Skip to main content

VLNDEF Project for Geodetic Infrastructure Definition of Northern Victoria Land, Antarctica

  • Chapter
Geodetic and Geophysical Observations in Antarctica

Abstract

Scientific investigations in Antarctica are, for many different reasons, a challenging and fascinating task. Measurements, observations and field operations must be carefully planned well in advance and the capacity of successfully meeting the goals of a scientific project is often related to the capacity of forecasting and anticipating the many different potential mishaps. In order to do that, experience and logistic support are crucial. On the scientific side, the team must be aware of its tasks and be prepared to carry out observations in a hostile environment: both technology and human resources have to be suitably selected, prepared, tested and trained. On the logistic side, nations, institutions and any other organisation involved in the expeditions must ensure the proper amount of competence and practical support.

The history of modern Italian Antarctic expeditions dates back to the middle 80’s when the first infrastructures of “Mario Zucchelli Station”, formerly Terra Nova Bay Station, were settled at Terra Nova Bay, Northern Victoria Land. Only a few years later, the first geodetic infrastructures were planned and built. Italian geodetic facilities and activities were, ever since, being constantly maintained and developed. Nowadays, the most remarkable geodetic infrastructures are the permanent Global Positioning System (GPS) station (TNB1) installed at Mario Zucchelli and the GPS geodetic network Victoria Land Network for DEFormation control (VLNDEF) entirely deployed on an area extending between 71ˆS and 76ˆS and 160ˆ E and 170ˆE.

These facilities do not only allow carrying out utmost geodetic investigations but also posses interesting capacities on the international multidisciplinary scientific scenario.

In order to fully exploit their potentiality, management and maintenance of the infrastructure are crucial; nevertheless, in order to perform high quality scientific research, these abilities must be coupled with the knowledge concerning a proper use and a correct processing of the information that these infrastructures can provide.

This work focuses on the different methods that can be applied to process the observations that are performed with GPS technique in Northern Victoria Land, aiming at reaching the highest accuracy of results and assuring the larger significance and versatility of the processing outcomes. Three software were used for the analysis, namely: Bernese v.5.0, Gipsy/Oasis II and Gamit/Globk. The working data sets are (i) the permanent GPS station TNB1 observations continuously performed since 1998 and (ii) the five episodic campaigns performed on the sites of VLNDEF.

The two infrastructures can be regarded as neat examples of standard geodetic installation in Antarctica. Therefore, the technological solutions that were adopted and applied for establishing the GPS permanent station and the VLNDEF geodetic network as well as the data processing strategies and the data analysis procedures that were tested on their observation will be illustrated in detail. The results will be presented, compared and discussed. Furthermore, their potentials and role in geodetic research will be carefully described; their versatility will also be highlighted in the foreground of a multidisciplinary Antarctic international scientific activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altamimi Z., P. Sillard, C. Boucher (2002), ITRF2000 A new release of the international terrestrial reference frame for earth science applications, J. Geophys. Res., 107( B10), 2214, doi:10.1029/2001JB000561.

    Article  Google Scholar 

  • Altamimi Z., C. Boucher, P. Willis (2005), Terrestrial reference requirements within GGOS perspective, J. Geodyn., 40, 363–374.

    Article  Google Scholar 

  • Argus D. & R. Gordon (1991), No-Net Rotational model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett., 18(11), 2039–2042.

    Article  Google Scholar 

  • Berg H. (1948), Allgemeine Meteorologie, Dummler’s Verlag, Bonn, Germany.

    Google Scholar 

  • Beutler G., E. Brockmann, W. Gurtner, U. Hugentobler, L. Mervart, M. Rothacher (1994), Extended orbit modeling techniques at the CODE Processing Center of the International GPS Service for Geodynamics (IGS): theory and initial results, Manuscripta Geodetica, 19, 367–386.

    Google Scholar 

  • Beutler G., W. Gurtner, M. Rothacher, T. Schildknecht, I. Bauersima (1986), Evaluation of the March 1985: HPBL test: Fiducial point concept versus free network solutions. Presented at: AGU Fall Meeting, San Francisco, CA, 13.

    Google Scholar 

  • Blewitt J (1993), Advances in global positioning system technology for geodynamics investigations: 1978–1992, AGU Crustal Dynamics Monogr. Contributions of Space Geodesy to Geodynamics: Technol., 25, 195–213

    Google Scholar 

  • Capra, A., A. Gubellini, F. Radicioni, L. Vittuari (1996), Italian Geodetic activities in Antarctica, In Meloni, A & Morelli, A., eds. Italian Geophysical Observatories in Antarctica, 2–20.

    Google Scholar 

  • Capra, A., S. Gandolfi, F. Mancini, M. Negusini, P. Sarti, L. Vittuari (2004), Terra Nova Bay GPS permanent station, In Brancolini, G., G hezzo, C. & Morelli, A., eds. Terra Antartica Reports, 9, 21–24.

    Google Scholar 

  • Capra A., F. Mancini, M. Negusini (2007), GPS a geodetic tool for geodynamics in northern Victoria Land, Antarctica, Antarctic Sci., 19(1), 107–114.

    Article  Google Scholar 

  • Chen G & T. A. Herring (1997), Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, J. Geoph. Res., 102(B9), 20489–20502.

    Article  Google Scholar 

  • Colombo O. L. (1986), Ephemeris errors of GPS satellites, Bullettin Geodesique, 60, 64–84.

    Article  Google Scholar 

  • Dach R., U. Hugentobler, P. Fridez and M. Meindl (2007), Bernese GPS Software Version 5.0, Astronomical Institute of University of Berne, 640 pp.

    Google Scholar 

  • Davidson J. M., C. L. Thornton, C. J. Vegos, L. E. Young, T. P. Yunck (1985), The March 1985 demonstration of the fiducial network concept for GPS geodesy: A preliminary report, Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, 2, 603–612.

    Google Scholar 

  • DeMets C., R. Gordon, D. Argus (1990), Current plate motions, Geophys. J. Int., 101, 425–478.

    Article  Google Scholar 

  • DeMets C., R. G. Gordon, D. F. Argus, S. Stein (1994), Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophysical Research Letters, 21(20), 2191–2194.

    Article  Google Scholar 

  • Dietrich R., R. Dach, G. Engelhard, J. Ihde, W. Korth, H. J. Kutterer, K. Lindner, M. Mayer, F. Menge, H. Miller, C. Muller, W. Niemeier, J. Perlt, M. Pohl, H. Salbach, H. W. Schenke, T. Schone, G. Seeber, A. Veit, C. Volksen, (2001), ITRF coordinates and plate velocities from repeated GPS campaigns in Antarctica-an analysis based on different individual solutions, J. Geod., 74, 756–766.

    Article  Google Scholar 

  • Dietrich, R., A. Rülke, J. Ihde, K. Lindner, H. Miller, W. Niemeier, H. W. Schenke, G. Seeber (2004), Plate kinematics and deformation status of the Antarctic Peninsula based on GPS, Gl. Plan. Change, 42(1–4), 313–321.

    Article  Google Scholar 

  • Dixon T. H., M. Miller, F. Farina, H. Wang, D. Johnson (2000), Present-day motion of the Sierra Nevada block and some tectonic implications for the Basin and Range province, North American Cordillera, Tectonics, 19, 1–24.

    Article  Google Scholar 

  • Dong. D. N., T. A. Herring, R. W. King (1998), Estimating regional deformation from a combination of space and terrestrial geodetic data, J. Geod., 72, 200–214.

    Article  Google Scholar 

  • Donnellan A. & B. P. Luyendyk (2004), GPS evidence for a coherent Antarctic plate and for postglacial rebound in Marie Byrd Land, Global and Planetary Change, 42, 305–311.

    Article  Google Scholar 

  • GANOVEX TEAM (1987), Geological map of the Northern Victoria Land, Antarctica, 1:500000. Explanatory notes. Geol. Jarbh., B66, 779.

    Google Scholar 

  • Gouldman M. W., B. R. Hermann, E. R. Swift (1986), Absolute station position solutions for sites involved in the Spring 1985 GPS precision baseline test, Proceedings of the Fourth International Geodetic Symposium on Satellite Positioning, Austin, Tex., 2, 1045–1058.

    Google Scholar 

  • Gubellini A., M. Marsella, D. Postpischl, F. Radicioni, L. Vittuari (1994), The Italian Geodetic Network in Antarctica, Terra Antartica, 1, 173–177.

    Google Scholar 

  • Gubellini A. & D. Postpischl (1991), The Mount Melbourne (Antarctica) geodetic network, Memorie della Società Geologica Italiana, 46, 595–610.

    Google Scholar 

  • Hamilton R. J., B. P. Luyendik, C. C. Sorlien (2001), Cenozoic tectonics of the Cape Roberts Rift Basin and Transantarctic Mountains Front, Southwestern Ross Sea, Antarctica, Tectonics, 20, 325–342.

    Article  Google Scholar 

  • Heflin M. B., W. I. Bertiger, G. Blewitt, A. P. Freedman, K. J. Hurst, S. M. Lichten, U. J. Lindqwister, Y. Vigue, F. H. Webb, T. P. Yunck, J. F. Zumberge (1992), Global geodesy using GPS without fiducial sites, Geophys. Res. Lett., 19, 131–134.

    Article  Google Scholar 

  • Herring T. A., R. W. King, S. C. McClusky (2006), Gamit Reference Manual, GPS Analysis at MIT, Release 10.2, 28th September 2006.

    Google Scholar 

  • Hudnut K. W., Z. Shen, M. Murray, S. McClusky, R. King, T. Herring, B. Hager, Y. Feng,. P. Fang, A. Donnellan, Y. Bock (1996), Co-Seismic displacements of the 1994 Northridge, California, Earthquake, Bull. Seism. Soc. of America, 86(1B), S19–S36.

    Google Scholar 

  • Ivins E. R., T. S. James, V. Klemann (2003), Glacial isostatic stress shadowing by the Antarctic ice sheet, J. Geophys. Res., 108(B12), 2560, 1–21.

    Article  Google Scholar 

  • Ivins E. R. & T. S. James (2005), Antarctic glacial isostatic adjustment: a new assessment, Antarctic Sci., 17(4), 541–553.

    Article  Google Scholar 

  • Kaufmann G., P. Wu, E. R. Ivins (2005), Lateral viscosity variations beneath Antarctica and their implications on regional rebound motions and seismotectonics, J. Geodyn., 39, 165–181.

    Article  Google Scholar 

  • King R. W. & Y. Bock (2000), Documentation for the Gamit GPS Analysis Software, Department of Earth and Planetary Sciences, Massachussets Institute of Technology, Cambridge, Scripps Institution of Oceanography University of California San Diego.

    Google Scholar 

  • Kouba J. & P. Heroux (2000), GPS Precise point positioning using IGS orbit products, GPS solutions, 5(2), 12–28.

    Article  Google Scholar 

  • Matsumoto K., T. Takanezawa, M. Ooe (2000), Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan, J. Oceanog., 56, 567–581.

    Article  Google Scholar 

  • Mancini F., A. Capra, S. Gandolfi, P. Sarti, L. Vittuari (2004), VLNDEF (Victoria Land Network for DEFormation control). Monumentation during the GANOVEX VIII – ItaliaAntartide XV: Survey and data processing, Terra Antartica, 11(1), 35–38.

    Google Scholar 

  • Manning J. (2005), The evolution of the GIANT program, Report of Fifth Antractic Geodesy Symposium, SCAR Report, 23, 1–6.

    Google Scholar 

  • Mao A., G. Cristopher, A. Harrison, T. H. Dixon (1999), Noise in GPS coordinate time series, J. Geophys. Res., 104(B4), 2797–2816.

    Google Scholar 

  • Mazzotti S., H. Dragert, J. Henton, M. Schmidt, R. Hyndman, T. James, Y. Lu, M. Craymer (2003), Current tectonics of northern Cascadia from a decade of GPS measurements, J. Geophys. Res., 108(B12), 2554, doi:10.1029/2003JB002653.

    Google Scholar 

  • McCarthy D. D. (Ed.) (1996), IERS Conventions 1996, IERS Tech. Note 21, Int. Earth Rotation Serv., Obs. de Paris.

    Google Scholar 

  • McCarthy D. D. & G. Petit (2004), IERS Conventions (2003), IERS Tech. Note 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, 127, ISBN 3-89888-884-3.

    Google Scholar 

  • Menge F., G. Seeber, C. Volksen, G. Wubbena, M. Schmitz (1998), Results of absolute field calibration of GPS antenna PCV, in International Technical Meeting of the Satellite Division of the Institute of Navigation ION GPS-98, Nashville, Tennessee, 15–18. September 1998.

    Google Scholar 

  • Mervart L. (1995), Ambiguity resolution techniques in geodetic and geodynamic applications of the Global Positioning System, Geod. Geophys. Arb. Schweiz, 53, 155 pp.

    Google Scholar 

  • Nakada M., R. Kimura, J. Okuno, K. Moriwaki, H. Miura, H. Maemoku (2000), Late Pleistocene and Holocene melting history of the Antarctic ice sheet derived from sea-level variations, Marine Geology, 167, 85–103.

    Article  Google Scholar 

  • Negusini M., F. Mancini, S. Gandolfi, A. Capra (2005), Terra Nova Bay GPS permanent station (Antarctica): Data quality and first attempt in the evaluation of regional displacement, J. Geodyn., 39(2), 81–90.

    Article  Google Scholar 

  • Niell, A. E. (1996), Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res., 101(B2), 3227–3246.

    Article  Google Scholar 

  • Ohzono M., T. Tabei, K. Doi, K. Shibuya, T. Sagiya (2006), Crustal movement of Antarctica and Syowa Station based on GPS measurements, Earth Planets Space, 58, 795–804.

    Google Scholar 

  • Panafidina N. & Z. Malkin (2002), On Computation of a homogeneous coordinate time series for the EPN network, Presented at the “Vistas for Geodesy in the New Millennium” IAG 2001 Scientific Assembly, Budapest, Hungary, 2–7 September 2001.

    Google Scholar 

  • Parrot D., R. B. Langley, A. Kleusberg, R. Santerre, P. Vanicek, D. Wells (1986), The Spring 1985 GPS high-precision baseline test: Very preliminary results. Invited paper: GPS Technology Workshop, 25 March, Jet Propulsion Laboratory, Pasadena, CA.

    Google Scholar 

  • Peltier W. R. (1994), Ice age paleotopography, Science, 265, 195–201.

    Article  Google Scholar 

  • Peltier W. R. (1998), Antarctic geodetic signature of the ICE-5G model of the Late Pleistocene deglaciation, EOS Transaction AGU, F215.

    Google Scholar 

  • Raymond C. A., E. R. Ivins, M. B. Heflin, T. S. James (2004), Quasi-continuous global positioning system measurements of glacial isostatic deformation in the Northern Transantarctic Mountains, Global and Planetary Change, 42, 295–303.

    Article  Google Scholar 

  • Rummel R., M. Rothacher, G. Beutler (2005), Integrated Global Geodetic Observing System (IGGOS) – science rationale, J. Geodyn., 40, 357–362.

    Article  Google Scholar 

  • Saastamoinen J. (1972), Contributions to the theory of atmospheric refraction, Bull. Geod., 105, 279–298; 106, 383–397.

    Article  Google Scholar 

  • Salvini F., G. Brancolini, M. Busetti, F. Storti, F. Mazzarini, F. Coren (1997), Cenozoic geodynamics of the Ross Sea region, Antarctica: crustal extension, intraplate strike-slip faulting, and tectonic inheritance, J. Geophys. Res., 102(24), 669–696.

    Google Scholar 

  • Salvini F. & F. Storti (1999), Cenozoic tectonic lineaments of the Terra Nova Bay region, Ross Embayment, Antarctica, Global and Planetary Change, 23, 129–144.

    Article  Google Scholar 

  • Salvini, F., F. Storti, G. Brancolini, M. Busetti, C. De Cillia (1998), Cenozoic strike-slip induced basin inversion in the Ross Sea, Antarctica, Terra Antartica, 5(2), 209–215.

    Google Scholar 

  • Sarti P, M. Negusini, C. Lanconelli, A. Lupi, C. Tomasi, A. Cacciari (2008), A GPS derived precipitable Water Vapour content and its relationship with 5 years of long-wave radiation measurements at “Mario Zucchelli” Station, Terra Nova Bay, Antarctica. On “Geodetic and Geophysical observations in Antarctica - An Overview in IPY Perspective” Eds A. Capra, R. Dietrich, pp. 145–178, Springer. ISBN 978-3-540-74881-6.

    Google Scholar 

  • Scherneck H. G. (1991), A parametrised solid Earth tide model and ocean tide loading effects for global geodetic baseline measurements, Geophys. J. Int., 106(3), 677–694.

    Article  Google Scholar 

  • Schwiderski E.W. (1980), Ocean Tides I, Global ocean tidal equations, Marine Geodesy, 3, 161–217.

    Article  Google Scholar 

  • Schmid R. & M. Rothacher (2003), Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites, J. Geod., 77, doi:10.1007/s00190-003-0339-0.

    Google Scholar 

  • Serpelloni E., G. Casula, A. Galvani, M. Anzidei, P. Baldi (2006), Data analysis of permanent GPS networks in Italy and surrounding regions: applications of a distributed processing approach. Ann. Geophys., 49 (4/5), 1073–1103.

    Google Scholar 

  • Shaffrin B. & Y. Bock (1988), A unified scheme for processing GPS phase observations, Bullettin Geodesique, 62, 142–160.

    Article  Google Scholar 

  • Shen Z., C. Zhao, A. Y. Yanxing Li, D. D. Jaxon, P. Fang, D. Dong (2000), Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements. J. Geophys. Res., 105(B3), 5721–5734.

    Google Scholar 

  • Steigenberger P., M. Rothacher, R. Dietrich, M. Fritsche, A. Rülke, S. Vey (2006), Reprocessing of a global GPS network, J. Geophys. Res., 111, B05402.

    Article  Google Scholar 

  • Storti, F., F. Rossetti, Salvini, F. (2001), Structural architecture and displacement accommodation mechanisms at the termination of the Priestly Fault, northern Victoria Land, Antarctica. Tectonophysics, 341, 141–161.

    Article  Google Scholar 

  • Webb F. H. & J. F. Zumberge (1995), An introduction to Gipsy Oasis II, Jet Propulsion Laboratory.

    Google Scholar 

  • Wessel P. & W. H. F Smith (1998), Free software helps maps and display data, EOS, 79, 579.

    Article  Google Scholar 

  • Willis M., T. Wilson, L. Hothem (2006), A Decade of GPS Measurements over the TAMDEF Network, Victoria Land, Antarctica. Geophys. Res. Abstracts, 8, European Geosciences Union, Vienna, 2–7 April 2006.

    Google Scholar 

  • Woodworth P. L., T. Aarup, R. Rummel (2005), IGGOS as a potential partner in IGOS, J. Geodyn., 40, 432–435.

    Article  Google Scholar 

  • Zumberge J. F., M. B. Helfin, D. C. Jefferson, M. M. Watkins, F. H. Webb (1997), Precise point positioning for efficient and robust analysis of GPS data from large networks. J. Geophys. Res., 102, 5005–5017.

    Article  Google Scholar 

  • Zumberge J. F., M. M. Watkins, F. H. Webb (1998), Characteristics and applications of precise GPS clock solutions every 30 seconds. JPL Technical Reports.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Capra, A. et al. (2008). VLNDEF Project for Geodetic Infrastructure Definition of Northern Victoria Land, Antarctica. In: Capra, A., Dietrich, R. (eds) Geodetic and Geophysical Observations in Antarctica. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74882-3_3

Download citation

Publish with us

Policies and ethics