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Root Growth with Re-Grafting

5.1 Background and Motivation

Recall the special case of the tree-valued Markov chain that was used in the
proof of the Markov chain tree theorem, Theorem 2.1, when the underlying
Markov chain is the process on t1, 2, . . . , nu that picks a new state uniformly
at each stage.

Algorithm 5.1.

• Start with a rooted (combinatorial) tree on n labeled vertices t1, 2, . . . , nu.
• Pick a vertex v uniformly from

t1, 2, . . . , nuztcurrent rootu.
• Erase the edge leading from v towards the current root.
• Insert an edge from the current root to v and make v the new root.
• Repeat.

We know that this chain converges in distribution to the uniform distrib-
ution on rooted trees with n labeled vertices.

Imagine that we do the following.

• Start with a rooted subtree (that is, one with the same root as the “big”
tree).

• At each step of the chain, update the subtree by removing and adding
edges as they are removed and added in the big tree and adjoining the
new root of the big tree to the subtree if it isn’t in the current subtree.

The subtree will evolve via two mechanisms that we might call root growth and
re-grafting. Root growth occurs when the new root isn’t in the current subtree,
and so the new tree has an extra vertex, the new root, that is connected to
the old root by a new edge. Re-grafting occurs when the new root is in the
current subtree: it has the effect of severing the edge leading to a subtree of
the current subtree and re-attaching it to the current root by a new edge. See
Figure 5.1.
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Fig. 5.1. Root growth and re-graft moves. The big tree with n “ 11 vertices consists
of the solid and dashed edges in all three diagrams. In the top diagram, the current
subtree has the solid edges and the vertices marked a, b, ˚. The vertices marked c
and # are in the big tree but not the current subtree. The big tree and the current
subtree are rooted at a. The bottom left diagram shows the result of a root growth
move: the vertex c now belongs to the new subtree, it is the root of the new big tree
and the new subtree, and is connected to the old root a by an edge. The vertices
marked # are not in the new subtree. The bottom right diagram shows the result
of a re-graft move: the vertex b is the root of the new big tree and the new subtree,
and it is connected to the old root a by an edge. The vertices marked c and # are
not in the new subtree.

Now consider what happens as n becomes large and we follow a rooted
subtree that originally has «

?
n vertices. Replace edges of length 1 with

edges of length 1?
n

and speed up time by
?
n.

In the limit as n Ñ 8, it seems reasonable that we have a R-tree-valued
process with the following root growth with re-grafting dynamics.

• The edge leading to the root of the evolving tree grows at unit speed.
• Cuts rain down on the tree at unit rate per lengthˆtime, and the subtree

above each cut is pruned off and re-attached at the root.

We will establish a closely related result in Section 5.4. Namely, we
will show that if we have a sequence of chains following the dynamics of
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Algorithm 5.1 such that the initial combinatorial tree of the nth chain re-
scaled by

?
n converges in the Gromov–Hausdorff distance to some compact

R-tree, then if we re-scale space and time by
?
n in the nth chain we get weak

convergence to a process with the root growth with re-grafting dynamics.
This latter result might seem counter-intuitive, because now we are work-

ing with the whole tree with n vertices rather than a subtree with «
?
n

vertices. However, the assumption that the initial condition scaled by
?
n

converges to some compact R-tree means that asymptotically most vertices
are close to the leaves and re-arranging the subtrees above such vertices has
a negligible effect in the limit.

Before we can establish such a convergence result, we need to show that
the root growth with re-grafting dynamics make sense even for compact trees
with infinite total length. Such trees are the sort that will typically arise in the
limit when we re-scale trees with n vertices by

?
n. This is not a trivial matter,

as the set of times at which cuts appear will be dense and so the intuitive
description of the dynamics does not make rigorous sense. See Theorem 5.5
for the details.

Given that the chain of Algorithm 5.1 converges at large times to the uni-
form rooted tree on n labeled vertices and that the uniform tree on n labeled
vertices converges after suitable re-scaling to the Brownian continuum ran-
dom tree as n Ñ 8, it seems reasonable that the root growth with re-grafting
process should converge at large times to the Brownian continuum random
tree and that the Brownian continuum random tree should be the unique sta-
tionary distribution. We establish that this is indeed the case in Section 5.3.
An important ingredient in the proofs of these facts will be Proposition 5.7,
which says that the root growth with re-grafting process started from the
trivial tree consisting of a single point is related to the Poisson line-breaking
construction of the Brownian continuum random tree in Section 2.5 in the
same manner that the chain of Algorithm 5.1 is related to Algorithm 2.4 for
generating uniform rooted labeled trees. This is, of course, what we should
expect, because the Poisson line-breaking construction arises as a limit of
Algorithm 2.4 when the number of vertices goes to infinity.

5.2 Construction of the Root Growth with Re-Grafting
Process

5.2.1 Outline of the Construction

• We want to construct a Troot-valued process X with the root growth and
re-grafting dynamics.

• Fix pT, d, ρq P Troot. This will be X0.
• We will construct simultaneously for each finite rooted subtree T˚ ĺroot T

a process XT ˚

with XT ˚

0 “ T˚ that evolves according to the root growth
with re-grafting dynamics.
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• We will carry out this construction in such a way that if T˚ and T˚˚ are
two finite subtrees with T˚ ĺroot T˚˚, then XT ˚

t ĺroot XT ˚˚

t and the
cut points for XT ˚

are those for XT ˚˚

that happen to fall on XT ˚

τ´ for a
corresponding cut time τ of XT ˚˚

. Cut times τ for XT ˚˚

for which the
corresponding cut point does not fall on XT ˚

τ´ are not cut times for XT ˚

.
• The tree pT, ρq is a rooted Gromov–Hausdorff limit of finite R-trees with

root ρ (indeed, any subtree of pT, ρq that is spanned by the union of a
finite ε-net and tρu is a finite R-tree that has rooted Gromov–Hausdorff
distance less than ε from pT, ρq).
In particular, pT, ρq is the “smallest” rooted compact R-tree that contains
all of the finite rooted subtrees of pT, ρq.

• Because of the consistent projective nature of the construction, we can
define Xt :“ XT

t for t ě 0 as the “smallest” element of Troot that contains
XT ˚

t , for all finite trees T˚ ĺroot T .

5.2.2 A Deterministic Construction

It will be convenient to work initially in a setting where the cut times and cut
points are fixed.

There are two types of cut points: those that occur at points that were
present in the initial tree T and those that occur at points that were added
due to subsequent root growth.

Accordingly, we consider two countable subsets π0 Ă R`` ˆ T o and π Ă

tpt, xq P R`` ˆ R`` : x ď tu. See Figure 5.2.

Assumption 5.2. Suppose that the sets π0 and π have the following proper-
ties.

(a) For all t0 ą 0, each of the sets π0 X ptt0u ˆ T oq and π X ptt0uˆs0, t0sq has
at most one point and at least one of these sets is empty.

(b) For all t0 ą 0 and all finite subtrees T 1 Ď T , the set π0 X ps0, t0s ˆ T 1q is
finite.

(c) For all t0 ą 0, the set π X tpt, xq P R`` ˆ R`` : x ď t ď t0u is finite.

Remark 5.3. Conditions (a)–(c) of Assumption 5.2 will hold almost surely if
π0 and π are realizations of Poisson point processes with respective intensities
λbµ and λbλ (where λ is Lebesgue measure), and it is this random mechanism
that we will introduce later to produce a stochastic process having the root
growth with re-grafting dynamics.

Consider a finite rooted subtree T˚ ĺroot T . It will avoid annoying cir-
cumlocutions about equivalence via root-invariant isometries if we work with
particular class representatives for T˚ and T , and, moreover, suppose that T˚

is embedded in T .
Put τ˚

0 :“ 0, and let 0 ă τ˚
1 ă τ˚

2 ă . . . (the cut times for XT ˚

) be the
points of tt ą 0 : π0pttu ˆ T˚q ą 0u Y tt ą 0 : πpttu ˆ R``q ą 0u.
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π0

To

π

Fig. 5.2. The sets of points π0 and π

Step 1 (Root growth). At any time t ě 0, XT ˚

t as a set is given by the disjoint
union T˚>s0, ts. For t ą 0, the root of XT ˚

t is the point ρt :“ t Ps0, ts. The
metric dT ˚

t on XT ˚

t is defined inductively as follows.
Set dT ˚

0 to be the metric on XT ˚

0 “ T˚; that is, dT ˚

0 is the restriction of
d to T˚. Suppose that dT ˚

t has been defined for 0 ď t ď τ˚
n . Define dT ˚

t for
τ˚
n ă t ă τ˚

n`1 by

dT ˚

t pa, bq :“

$

’

&

’

%

dτ˚
n

pa, bq, if a, b P XT ˚

τ˚
n

,

|b´ a|, if a, b Psτ˚
n , ts,

|a´ τ˚
n | ` dτ˚

n
pρτ˚

n
, bq, if a Psτ˚

n , ts, b P XT ˚

τ˚
n

.
(5.1)

Step 2 (Re-Grafting). Note that the left-limit XT ˚

τ˚
n`1´

exists in the rooted

Gromov–Hausdorff metric. As a set this left-limit is the disjoint union

XT ˚

τ˚
n

>sτ˚
n , τ

˚
n`1s “ T˚>s0, τ˚

n`1s,

and the corresponding metric dτ˚
n`1´ is given by a prescription similar to (5.1).

Define the pn` 1qst cut point for XT ˚

by
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p˚
n`1 :“

#

a P T˚, if π0ptpτ˚
n`1, aquq ą 0,

x Ps0, τ˚
n`1s, if πptpτ˚

n`1, xquq ą 0.

Let S˚
n`1 be the subtree above p˚

n`1 in XT ˚

τ˚
n`1´

, that is,

S˚
n`1 :“ tb P XT ˚

τ˚
n`1´

: p˚
n`1 P rρτ˚

n`1´, br u. (5.2)

Define the metric dτ˚
n`1

by

dτ˚
n`1

pa, bq

:“

$

’

’

&

’

’

%

dτ˚
n`1´pa, bq, if a, b P S˚

n`1,

dτ˚
n`1´pa, bq, if a, b P XT ˚

τ˚
n`1

zS˚
n`1,

dτ˚
n`1´pa, ρτ˚

n`1
q ` dτ˚

n`1´pp˚
n`1, bq, if a P XT ˚

τ˚
n`1

zS˚
n`1, b P S˚

n`1.

In other words XT ˚

τ˚
n`1

is obtained from XT ˚

τ˚
n`1´

by pruning off the subtree S˚
n`1

and re-attaching it to the root. See Figure 5.3.

S

T

r

Fig. 5.3. Pruning off the subtree S and regrafting it at the root ρ
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Now consider two other finite, rooted subtrees pT˚˚, ρq and pT˚˚˚, ρq of T
such that T˚ Y T˚˚ Ď T˚˚˚ (with induced metrics).

Build XT ˚˚

and XT ˚˚˚

from π0 and π in the same manner as XT ˚

(but
starting at T˚˚ and T˚˚˚). It is clear from the construction that:

• XT ˚

t and XT ˚˚

t are rooted subtrees of XT ˚˚˚

t for all t ě 0,
• the Hausdorff distance between XT ˚

t and XT ˚˚

t as subsets of XT ˚˚˚

t does
not depend on T˚˚˚,

• the Hausdorff distance is constant between jumps of XT ˚

and XT ˚˚

(when
only root growth is occurring in both processes).

The following lemma shows that the Hausdorff distance between XT ˚

t and
XT ˚˚

t as subsets of XT ˚˚˚

t does not increase at jump times.

Lemma 5.4. Let T be a finite rooted tree with root ρ and metric d, and let
T 1 and T 2 be two rooted subtrees of T (both with the induced metrics and root
ρ). Fix p P T , and let S be the subtree in T above p (recall (5.2)). Define a
new metric d̂ on T by putting

d̂pa, bq :“

$

’

&

’

%

dpa, bq, if a, b P S,
dpa, bq, if a, b P T zS,
dpa, pq ` dpρ, bq, if a P S, b P T zS.

Then the sets T 1 and T 2 are also subtrees of T equipped with the induced
metric d̂, and the Hausdorff distance between T 1 and T 2 with respect to d̂ is
not greater than that with respect to d.

Proof. Suppose that the Hausdorff distance between T 1 and T 2 under d is
less than some given ε ą 0. Given a P T 1, there then exists b P T 2 such that
dpa, bq ă ε. Because dpa, a^ bq ď dpa, bq and a^ b P T 2, we may suppose (by
replacing b by a^ b if necessary) that b ď a.

We claim that d̂pa, cq ă ε for some c P T 2. This and the analogous result
with the roles of T 1 and T 2 interchanged will establish the result.

If a, b P S or a, b P T zS, then d̂pa, bq “ dpa, bq ă ε. The only other
possibility is that a P S and b P T zS, in which case p P rb, as (for T equipped
with d). Then d̂pa, ρq “ dpa, pq ď dpa, bq ă ε, as required (because ρ P T 2).

[\

Now let T1 Ď T2 Ď ¨ ¨ ¨ be an increasing sequence of finite subtrees of T
such that

Ť

nPN Tn is dense in T . Thus, limnÑ8 dHpTn, T q “ 0.
Let X1, X2, . . . be constructed from π0 and π starting with T1, T2, . . ..

Applying Lemma 5.4 yields

lim
m,nÑ8

sup
tě0

dGHrootpXm
t , X

n
t q “ 0.

Hence, by completeness of Troot, there exists a càdlàg Troot-valued process X
such that X0 “ T and
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lim
mÑ8

sup
tě0

dGHrootpXm
t , Xtq “ 0.

A priori, the process X could depend on the choice of the approximating
sequence of trees tTnunPN. To see that this is not so, consider two approxi-
mating sequences T 1

1 Ď T 1
2 Ď ¨ ¨ ¨ and T 2

1 Ď T 2
2 Ď ¨ ¨ ¨ .

For k P N, write T 3
n for the smallest rooted subtree of T that contains both

T 1
n and T 2

n . As a set, T 3
n “ T 1

n Y T 2
n . Now let tpXn,i

t utě0qnPN for i “ 1, 2, 3 be
the corresponding sequences of finite tree-value processes and let pX8,i

t qtě0

for i “ 1, 2, 3 be the corresponding limit processes. By Lemma 5.4,

dGHrootpXn,1
t , Xn,2

t q ď dGHrootpXn,1
t , Xn,3

t q ` dGHrootpXn,2
t , Xn,3

t q

ď dHpXn,1
t , Xn,3

t q ` dHpXn,2
t , Xn,3

t q

ď dHpT 1
n , T

3
nq ` dHpT 2

n , T
3
nq

ď dHpT 1
n , T q ` dHpT 2

n , T q Ñ 0

(5.3)

as n Ñ 8.
Thus, for each t ě 0 the sequences tXn,1

t unPN and tXn,2
t unPN do indeed

have the same rooted Gromov–Hausdorff limit and the process X does not
depend on the choice of approximating sequence for the initial tree T .

5.2.3 Putting Randomness into the Construction

We constructed a Troot-valued function t ÞÑ Xt starting with a fixed triple
pT, π0, πq, where T P Troot and π0, π satisfy the conditions of Assumption 5.2.
We now want to think of X as a function of time and such triples.

Let Ω˚ be the set of triples pT, π0, πq, where T is a rooted compact
R-tree (that is, a class representative of an element of Troot) and π0, π satisfy
Assumption 5.2.

The root invariant isometry equivalence relation on rooted compact
R-trees extends naturally to an equivalence relation on Ω˚ by declaring that
two triples pT 1, π1

0, π
1q and pT 2, π2

0 , π
2q, where π1

0 “ tpσ1
i, x

1
iq : i P Nu and

π2
0 “ tpσ2

i , x
2
i q : i P Nu, are equivalent if there is a root invariant isometry

f mapping T 1 to T 2 and a permutation γ of N such that σ2
i “ σ1

γpiq
and

x2
i “ fpx1

γpiq
q for all i P N. Write Ω for the resulting quotient space of equiv-

alence classes. There is a natural measurable structure on Ω: we refer to [63]
for the details.

Given T P Troot, let PT be the probability measure on Ω defined by the
following requirements.

• The measure PT assigns all of its mass to the set tpT 1, π1
0, π

1q P Ω : T 1 “

T u.
• Under PT , the random variable pT 1, π1

0, π
1q ÞÑ π1

0 is a Poisson point process
on the set R`` ˆ T o with intensity λ b µ, where µ is the length measure
on T .



5.2 Construction of the Root Growth with Re-Grafting Process 77

• Under PT , the random variable pT 1, π1
0, π

1q ÞÑ π1 is a Poisson point process
on the set tpt, xq P R`` ˆ R`` : x ď tu with intensity λ b λ restricted to
this set.

• The random variables pT 1, π1
0, π

1q ÞÑ π1
0 and pT 1, π1

0, π
1q ÞÑ π1 are indepen-

dent under PT .

Of course, the random variable pT 1, π1
0, π

1q ÞÑ π1
0 takes values in a space

of equivalence classes of countable sets rather than a space of sets per se, so,
more formally, this random variable has the law of the image of a Poisson
process on an arbitrary class representative under the appropriate quotient
map.

For t ě 0, g a bounded Borel function on Troot, and T P Troot, set

PtgpT q :“ PT rgpXtqs. (5.4)

With a slight abuse of notation, let R̃η for η ą 0 also denote the map from
Ω into Ω that sends pT, π0, πq to pRηpT q, π0 X pR`` ˆ pRηpT qqoq, πq.

Theorem 5.5. (i) If T P Troot is finite, then pXtqtě0 under PT is a Markov
process that evolves via the root growth with re-grafting dynamics on finite
trees.

(ii) For all η ą 0 and T P Troot, the law of pXt ˝ R̃ηqtě0 under PT coincides
with the law of pXtqtě0 under PRηpT q.

(iii) For all T P Troot, the law of pXtqtě0 under PRηpT q converges as η Ó 0
to that of pXtqtě0 under PT (in the sense of convergence of laws on the
space of càdlàg Troot-valued paths equipped with the Skorohod topology).

(iv) For g P bBpTrootq, the map pt, T q ÞÑ PtgpT q is BpR`q ˆ BpTrootq-
measurable.

(v) The process pXt,PT q is strong Markov and has transition semigroup
pPtqtě0.

Proof. (i) This is clear from the definition of the root growth and re-grafting
dynamics.

(ii) It is enough to check that the push-forward of the probability measure
PT under the map Rη : Ω Ñ Ω is the measure PRηpT q.

This, however, follows from the observation that the restriction of length
measure on a tree to a subtree is just length measure on the subtree.

(iii) This is immediate from part (ii) and part (iv) of Lemma 4.32. Indeed,
we have that

sup
tě0

dGHrootpXt, Xt ˝ R̃ηq ď dHpT,RηpT qq ď η.

(iv) By a monotone class argument, it is enough to consider the case where
the test function g is continuous. It follows from part (iii) that PtgpRηpT qq

converges pointwise to PtgpT q as η Ó 0, and it is not difficult to show using
Lemma 4.32 and part (i) that pt, T q ÞÑ PtgpRηpT qq is BpR`q ˆ BpTrootq-
measurable, but we omit the details.
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(v) By construction and Lemma 4.33, we have for t ě 0 and pT, π0, πq P Ω
that, as a set, Xo

t pT, π0, πq is the disjoint union T o>s0, ts.
Put

θtpT, π0, πq

:“
´

XtpT, π0, πq, tps, xq P R`` ˆ T o : pt` s, xq P π0u,

tps, xq P R`` ˆ R`` : pt` s, t` xq P πu

¯

“

´

XtpT, π0, πq, tps, xq P R`` ˆXo
t pT, π0, πq : pt` s, xq P π0u,

tps, xq P R`` ˆ R`` : pt` s, t` xq P πu

¯

.

Thus, θt maps Ω into Ω. Note that Xs ˝ θt “ Xs`t and that θs ˝ θt “ θs`t,
that is, the family pθtqtě0 is a semigroup.

Fix t ě 0 and pT, π0, πq P Ω. Write µ1 for the measure on T o>s0, ts that
restricts to length measure on T o and to Lebesgue measure on s0, ts. Write µ2

for the length measure on Xo
t pT, π0, πq.

The strong Markov property will follow from a standard strong Markov
property for Poisson processes if we can show that µ1 “ µ2.

This equality is clear from the construction if T is finite: the tree
XtpT, π0, πq is produced from the tree T and the set s0, ts by a finite number
of dissections and rearrangements.

The equality for general T follows from the construction and Lemma 4.33.
[\

5.2.4 Feller Property

The proof of Theorem 5.5 depended on an argument that showed that if
we have two finite subtrees of a given tree that are close in the Gromov–
Hausdorff distance, then the resulting root growth with re-grafting processes
can be coupled together on the same probability space so that they stay close
together. It is believable that if we start the root growth with re-grafting
process with any two trees that are close together (whether or not they are
finite or subtrees of of a common tree), then the resulting processes will be
close in some sense. The following result, which implies that the measure
induced by the root growth with re-grafting process on path space is weakly
continuous in the starting state with respect to the Skorohod topology on path
space can be established by a considerably more intricate coupling argument:
we refer to [63] for the details.

Proposition 5.6. If the function f : Troot Ñ R is continuous and bounded,
then the function Ptf is also continuous and bounded for each t ě 0.
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5.3 Ergodicity, Recurrence, and Uniqueness

5.3.1 Brownian CRT and Root Growth with Re-Grafting

Recall that Algorithm 2.4 for generating uniform rooted tree on n labeled
vertices was derived from Algorithm 5.1, the tree-valued Markov chain ap-
pearing in the proof of the Markov chain tree theorem that has the uniform
rooted tree on n labeled vertices as its stationary distribution. Recall also
that the Poisson line-breaking construction of the Brownian continuum ran-
dom tree in Section 2.5 is an asymptotic version of Algorithm 2.4, whilst the
root growth with re-grafting process was motivated as an asymptotic version
of Algorithm 5.1. Therefore, it seems reasonable that there should be a con-
nection between the Poisson line-breaking construction and the root growth
with re-grafting process. We establish the connection in this subsection.

Let us first present the Poisson line-breaking construction in a more “dy-
namic” way that will make the comparison with the root growth with re-
grafting process a little more transparent.

• Write τ1, τ2, . . . for the successive arrival times of an inhomogeneous Pois-
son process with arrival rate t at time t ě 0. Call τn the nth cut time.

• Start at time 0 with the 1-tree (that is a line segment with two ends), R0,
of length zero (R0 is “really” the trivial tree that consists of one point
only, but thinking this way helps visualize the dynamics more clearly for
this semi-formal description). Identify one end of R0 as the root.

• Let this line segment grow at unit speed until the first cut time τ1.
• At time τ1 pick a point uniformly on the segment that has been grown so

far. Call this point the first cut point.
• Between time τ1 and time τ2, evolve a tree with 3 ends by letting a new

branch growing away from the first cut point at unit speed.
• Proceed inductively: Given the n-tree (that is, a tree with n ` 1 ends),

Rτn´, pick the n-th cut point uniformly on Rτn´ to give an n ` 1-tree,
Rτn

, with one edge of length zero, and for t P rτn, τn`1r, let Rt be the tree
obtained from Rτn by letting a branch grow away from the nth cut point
with unit speed.

The tree Rτn´ is nth step of the Poisson line-breaking construction, and
the Brownian CRT is the limit of the increasing family of rooted finite trees
pRtqtě0.

We will now use the ingredients appearing in the construction of R to
construct a version of the root growth with re-grafting process started at the
trivial tree.

• Let τ1, τ2, . . . be as in the construction of the R.
• Start with the 1-tree (with one end identified as the root and the other as

a leaf), T0, of length zero.
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• Let this segment grow at unit speed on the time interval r0, τ1r, and for
t P r0, τ1r let Tt be the rooted 1-tree that has its points labeled by the
interval r0, ts in such a way that the root is t and the leaf is 0.

• At time τ1 sample the first cut point uniformly along the tree Tτ1´, prune
off the piece of Tτ1´ that is above the cut point (that is, prune off the
interval of points that are further away from the root t than the first cut
point).

• Re-graft the pruned segment such that its cut end and the root are glued
together. Just as we thought of T0 as a tree with two points, (a leaf and
a root) connected by an edge of length zero, we take Tτ1 to be the the
rooted 2-tree obtained by “ramifying” the root Tτ1´ into two points (one
of which we keep as the root) that are joined by an edge of length zero.

• Proceed inductively: Given the labeled and rooted n-tree, Tτn´1 , for t P

rτn´1, τnr, let Tt be obtained by letting the edge containing the root grow
at unit speed so that the points in Tt correspond to the points in the
interval r0, ts with t as the root. At time τn, the nth cut point is sampled
randomly along the edges of the n-tree, Tτn´, and the subtree above the
cut point (that is the subtree of points further away from the root than
the cut point) is pruned off and re-grafted so that its cut end and the root
are glued together. The root is then “ramified” as above to give an edge
of length zero leading from the root to the rest of the tree.

Let pRtqtě0, pTtqtě0, and tτnunPN be as above. Note that pTtqtě0 has the
same law as pXtqtě0 under PT0 , where T0 is the trivial tree.

Proposition 5.7. The two random finite rooted trees Rτn´ and Tτn´ have
the same distribution for all n P N.

Proof. Let Rn denote the object obtained by taking the rooted finite tree with
edge lengths Rτn´ and labeling the leaves with 1, . . . , n, in the order that
they are added in Aldous’s construction. Let Tn be derived similarly from the
rooted finite tree with edge lengths Tτn´, by labeling the leaves with 1, . . . , n
in the order that they appear in the root growth with re-grafting construction.
It will suffice to show that Rn and Tn have the same distribution. Note that
both Rn and Tn are rooted bifurcating trees with n labeled leaves and edge
lengths. Such a tree Sn is uniquely specified by its shape, denoted shapepSnq,
that is a rooted, bifurcating, leaf-labeled combinatorial tree, and by the list
of its p2n´ 1q edge lengths in a canonical order determined by its shape, say

lengthspSnq :“ plengthpSn, 1q, . . . , lengthpSn, 2n´ 1qq,

where the edge lengths are listed in order of traversal of edges by first working
along the path from the root to leaf 1, then along the path joining that path
to leaf 2, and so on.

Recall that τn is the nth point of a Poisson process on R`` with rate
t dt. We construct Rn and Tn on the same probability space using cuts at
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points Uiτi, 1 ď i ď n ´ 1, where U1, U2, . . . is a sequence of independent
random variables uniformly distributed on the interval s0, 1s and independent
of the sequence tτnunPN. Then, by construction, the common collection of edge
lengths of Rn and of Tn is the collection of lengths of the 2n´ 1 subintervals
of s0, τns obtained by cutting this interval at the 2n´ 2 points

tX
pnq

i : 1 ď i ď 2n´ 2u :“
n´1
ď

i“1

tUiτi, τiu

where the Xpnq

i are indexed to increase in i for each fixed n. Let Xpnq

0 :“ 0
and X

pnq

2n´1 :“ τn. Then

lengthpRn, iq “ X
pnq

i ´X
pnq

i´1, 1 ď i ď 2n´ 1, (5.5)

lengthpTn, iq “ lengthpRn, σn,iq, 1 ď i ď 2n´ 1, (5.6)

for some almost surely unique random indices σn,i P t1, . . . 2n ´ 1u such that
i ÞÑ σn,i is almost surely a permutation of t1, . . . 2n ´ 1u. According to [10,
Lemma 21], the distribution of Rn may be characterized as follows:

(i) the sequence lengthspRnq is exchangeable, with the same distribution
as the sequence of lengths of subintervals obtained by cutting s0, τns at
2n´ 2 uniformly chosen points tUiτn : 1 ď i ď 2n´ 2u;

(ii) shapepRnq is uniformly distributed on the set of all 1ˆ3ˆ5ˆ¨ ¨ ¨ˆp2n´3q

possible shapes;
(iii) lengthspRnq and shapepRnq are independent.

In view of this characterization and (5.6), to show that Tn has the same
distribution as Rn it is enough to show that

(a) the random permutation ti ÞÑ σn,i : 1 ď i ď 2n ´ 1u is a function of
shapepTnq;

(b) shapepTnq “ ΨnpshapepRnqq for some bijective map Ψn from the set of all
possible shapes to itself.

This is trivial for n “ 1, so we assume below that n ě 2. Before proving (a)
and (b), we recall that (ii) above involves a natural bijection

pI1, . . . , In´1q Ø shapepRnq (5.7)

where In´1 P t1, . . . , 2n´ 3u is the unique i such that

Un´1τn´1 P pX
pn´1q

i´1 , X
pn´1q

i q.

Hence, In´1 is the index in the canonical ordering of edges of Rn´1 of the
edge that is cut in the transformation from Rn´1 to Rn by attachment of
an additional edge, of length τn ´ τn´1, connecting the cut-point to leaf n.
Thus, (ii) and (iii) above correspond via (5.7) to the facts that I1, . . . , In´1
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are independent and uniformly distributed over their ranges, and independent
of lengthspRnq. These facts can be checked directly from the construction of
tRnunPN from tτnunPN and tUnunPN using standard facts about uniform order
statistics.

Now (a) and (b) follow from (5.7) and another bijection

pI1, . . . , In´1q Ø shapepTnq (5.8)

where each possible value i of Im is identified with edge σm,i in the canon-
ical ordering of edges of Tm. This is the edge of Tm whose length equals
lengthpRm, iq. The bijection (5.8), and the fact that σn,i depends only on
shapepTnq, will now be established by induction on n ě 2. For n “ 2 the
claim is obvious. Suppose for some n ě 3 that the correspondence between
pI1, . . . , In´2q and shapepTn´1q has been established, and that the length of
edge σn´1,i in the canonical ordering of edges of Tn´1 is equals the length of
the ith edge in the canonical ordering of edges of Rn´1, for some σn´1,i that
is a function of i and shapepTn´1q. According to the construction of Tn, if
In´1 “ i then Tn is derived from Tn´1 by splitting Tn´1 into two branches at
some point along edge σn´1,i in the canonical ordering of the edges of Tn´1,
and forming a new tree from the two branches and an extra segment of length
τn ´ τn´1. Clearly, shapepTnq is determined by shapepTn´1q and In´1, and in
the canonical ordering of the edge lengths of Tn the length of the ith edge
equals the length of the edge σn,i of Rn, for some σn,i that is a function of
shapepTn´1q and In´1, and, therefore, a function of shapepTnq. To complete
the proof, it is enough by the inductive hypothesis to show that the map

pshapepTn´1q, In´1q Ñ shapepTnq

just described is invertible. But shapepTn´1q and In´1 can be recovered from
shapepTnq by the following sequence of moves:

• delete the edge attached to the root of shapepTnq

• split the remaining tree into its two branches leading away from the inter-
nal node to which the deleted edge was attached;

• re-attach the bottom end of the branch not containing leaf n to leaf n on
the other branch, joining the two incident edges to form a single edge;

• the resulting shape is shapepTn´1q, and In´1 is the index such that the
joined edge in shapepTn´1q is the edge σn´1,In´1 in the canonical ordering
of edges on shapepTn´1q.

[\

5.3.2 Coupling

Lemma 5.8. For any pT, d, ρq P Troot we can build on the same probability
space two Troot-valued processes X 1 and X2 such that:
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• X 1 has the law of X under PT0 , where T0 is the trivial tree consisting of
just the root,

• X2 has the law of X under PT ,
• for all t ě 0,

dGHrootpX 1
t, X

2
t q ď dGHrootpT0, T q “ suptdpρ, xq : x P T u (5.9)

•
lim
tÑ8

dGHrootpX 1
t, X

2
t q “ 0, almost surely. (5.10)

Proof. The proof follows almost immediately from construction of X and
Lemma 5.4. The only point requiring some comment is (5.10).

For that it will be enough to show for any ε ą 0 that for PT -a.e. pT, π0, πq P

Ω there exists t ą 0 such that the projection of π0 X ps0, ts ˆT oq onto T is an
ε-net for T .

Note that the projection of π0 X ps0, ts ˆ T oq onto T is a Poisson process
under PT with intensity tµ, where µ is the length measure on T . Moreover, T
can be covered by a finite collection of ε-balls, each with positive µ-measure.

Therefore, the PT -probability of the set of pT, π0, πq P Ω such that the
projection of π0 X ps0, ts ˆ T oq onto T is an ε-net for T increases as t Ñ 8

to 1. [\

5.3.3 Convergence to Equilibrium

Proposition 5.9. For any T P Troot, the law of Xt under PT converges
weakly to that of the Brownian CRT as t Ñ 8.

Proof. It suffices by Lemma 5.8 to consider the case where T is the trivial
tree.

We saw in the Proposition 5.7 that, in the notation of that result, Tτn´

has the same distribution as Rτn´.
Moreover, Rt converges in distribution to the continuum random tree as

t Ñ 8 if we use Aldous’s metric on trees that comes from thinking of them
as closed subsets of `1 with the root at the origin and equipped with the
Hausdorff distance.

By construction, pTtqtě0 has the root growth with re-grafting dynamics
started at the trivial tree. Clearly, the rooted Gromov–Hausdorff distance
between Tt and Tτn`1´ is at most τn`1 ´ τn for τn ď t ă τn`1.

It remains to observe that τn`1 ´ τn Ñ 0 in probability as n Ñ 8. [\

5.3.4 Recurrence

Proposition 5.10. Consider a non-empty open set U Ď Troot. For each T P

Troot,

PT tfor all s ě 0, there exists t ą s such that Xt P Uu “ 1. (5.11)
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Proof. It is straightforward, but notationally rather tedious, to show that if
B1 Ď Troot is any ball and T0 is the trivial tree, then

PT0tXt P B1u ą 0 (5.12)

for all t sufficiently large.
Thus, for any ball B1 Ď Troot there is, by Lemma 5.8, a ball B2 Ď Troot

containing the trivial tree such that

inf
T PB2

PT tXt P B1u ą 0 (5.13)

for each t sufficiently large.
By a standard application of the Markov property, it therefore suffices to

show for each T P Troot and each ball B2 around the trivial tree that

PT tthere exists t ą 0 such that Xt P B2u “ 1. (5.14)

By another standard application of the Markov property, equation (5.14)
will follow if we can show that there is a constant p ą 0 depending on B2

such that for any T P Troot

lim inf
tÑ8

PT tXt P B2u ą p.

This, however, follows from Proposition 5.9 and the observation that for
any ε ą 0 the law of the Brownian CRT assigns positive mass to the set of
trees with height less than ε: this is just the observation that the law of the
Brownian excursion assigns positive mass to the set of excursion paths with
maximum less that ε{2. [\

5.3.5 Uniqueness of the Stationary Distribution

Proposition 5.11. The law of the Brownian CRT is the unique stationary
distribution for X. That is, if ξ is the law of the CRT, then

ż

ξpdT qPtfpT q “

ż

ξpdT qfpT q

for all t ě 0 and f P bBpTrootq, and ξ is the unique probability measure on
Troot with this property.

Proof. This is a standard argument given Proposition 5.9 and the Feller prop-
erty for the semigroup pPtqtě0 established in Proposition 5.6, but we include
the details for completeness.

Consider a test function f : Troot Ñ R that is continuous and bounded.
By Proposition 5.6, the function Ptf is also continuous and bounded for each
t ě 0.

Therefore, by Proposition 5.9,
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ż

ξpdT qfpT q “ lim
sÑ8

ż

ξpdT qPsfpT q “ lim
sÑ8

ż

ξpdT qPs`tfpT q

“ lim
sÑ8

ż

ξpdT qPspPtfqpT q “

ż

ξpdT qPtfpT q

(5.15)

for each t ě 0. Hence, ξ is stationary.
Moreover, if ζ is a stationary measure, then

ż

ζpdT qfpT q “

ż

ζpdT qPtfpT q

Ñ

ż

ζpdT q

ˆ
ż

ξpdT qfpT q

˙

“

ż

ξpdT qfpT q,

(5.16)

and ζ “ ξ, as claimed. [\

5.4 Convergence of the Markov Chain Tree Algorithm

We would like to show that Algorithm 5.1 converges to a process having the
root growth with re-grafting dynamics after suitable re-scaling of time and
edge lengths of the evolving tree. It will be more convenient for us to work
with the continuous time version of the algorithm in which the transitions are
made at the arrival times of an independent Poisson process with rate 1.

The continuous time version of Algorithm 5.1 involves a labeled combina-
torial tree, but, by symmetry, if we don’t record the labeling and associate
rooted labeled combinatorial trees with rooted compact real trees having edges
that are line segments with length 1, then the resulting process will still be
Markovian.

It will be convenient to use the following notation for re-scaling the dis-
tances in a R-tree: T “ pT, d, ρq is a rooted compact real tree and c ą 0, we
write cT for the tree pT, c d, ρq (that is, cT “ T as sets and the roots are the
same, but the metric is re-scaled by c).

Proposition 5.12. Let Y n “ pY n
t qtě0 be a sequence of Markov processes

that take values in the space of rooted compact real trees with integer edge
lengths and evolve according to the dynamics associated with the continuous-
time version of Algorithm 5.1. Suppose that each tree Y n

0 is non-random with
total branch length Nn, that Nn converges to infinity as n Ñ 8, and that
N

´1{2
n Y n

0 converges in the rooted Gromov–Hausdorff metric to some rooted
compact real tree T as n Ñ 8. Then, in the sense of weak convergence of
processes on the space of càdlàg paths equipped with the Skorohod topology,
pN

´1{2
n Y npN

1{2
n tqqtě0 converges as n Ñ 8 to the root growth with re-grafting

process X under PT .

Proof. Define Zn “ pZn
t qtě0 by

Zn
t :“ N´1{2

n Y npN1{2
n tq.

For η ą 0, let Zη,n be the Troot-valued process constructed as follows.



86 5 Root Growth with Re-Grafting

• Set Zη,n
0 “ RηnpZn

0 q, where ηn :“ N
´1{2
n tN

1{2
n ηu.

• The value of Zη,n is unchanged between jump times of pZn
t qtě0.

• At a jump time τ for pZn
t qtě0, the tree Zη,n

τ is the subtree of Zn
τ spanned

by Zη,n
τ´ and the root of Zn

τ .

An argument similar to that in the proof of Lemma 5.4 shows that

sup
tě0

dHpZn
t , Z

η,n
t q ď ηn,

and so it suffices to show that Zη,n converges weakly as n Ñ 8 to X under
PRηpT q.

Note that Zη,n
0 converges to RηpT q as n Ñ 8. Moreover, if Λ is the map

that sends a tree to its total length (that is, the total mass of its length
measure), then limnÑ8 ΛpZη,n

0 q “ Λ ˝RηpT q ă 8 by Lemma 4.36 below.
The pure jump process Zη,n is clearly Markovian. If it is in a state pT 1, ρ1q,

then it jumps with the following rates.

• With rate N1{2
n pN

1{2
n ΛpT 1qq{Nn “ ΛpT 1q, one of the N1{2

n ΛpT 1q points in
T 1 that are at distance a positive integer multiple of N´1{2

n from the root ρ1

is chosen uniformly at random and the subtree above this point is joined to
ρ1 by an edge of length N´1{2

n . The chosen point becomes the new root and
a segment of length N

´1{2
n that previously led from the new root toward

ρ1 is erased. Such a transition results in a tree with the same total length
as T 1.

• With rate N1{2
n ´ΛpT 1q, a new root not present in T 1 is attached to ρ1 by an

edge of length N´1{2
n . This results in a tree with total length ΛpT 1q`N

´1{2
n .

It is clear that these dynamics converge to those of the root growth with re-
grafting process, with the first class of transitions leading to re-graftings in
the limit and the second class leading to root growth. [\




