Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1927))

  • 3685 Accesses

When we look at a differential equation in a very irregular media (composite material, mixed solutions, etc.) from very close, we may see a very complicated problem. However, if we look from far away we may not see the details and the problem may look simpler. The study of this effect in partial differential equations is known as homogenization. The effect of the inhomogeneities oscillating at small scales is often not a simple average and may be hard to predict: a geodesic in an irregular medium will try to avoid the bad areas, the roughness of a surface may affect in nontrivial way the shapes of drops laying on it, etc…

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luis A. Caffarelli and Xavier Cabré. Fully nonlinear elliptic equations, volume 43 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1995.

    Google Scholar 

  2. Luis A. Caffarelli and Rafael de la Llave. Planelike minimizers in periodic media. Comm. Pure Appl. Math., 54(12):1403-1441, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  3. Luis A. Caffarelli, Ki-Ahm Lee, and Antoine Mellet. Singular limit and homogenization for flame propagation in periodic excitable media. Arch. Ration. Mech. Anal., 172(2):153-190, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  4. Luis A. Caffarelli, Ki-Ahm Lee, and Antoine Mellet. Homogenization and flame propagation in periodic excitable media: the asymptotic speed of propagation. Comm. in Pure and Appl. Math., To appear.

    Google Scholar 

  5. Luis A. Caffarelli and Antoine Mellet. Capillary drops on an inhomogeneous surface. Preprint, 2005.

    Google Scholar 

  6. Luis A. Caffarelli and Antoine Mellet. Capillary drops on an inhomogeneous surface: Contact angle hysteresis. Preprint, 2005.

    Google Scholar 

  7. Luis A. Caffarelli, Panagiotis E. Souganidis, and Lihe Wang. Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media. Comm. Pure Appl. Math., 58(3):319-361, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  8. Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1-67, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  9. Gianni Dal Maso and Luciano Modica. Nonlinear stochastic homogenization. Ann. Mat. Pura Appl. (4), 144:347-389, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  10. Gianni Dal Maso and Luciano Modica. Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math., 368:28-42, 1986.

    MATH  MathSciNet  Google Scholar 

  11. Lawrence C. Evans. Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A, 120(3-4):245-265, 1992.

    MATH  MathSciNet  Google Scholar 

  12. Robert Finn. Equilibrium capillary surfaces, volume 284 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1986.

    Google Scholar 

  13. Enrico Giusti. Minimal surfaces and functions of bounded variation, volume 80 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1984.

    Google Scholar 

  14. Eduardo H. A. Gonzalez. Sul problema della goccia appoggiata. Rend. Sem. Mat. Univ. Padova, 55:289-302, 1976.

    MathSciNet  Google Scholar 

  15. C Huh and S.G Mason. Effects of surface roughness on wetting (theoretical). J. Colloid Interface Sci, 60:11-38.

    Google Scholar 

  16. J.F. Joanny and P.G. de Gennes. A model for contact angle hysteresis. J. Chem. Phys., 81, 1984.

    Google Scholar 

  17. L. Leger and J.F. Joanny. Liquid spreading. Rep. Prog. Phys., pages 431-486, 1992.

    Google Scholar 

  18. Jürgen Moser. Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré Anal. Non Linéaire, 3(3):229-272, 1986.

    MATH  Google Scholar 

  19. Jürgen Moser. A stability theorem for minimal foliations on a torus. Ergodic Theory Dynam. Systems, 8* (Charles Conley Memorial Issue):251-281, 1988.

    Google Scholar 

  20. Jürgen Moser. Minimal foliations on a torus. In Topics in calculus of variations (Montecatini Terme, 1987), volume 1365 of Lecture Notes in Math., pages 62-99. Springer, Berlin, 1989.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caffarelli, L., Silvestre, L. (2008). Issues in Homogenization for Problems with Non Divergence Structure. In: Dacorogna, B., Marcellini, P. (eds) Calculus of Variations and Nonlinear Partial Differential Equations. Lecture Notes in Mathematics, vol 1927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75914-0_2

Download citation

Publish with us

Policies and ethics