ (0, esssup u),
µu(u(x)) ≥ µu(t) > 0 for all x ∈ U0 \ U t. Therefore, we can compute the
derivatives of Φ in U0 \ U t by the usual chain rule formula for Sobolev func-
tions, thus getting, from (3.19), that for Ln-a.e. x ∈ U0 \ U t

∇Φ(x) = − 1

nω
1/n
n

(µu(u(x)))
1−n

n Hn−1({u=u(x)}) ∇u(x)
|∇u||{u=u(x)}

χD+
u
(x)

= − ∇u(x)
|∇u||{u=u(x)}

χD+
u
(x). (3.20)

Then, (3.18) follows immediately from Proposition 3.1 (ii). In particular, this
proves that Φ is a W 1,∞ function in the open set U0 \ {u = esssup u} (which
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is the difference of an open ball and a closed one). To conclude the proof it
is enough to observe, that since µu,ε ◦ u ∈ W 1,∞(U0), Φ has a continuous
representative in U0 which is constant on the closed ball {u = esssup u}. !"

Notice that Lemma 3.3 is not telling us that Φ is Lipschitz continuous in
U0. It just says that Φ coincides Ln-a.e. with a Lipschitz continuous function,
with Lipschitz constant less than or equal to one. Therefore, we may only
conclude that there exists a set N0, with Ln(N0) = 0 such that

|Φ(x)− Φ(y)| ≤ |x− y| for all x, y ∈ U0 \N0 . (3.21)

However, this information is enough to achieve the proof of Theorem 3.2.

Proof of Theorem 3.2. From the coarea formula (3.5), recalling (iv), (v)
and (vi) of Proposition 3.1, we get∫ +∞

0

Hn−1(∂Ut ∩N0) dt =
∫

N0

|∇u| dx = 0 .

Therefore, there exists a set I0 ⊂ (0,+∞), with L1(I0) = 0, such that

Hn−1(∂Ut ∩N0) = 0 for all t ∈ (0,+∞) \ I0 .

Let us now fix 0 < s < t < esssup u, with s, t �∈ I0. From Proposition 3.1 (v)
we can find two sequences {xh} ⊂ ∂Us \N0 and {yh} ⊂ ∂Ut \N0 such that

u(xh) = s, u(yh) = t for all h, |xh − yh| → dist(∂Us, ∂Ut) .

Since Φ(xh) = Rs and Φ(yh) = Rt, from (3.21) we get that

|Rs −Rt| ≤ lim
h→+∞

|xh − yh| = dist(∂Us, ∂Ut)

Hence, Us and Ut are concentric balls. From this one can easily conclude that
Us and Ut are indeed concentric for all 0 ≤ s < t ≤ esssup u, thus proving the
assertion. !"
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