Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1929))

  • 2916 Accesses

Long-range Dependence in Economics and Finance

As mentioned in the paper (WTT99), long-range dependence in economics and finance has a long history and is an area of active research (e.g., see (Lo91), (CKW95)). The importance of long-range dependent processes as stochastic models lies in the fact that they provide an explanation and interpretation of an empirical law that is commonly referred to as the Hurst law or Hurst effect. In short, for a given set of observations \(\left\{ {X_{i,} i \ge 1} \right\}\) with partial sum \(Y\left( n \right) = \sum\limits_{i = 1}^n {X_i ,n \ge 1,} \) and sample variance \(S^2 \left( n \right) = n^{ - 1} \sum\limits_{i = 1}^n {\left( {X_i - n^{ - 1} Y\left( n \right)} \right)^2 ,n \ge 1,} \) the rescaled adjusted range statistic or R/S-statistic is defined by

$$\frac{R}{S}\left( n \right) = \frac{1}{{S\left( n \right)}}\left( {\mathop {\max }\limits_{0 \le t \le n} \left( {Y\left( t \right) - \frac{t}{n}Y\left( n \right)} \right) - \mathop {\min }\limits_{0 \le t \le n} \left( {Y\left( t \right) - \frac{t}{n}Y\left( n \right)} \right)} \right),n \ge 1.$$

Hurst in (Hur51) found that many naturally occurring empirical records appear to be well represented by the relation \(E\left( {\left( {R/S} \right)\left( n \right)} \right) \sim c_1 n^H \) as \(n \to \infty \) with typical values of the Hurst parameter \(H \in \left( {1/2,1} \right)\), and c 1 a finite positive constant not depending on n. But in the case when the observations come from a short-range dependent model, then \(E\left( {R/S\left( n \right)} \right) \sim c_2 n^{1/2} \) as \(n \to \infty \), where c 2 does not depend on n. The discrepancy between these two relations is called the Hurst effect or Hurst phenomenon. The analysis of the R/S-statistic, provided in (WTT99), (TTW95) and (TT97), leads to the recommendation to use a diverse portfolio of time-domain-based and frequency-domain-based graphics and statistical methods, including the graphical R/S-method, the modified R/S-statistic (Lo91) and Whittle’s approach. Also, another (possibly, surprising) recommendation is: in the case when statistical analysis cannot be expected to provide a definitive answer concerning the presence or absence of long-range dependence in asset price returns, a more revealing and also much more challenging approach to tackle this problem consists of providing a mathematically rigorous physical “explanation” for the presence or absence of the long-range dependence phenomenon in stock returns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arino, O., Sánchez, E., Bravo de la Parra, R., Auger, P.: A singular perturbation in an age-structured population model. SIAM J. Appl. Math., 60, 408–436 (1999)

    Google Scholar 

  2. Arino, O., Sánchez, E., Bravo de la Parra, R.: A model of an age-structured population in a multipatch environment. Math. Comput. Model., 27, 137–150 (1998)

    Article  MATH  Google Scholar 

  3. Auger, P.: Dynamics and thermodynamics in hierarchically organized systems. Pergamon Press, Oxford (1989)

    Google Scholar 

  4. Auger, P., Benoit, E.: A prey–predator model in a multi-patch environment with different time scales. J. Biol. Syst., 1(2), 187–197 (1993)

    Article  Google Scholar 

  5. Auger, P., Kooi, B., Bravo de la Parra, R., Poggiale, J.C.: Bifurcation analysis of a predator–prey model with predators using hawk and dove tactics. J. Theor. Biol., 238, 597–607 (2006)

    Article  Google Scholar 

  6. Auger, P., Lett. C.: Integrative biology: linking levels of organization. C. R. Acad. Sci. Paris, Biol., 326, 517–522 (2003)

    Google Scholar 

  7. Auger, P., Bravo de la Parra, R., Morand, S., Sánchez, E.: A predator–prey model with predators using hawk and dove tactics. Math. Biosci., 177/178, 185–200 (2002)

    Article  Google Scholar 

  8. Auger, P., Bravo de la Parra, R.: Methods of aggregation of variables in population dynamics. C. R. Acad. Sci. Paris, Sciences de la vie, 323, 665–674 (2000)

    Google Scholar 

  9. Auger, P., Charles, S., Viala, M., Poggiale, J.C.: Aggregation and emergence in ecological modelling: integration of the ecological levels. Ecol. Model., 127, 11–20 (2000)

    Article  Google Scholar 

  10. Auger, P., Poggiale, J.C., Charles, S.: Emergence of individual behaviour at the population level: effects of density dependent migration on population dynamics. C. R. Acad. Sci. Paris, Sciences de la Vie, 323, 119–127 (2000)

    Google Scholar 

  11. Auger, P., Chiorino, G., Poggiale, J.C.: Aggregation, emergence and immergence in hierarchically organized systems. Int. J. Gen. Syst., 27(4–5), 349–371 (1999)

    Article  MATH  Google Scholar 

  12. Auger, P., Poggiale, J.C.: Aggregation and Emergence in Systems of Ordinary Differential Equations. Math. Comput. Model., 27(4), 1–22 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Auger, P., Poggiale, J.C.: Aggregation and emergence in hierarchically organized systems: population dynamics. Acta Biotheor., 44, 301–316 (1996)

    Article  Google Scholar 

  14. Auger, P., Poggiale, J.C.: Emergence of population growth models: fast migration and slow growth. J. Theor. Biol., 182, 99–108 (1996)

    Article  Google Scholar 

  15. Auger, P., Poggiale, J.C.: Emerging properties in population dynamics with different time scales. J. Biol. Syst., 3(2), 591–602 (1995)

    Article  Google Scholar 

  16. Auger, P., Roussarie, R.: Complex ecological models with simple dynamics: from individuals to populations. Acta Biotheor., 42, 111–136 (1994)

    Article  Google Scholar 

  17. Auger, P., Pontier, D.: Fast game theory coupled to slow population dynamics: the case of domestic cat populations. Math. Biosci., 148, 65–82 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Auger, P., Bravo de la Parra, R., Sánchez, E.: Hawk-dove game and competition dynamics. Math. Comput. Model., Special issue Aggregation and emergence in population dynamics. Antonelli, P., Auger, P., guest-Editors, 27(4), 89–98 (1998)

    Google Scholar 

  19. Bates, P.W., Lu, K., Zeng, C.: Invariant foliations near normally hyperbolic invariant manifolds for semiflows. Trans. Am. Math. Soc., 352, 4641–4676 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bates, P.W., Lu, K., Zeng, C.: Existence and persistence of invariant manifolds for semiflow in Banach space. Memoir. Am. Math. Soc., 135, 129 (1998)

    MathSciNet  Google Scholar 

  21. Benoît, E.: Canards et enlacements. Extraits des Publications Mathématiques de l’IHES, 72, 63–91 (1990)

    MATH  Google Scholar 

  22. Benoît, E.: Systèmes lents-rapides dans R3 et leurs canards. Astérisque, 109/110, 159–191 (1983)

    Google Scholar 

  23. Benoît, E., Callot, J.L., Diener, F., Diener, M.: Chasse au canard. Collection Mathématique, 31/32(1–3), 37–119 (1981)

    Google Scholar 

  24. Bernstein, C., Auger, P.M., Poggiale, J.C.: Predator migration decisions, the ideal free distribution and predator–prey dynamics. Am. Nat., (1999), 153(3), 267–281 (1999)

    Google Scholar 

  25. Blasco, A., Sanz, L., Auger, P., Bravo de la Parra, R.: Linear discrete population models with two time scales in fast changing environments II: non autonomous case. Acta Biotheor., 50(1), 15–38 (2002)

    Article  Google Scholar 

  26. Blasco, A., Sanz, L., Auger, P., Bravo de la Parra, R.: Linear discrete population models with two time scales in fast changing environments I: autonomous case. Acta Biotheor., 49, 261–276 (2001)

    Article  Google Scholar 

  27. Bravo de la parra, R., Arino, O., Sánchez, E., Auger, P.: A model of an age-structured population with two time scales. Math. Comput. Model., 31, 17–26 (2000)

    MATH  Google Scholar 

  28. Bravo de la Parra, R., Sánchez, E., Auger, P.: Time scales in density dependent discrete models. J. Biol. Syst., 5, 111–129 (1997)

    Article  MATH  Google Scholar 

  29. Bravo de la Parra, R., Auger, P., Sánchez, E.: Aggregation methods in discrete models. J. Biol. Syst., 3, 603–612 (1995)

    Article  Google Scholar 

  30. Bravo de la Parra, R., Sánchez, E.: Aggregation methods in population dynamics discrete models. Math. Comput. Model., 27(4), 23–39 (1998)

    Article  MATH  Google Scholar 

  31. Bravo de la Parra, R., Sánchez, E., Arino, O., Auger, P.: A Discrete Model with Density Dependent Fast Migration. Math. Biosci., 157, 91–110 (1999)

    Article  MathSciNet  Google Scholar 

  32. Carr, J.: Applications of centre manifold theory. Springer, Berlin Heidelberg New York (1981)

    MATH  Google Scholar 

  33. Caswell, H.: Matrix population models. Sinauer Associates, Sunderland, MA, USA (2001)

    Google Scholar 

  34. Charles, S., Bravo de la Parra, R., Mallet, J.P., Persat, H., Auger, P.: Population dynamics modelling in an hierarchical arborescent river network: an attempt with Salmo trutta. Acta Biotheor., 46, 223–234 (1998)

    Article  Google Scholar 

  35. Charles, S., Bravo de la Parra, R., Mallet, J.P., Persat, H., Auger, P.: A density dependent model describing Salmo trutta population dynamics in an arborescent river network: effects of dams and channelling. C. R. Acad. Sci. Paris, Sciences de la vie, 321, 979–990 (1998)

    Google Scholar 

  36. Charles, S., Bravo de la Parra, R., Mallet, J.P., Persat, H., Auger, P.: Annual spawning migrations in modeling brown trout population dynamics inside an arborescent river network. Ecol. Model., 133, 15–31 (2000)

    Article  Google Scholar 

  37. Chaumot, A., Charles, S., Flammarion, P., Garric, J., Auger, P.: Using aggregation methods to assess toxicant effects on population dynamics in spatial systems. Ecol. Appl., 12(6), 1771–1784 (2002)

    Article  Google Scholar 

  38. Chaumot, A., Charles, S., Flammarion, P., Auger, P.: Ecotoxicology and spatial modeling in population dynamics: an attempt with brown trout. Environ. Toxicol. Chem., 22(5), 958–969 (2003)

    Article  Google Scholar 

  39. Chaumot, A., Charles, S., Flammarion, P., Auger, P.: Do migratory or demographic disruptions rule the population impact of pollution in spatial networks? Theor. Pop. Biol., 64, 473–480 (2003)

    Article  MATH  Google Scholar 

  40. Chiorino, O., Auger, P., Chasse, J.L., Charles, S.: Behavioral choices based on patch selection: a model using aggregation methods. Math. Biosci., 157, 189–216 (1999)

    Article  MathSciNet  Google Scholar 

  41. Comins, H.N., Hassell, M.P., May, R.M.: The spatial dynamics of host–parasitoid systems. J. Anim. Ecol., 61, 735–748 (1992)

    Article  Google Scholar 

  42. De Feo, O., Rinaldi, S.: Singular homoclinic bifurcations in tritrophic food chains. Math. biosci., 148, 7–20 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  43. Diener, M.: Canards et bifurcations. In: Outils et modèles mathématiques pour l’automatique, l’analyse des systèmes et le traitement du signal, vol. 3, Publication du CNRS, 289–313 (1983)

    Google Scholar 

  44. Diener, M.: Etude générique des canards. Thesis, Université de Strasbourg (1981)

    Google Scholar 

  45. Dubreuil, E., Auger, P., Gaillard, J.M., Khaladi, M.: Effects of aggressive behaviour on age structured population dynamics. Ecol. Model., 193, 777–786 (2006)

    Article  Google Scholar 

  46. Dumortier, F., Roussarie, R.: Geometric singular perturbation theory beyond normal hyperbolicity. In: Jones, C.K.R.T., Khibnik, A.I. (eds) Multiple time scale dynamical systems. Springer, Berlin Heidelberg New York (2000)

    Google Scholar 

  47. Dumortier, F., Roussarie, R.: Canard cycles and center manifolds. Memoir. Am. Math. Soc., 121(577), 1–100 (1996)

    MathSciNet  Google Scholar 

  48. Edelstein-Keshet, L.: Mathematical models in biology. Random House, New York (1989)

    Google Scholar 

  49. Fenichel, N.: Persistence and Smoothness of Invariant Manifolds for Flows. Indiana Univ. Math. J., 21(3), 193–226 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  50. Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant manifolds. Lecture notes in mathematics vol. 583. Springer, Berlin Heidelberg New York (1977)

    Google Scholar 

  51. Hofbauer, J., Sigmund, K.: Evolutionary games and population dynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  52. Iwasa, Y., Andreasen, V., Levin, S.: Aggregation in model ecosystems. I. Perfect aggregation. Ecol. Model., 37, 287–302 (1987)

    Article  Google Scholar 

  53. Iwasa, Y., Levin, S., Andreasen, V.: Aggregation in model ecosystems. II. Approximate Aggregation. IMA. J. Math. Appl. Med. Biol., 6, 1–23 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  54. Kaper, T.J., Jones, C.K.R.T.: A primer on the exchange lemma for fast-slow systems. In: Jones, C.K.R.T., Khibnik, A.I. (eds) Multiple time scale dynamical systems. Springer, Berlin Heidelberg New York (2000)

    Google Scholar 

  55. Kooi, B.W., Poggiale, J.C., Auger, P.M.: Aggregation methods in food chains. Math. Comput. Model., 27(4), 109–120 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  56. Krylov, N., Bogoliubov, N.: The application of methods of nonlinear mechanics to the theory of stationary oscillations. Publication 8 of the Ukrainian Academy of Science, Kiev (1934)

    Google Scholar 

  57. Lett, C., Auger, P., Bravo de la Parra, R.: Migration frequency and the persistence of host–parasitoid interactions. J. Theor. Biol., 221, 639–654 (2003)

    Article  MathSciNet  Google Scholar 

  58. Lett, C., Auger, P., Fleury, F.: Effects of asymmetric dispersal and environmental gradients on the stability of host–parasitoid systems. Oikos, 109, 603–613 (2005)

    Article  Google Scholar 

  59. Lotka, A.J.: Undamped oscillations derived from the mass action law. J. Am. Chem. Soc., 42, 1595–1599 (1920)

    Article  Google Scholar 

  60. Lotka, A.J.: Elements of physical biology. William and Wilkins, Baltimore (1925)

    MATH  Google Scholar 

  61. Michalski, J., Poggiale, J.C., Arditi, R., Auger, P.: Effects of migrations modes on patchy predator–prey systems. J. Theor. Biol., 185, 459–474 (1997)

    Article  Google Scholar 

  62. Mchich, R., Auger, P., Poggiale, J.C.: Effect of predator density dependent dispersal of prey on stability of a predator–prey system. Math. Biosci., 206, 343–356 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  63. Mchich, R., Auger, P., Raïssi, N.: The stabilizability of a controlled system describing the dynamics of a fishery. C. R. Acad. Sci. Paris, Biol., 329, 337–350 (2005)

    Google Scholar 

  64. Mchich, R., Auger, P., Bravo de la Parra, R., Raïssi, N.: Dynamics of a fishery on two fishing zones with fish stock dependent migrations: aggregation and control. Ecol. Model., 158, 51–62 (2002)

    Article  Google Scholar 

  65. Muratori, S., Rinaldi, S.: Low and high frequency oscillations in three dimensional food chain systems. SIAM J. Appl. Math., 52(6), 1688–1706 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  66. Murray, J.D.: Mathematical biology. Springer, Berlin Heidelberg New York (1989)

    MATH  Google Scholar 

  67. Nguyen Huu, T., Lett, C., Poggiale J.C., Auger, P.: Effects of migration frequency on global host–parasitoid spatial dynamics with unstable local dynamics. Ecol. Model., 177, 290–295 (2006)

    Article  Google Scholar 

  68. Nguyen-Huu, T., Lett, C., Auger, P., Poggiale, J.C.: Spatial synchrony in host–parasitoid models using aggregation of variables. Math. Biosci., 203, 204–221 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  69. Nicholson, A.J.: The balance of animal populations. J. Anim. Ecol., 2, 132–178 (1933)

    Google Scholar 

  70. Nicholson, A.J., Bailey, V.A.: The balance of animal populations, part I. Proc. Zool. Soc. Lond., 3, 551–598 (1935)

    Google Scholar 

  71. Pichancourt, J.B., Burel, F., Auger, P.: Assessing the effect of habitat fragmentation on population dynamics: an implicit modelling approach. Ecol. Model., 192, 543–556 (2006)

    Article  Google Scholar 

  72. Pliss, V.A., Sell, G.R.: Perturbations of normally hyperbolic manifolds with applications to the Navier–Stokes equations. J. Differ. Equat., 169, 396–492 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  73. Poggiale, J.C.: Lotka–Volterra’s model and migrations: breaking of the well-known center. Math. Comput. Model., 27(4), 51–62 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  74. Poggiale, J.C.: From behavioural to population level: growth and competition. Math. Comput. Model., 27(4), 41–50 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  75. Poggiale, J.C.: Predator–prey models in heterogeneous environment: emergence of functional response. Math. Comp. Model., 27(4), 63–71 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  76. Poggiale, J.C., Michalski, J., Arditi, R.: Emergence of donor control in patchy predator–prey systems. Bull. Math. Biol., 60(6), 1149–1166 (1998)

    Article  MATH  Google Scholar 

  77. Poggiale, J.C., Auger, P.: Impact of spatial heterogeneity on a predator–prey system dynamics. C. R. Biol., 327, 1058–1063 (2004)

    Article  Google Scholar 

  78. Poggiale, J.C., Auger, P.: Fast oscillating migrations in a predator–prey model. Methods Model. Meth. Appl. Sci., 6(2), 217–226 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  79. Poggiale, J.C., Auger, P., Roussarie, R.: Perturbations of the classical Lotka–Volterra system by behavioural sequences. Acta Biotheor., 43, 27–39 (1995)

    Article  Google Scholar 

  80. Sakamoto, K.: Invariant manifolds in singular perturbations problems for ordinary differential equations. Proc. Roy. Soc. Ed., 116A, 45–78 (1990)

    MathSciNet  Google Scholar 

  81. Sánchez, E., Bravo de la Parra, R., Auger, P., Gómez-Mourelo, P.: Time scales in linear delayed differential equations. J. math. Anal. Appl., 323, 680–699 (2006)

    Article  Google Scholar 

  82. Sánchez, E., Bravo de la Parra, R., Auger, P.: Discrete models with different time-scales. Acta Biotheor., 43, 465–479 (1995)

    Article  Google Scholar 

  83. Sánchez, E., Auger, P., Bravo de la Parra, R.: Influence of individual aggressiveness on the dynamics of competitive populations. Acta Biotheor., 45, 321–333 (1997)

    Article  Google Scholar 

  84. Sanz, L., Bravo de la Parra, R.: Variables aggregation in time varying discrete systems. Acta Biotheor., 46, 273–297 (1998)

    Article  Google Scholar 

  85. Sanz, L., Bravo de la Parra, R.: Variables aggregation in a time discrete linear model. Math. Biosci., 157, 111–146 (1999)

    Article  MathSciNet  Google Scholar 

  86. Sanz, L., Bravo de la Parra, R.: Time scales in stochastic multiregional models. Nonlinear Anal. R. World Appl., 1, 89–122 (2000)

    Article  MATH  Google Scholar 

  87. Sanz, L., Bravo de la Parra, R.: Time scales in a non autonomous linear discrete model. Math. Model. Meth. Appl. Sci., 11(7), 1203–1235 (2001)

    Article  MATH  Google Scholar 

  88. Sanz, L., Bravo de la Parra, R.: Approximate reduction techniques in population models with two time scales: study of the approximation. Acta Biotheor., 50(4), 297–322 (2002)

    Article  Google Scholar 

  89. Sanz, L., Bravo de la Parra, R.: Approximate reduction of multiregional models with environmental stochasticity. Math. Biosci., 206, 134–154 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  90. Sanz, L., Bravo de la Parra, R., Sánchez, E.: Approximate reduction of nonlinear discrete models with two time scales. J. Differ. Equ. Appl., DOI: 10.1080/10236190701709036 (2008)

    Google Scholar 

  91. Scheffer, M., Rinaldi, S., Kuztnetsov, Y.A., Van Nes, E.H.: Seasonal dynamics of Daphnia and algae explained as a periodically forced predator–prey system. Oikos, 80(3), 519–532 (1997)

    Article  Google Scholar 

  92. Scheffer, M., De Boer, R.J.: Implications of spatial heterogeneity for the paradox of enrichment. Ecol., 76(7), 2270–2277 (1995)

    Article  Google Scholar 

  93. Stewart, G.W, Guang Sun, J.I.: Matrix perturbation theory. Academic Press, Boston (1990)

    MATH  Google Scholar 

  94. Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Accad. Naz. dei Lincei. Ser. VI, 2, 31–113 (1926)

    Google Scholar 

  95. Wiggins, S.: Normally Hyperbolic invariant manifolds in dynamical systems. Springer, Berlin Heidelberg New York (1994)

    MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Financial Applications of Fractional Brownian Motion. In: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Mathematics, vol 1929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75873-0_5

Download citation

Publish with us

Policies and ethics