Skip to main content

Multilevel Schwarz and Multigrid Preconditioners for the Bidomain System

  • Conference paper
Domain Decomposition Methods in Science and Engineering XVII

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 60))

Two parallel and scalable multilevel preconditioners for the Bidomain system in computational electrocardiology are introduced and studied. The Bidomain system, consisting of two degenerate parabolic reaction-diffusion equations coupled with a stiff system of several ordinary differential equations, generates very ill-conditioned discrete systems when discretized with semi-implicit methods in time and finite elements in space. The multilevel preconditioners presented in this paper attain the best performance to date, both in terms of convergence rate and solution time and outperform the simpler one-level preconditioners previously introduced. Parallel numerical results, using the PETSc library and run on Linux Clusters, show the scalability of the proposed preconditioners and their efficiency on largescale simulations of a complete cardiac cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Balay et al. PETSc users manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.

    Google Scholar 

  2. P. Colli Franzone and L. F. Pavarino. A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Models Methods Appl. Sci., 14(6):883–911, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Colli Franzone and G. Savaré. Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level. In A. Lorenzi and B. Ruf, editors, Evolution Equations, Semigroups and Functional Analysis, pages 49–78. Birkhäuser, 2002.

    Google Scholar 

  4. I. J. Le Grice et al. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. (Heart Circ. Physiol.), 269(38):H571–H582, 1995.

    Google Scholar 

  5. C. Luo and Y. Rudy. A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ. Res., 68(6):1501–1526, 1991.

    Google Scholar 

  6. M. Murillo and X.C. Cai. A fully implicit parallel algorithm for simulating the nonlinear electrical activity of the heart. Numer. Lin. Alg. Appl., 11(2–3):261–277, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. F. Pavarino and P. Colli Franzone. Parallel solution of cardiac reaction-diffusion models. In R. Kornhuber et al., editor, Domain Decomposition Methods in Science and Engineering, volume 40 of Springer LNCSE, pages 669–676. Springer-Verlag, 2004.

    Google Scholar 

  8. M. Pennacchio and V. Simoncini. Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process. J. Comput. Appl. Math., 145(1):49–70, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. Skouibine and W. Krassowska. Increasing the computational efficiency of a bidomain model of defibrillation using a time-dependent activating function. Ann. Biomed. Eng., 28:772–780, 2000.

    Article  Google Scholar 

  10. B.F. Smith, P.E. Bjørstad, and W.D. Gropp. Domain Decomposition. Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  11. D. Streeter. Gross morphology and fiber geometry in the heart. In R. Berne, editor, Handbook of Physiology, volume 1 of The Heart, pages 61–112. Williams & Wilkins, Baltimore, 1979.

    Google Scholar 

  12. M. Veneroni. Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Technical report, I.M.A.T.I.-C.N.R., 2006.

    Google Scholar 

  13. E. J. Vigmond, F. Aguel, and N. A. Trayanova. Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Eng., 49(11):1260–1269, 2002.

    Article  Google Scholar 

  14. R. Weber dos Santos. Modelling Cardiac Electrophysiology. PhD thesis, Univ. of Rio de Janeiro, Dept. of Mathematics, 2002.

    Google Scholar 

  15. R. Weber dos Santos, G. Plank, S. Bauer, and Bauer. Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng., 51(11):1960–1968, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scacchi, S., Pavarino, L.F. (2008). Multilevel Schwarz and Multigrid Preconditioners for the Bidomain System. In: Langer, U., Discacciati, M., Keyes, D.E., Widlund, O.B., Zulehner, W. (eds) Domain Decomposition Methods in Science and Engineering XVII. Lecture Notes in Computational Science and Engineering, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75199-1_79

Download citation

Publish with us

Policies and ethics