3

R-Trees and 0-Hyperbolic Spaces

3.1 Geodesic and Geodesically Linear Metric Spaces

We follow closely the development in [39] in this section and leave some of the
more straightforward proofs to the reader.

Definition 3.1. A segment in a metric space (X, d) is the image of an isom-
etry a: [a,b] — X. The end points of the segment are a(a) and «(b).

Definition 3.2. A metric space (X,d) is geodesic if for all x,y € X, there
is a segment in X with endpoints {x,y}, and (X,d) is geodesically linear if,
for all x,y € X, there is a unique segment in X with endpoints {x,y}.

Example 3.3. Euclidean space RY is geodesically linear. The closed annulus
{z € R?: 1 < |z| <2} is not geodesic in the metric inherited from R?, but
it is geodesic in the metric defined by taking the infimum of the Euclidean
lengths of piecewise-linear paths between two points. The closed annulus is
not geodesically linear in this latter metric: for example, a pair of points of
the form z and —z are the endpoints of two segments — see Figure 3.1. The
open annulus {z € R? : 1 < |2| < 2} is not geodesic in the metric defined
by taking the infimum over all piecewise-linear paths between two points: for
example, there is no segment that has a pair of points of the form z and —z
as its endpoints.

Lemma 3.4. Consider a metric space (X,d). Let o be a segment in X with
endpoints x and z, and let T be a segment in X with endpoints y and z.

(a) Suppose that d(u,v) = d(u,z) +d(z,v) for allue o andver. ThenouT
s a segment with endpoints x and vy.

(b) Suppose that o N1 = {z} and o UT is a segment. Then o UT has endpoints
x and y.
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Fig. 3.1. Two geodesics with the same endpoints in the intrinsic path length metric
on the annulus

Lemma 3.5. Let (X, d) be a geodesic metric space such that if two segments
of (X, d) intersect in a single point, which is an endpoint of both, then their
union is a segment. Then (X,d) is a geodesically linear metric space.

Proof. Let o, T be segments, both with endpoints u, v. Fix w € o, and define v’
to be the point of 7 such that d(u,w) = d(u,w’) (so that d(v,w) = d(v,w’)).
We have to show w = w'.

Let p be a segment with endpoints w,w’. Now o = 01 U 03, where o7 is a
segment with endpoints u,w, and o3 is a segment with endpoints w,v — see
Figure 3.2.

We claim that either o1 N p = {w} or g9 N p = {w}. This is so because
if x € 01 npand y € oy N p, then d(z,y) = d(z,w) + d(w,y), and either
d(w,y) = d(w,z) + d(z,y) or d(w,x) = d(w,y) + d(x,y), depending on how
x,y are situated in the segment p. It follows that either z = w or y = w,
establishing the claim.

Now, if o1 n p = {w}, then, by assumption, o1 U p is a segment, and by
Lemma 3.4(b) its endpoints are u,w’. Since w € o1 U p, d(u,w’) = d(u,w) +
d(w,w"), so w = w'. Similarly, if 03 N p = {w} then w = w'. =

Lemma 3.6. Consider a geodesically linear metric space (X, d).
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Fig. 3.2. Construction in the proof of Lemma 3.5

(i) Given points x,y,z € X, write o for the segment with endpoints x,y.
Then z € o if and only if d(z,y) = d(x, z) + d(z,y).

(i) The intersection of two segments in X is also a segment if it is non-
empty.

(i1i) Given x,y € X, there is a unique isometry « : [0,d(z,y)] — X such that
a(0) = z and a(d(x,y)) = y. Write [x,y] for the resulting segment. If
u,v € [z,y], then [u,v] € [z,y].

3.2 0-Hyperbolic Spaces
Definition 3.7. For x,y,v in a metric space (X,d), set
1
(2 y)o = 3 (dla,0) +d(y,v) ~ d(zy)
- see Figure 3.3.

Remark 3.8. For z,y,v,t € X,

0< (2 y)y <d(z,v) Ad(y,v)
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?V

Fig. 3.3. (z - y)» = d(w, v) in this tree

and
(-y) =d(t,v) + (@ - y)o— (@ )y — (Y- )

Definition 3.9. A metric space (X, d) is 0O-hyperbolic with respect to v if for
all z,y,ze X

(@Yo = (2 2)0 A (Y- 2)o
- see Figure 3.4.

Lemma 3.10. If the metric space (X,d) is 0-hyperbolic with respect to some
point of X, then (X,d) is 0-hyperbolic with respect to all points of X .

Remark 3.11. In light of Lemma 3.10, we will refer to a metric space that is
0-hyperbolic with respect to one, and hence all, of its points as simply being
0-hyperbolic. Note that any subspace of a 0-hyperbolic metric space is also
0-hyperbolic.

Lemma 3.12. The metric space (X,d) is 0-hyperbolic if and only if
d(z,y) + d(z,t) < max{d(z, z) + d(y,t), d(y,z) + d(z,t)}

forall z,y,z,te X,
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Fig. 3.4. The 0-hyperbolicity condition holds for this tree. Here (z-y), and (y- 2)
are both given by the length of the dotted segment, and (z - z), is the length of the
dashed segment. Note that (z-y)y = (x-2)v A (¥ 2)v, with similar inequalities when
x,y, z are permuted.

Remark 3.13. The set of inequalities in Lemma 3.12 is usually called the four-
point condition — see Figure 3.5.

Ezample 3.14. Write C(R.) for the space of continuous functions from R
into R. For e € C(Ry), put ¢(e) := inf{t > 0: e(t) = 0} and write

e(0) = 0, {(e) < oo,
U:=<{eeCRy): e(t)>0for 0 <t<((e),
and e(t) = 0 for t = ((e)

for the space of positive excursion paths. Set U’ := {e e U : ((e) = ¢}.
We associate each e € U with a compact metric space as follows. Define
an equivalence relation ~, on [0, ¢] by letting

Uy ~e ug, iff  e(ug) = el Aiunfu . ]6(u) = e(uz).
1 2,U1 2

Consider the following semi-metric on [0, £]
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Fig. 3.5. The four-point condition holds on a tree: d(z,z) + d(y,t) < d(z,y) +
d(z,t) = d(z,t) + d(y, z)

dr, (uy,u2) == e(uy) — 2 inf e(u) + e(uz),
u€ug Aug,ur vus)
that becomes a true metric on the quotient space T, := [O,E]L — see
Figure 3.6.

Tt is straightforward to check that the quotient map from [0, £] onto T, is
continuous with respect to dr,. Thus, (T, dr,) is path-connected and compact
as the continuous image of a metric space with these properties. In particular,
(T.,dr,) is complete. It is not difficult to check that (T.,dr,) satisfies the
four-point condition, and, hence, is 0-hyperbolic.

3.3 R-Trees

3.3.1 Definition, Examples, and Elementary Properties

Definition 3.15. An R-tree is a metric space (X, d) with the following prop-
erties.

Aziom (a) The space (X,d) is geodesic.
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Fig. 3.6. An excursion path on [0, 1] determines a distance between the points a
and b

Aziom (b) If two segments of (X,d) intersect in a single point, which is an
endpoint of both, then their union is a segment.

Ezample 3.16. Finite trees with edge lengths (sometimes called weighted
trees) are examples of R-trees. To be a little more precise, we don’t think
of such a tree as just being its finite set of vertices with a collection of dis-
tances between them, but regard the edges connecting the vertices as also
being part of the metric space.

Example 3.17. Take X to be the plane R? equipped with the metric

if 1 = Y1,

(w1, 72), (91, 42)) 1= {m - 1,

|21 — 1| + x| + |y2|, if 1 # 1.

That is, we think of the plane as being something like the skeleton of a
fish, in which the horizontal axis is the spine and vertical lines are the ribs.
In order to compute the distance between two points on different ribs, we use
the length of the path that goes from the first point to the spine, then along
the spine to the rib containing the second point, and then along that second
rib — see Figure 3.7.
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Fig. 3.7. The distance between two points of R? in the metric of Example 3.17 is
the (Euclidean) length of the dashed path

Example 3.18. Consider the collection 7 of bounded subsets of R that contain
their supremum. We can think of the elements of 7 as being arrayed in a
tree—like structure in the following way. Using genealogical terminology, write
h(B) := sup B for the real-valued generation to which B € T belongs and
Blt := (Bn]—o,t])u{t} € T for t < h(B) for the ancestor of B in generation
t. For A, B € T the generation of the most recent common ancestor of A and
B is 7(A,B) := sup{t < h(A) A h(B) : A|t = BJt}. That is, 7(A, B) is
the generation at which the lineages of A and B diverge. There is a natural
genealogical distance on 7 given by

D(A,B) := [h(A) — 7(A,B)| + [h(B) — 7(4, B)].

See Figure 3.8.

It is not difficult to show that the metric space (7, D) is a R-tree. For
example, the segment with end-points A and B is the set {A|t : 7(A, B) <
t<h(A)}u{B|t: (A, B) <t<h(B)}.

The metric space (7, D) is essentially “the” real tree of [47, 137] (the
latter space has as its points the bounded subsets of R that contain their
infimum and the corresponding metric is such that the map from (7, D) into
this latter space given by A — —A is an isometry). With a slight abuse of
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Fig. 3.8. The set C is the most recent common ancestor of the sets A, B < R
thought of as points of “the” real tree of Example 3.18. The distance D(A, B) is
[s —u] + [t —u].

nomenclature, we will refer here to (7, D) as the real tree. Note that (7, D)
is huge: for example, the removal of any point shatters 7 into uncountably
many connected components.

Ezxample 3.19. We will see in Example 3.37 that the compact 0-hyperbolic
metric space (Te,dr,) of Example 3.14 that arises from an excursion path
e e U is a R-tree.

The following result is a consequence of Axioms (a) and (b) and Lemma 3.5.

Lemma 3.20. An R-tree is geodesically linear. Moreover, if (X,d) is a R-tree
and x,y,z € X then [z,y] N [z, z] = [z, w] for some unique w € X.

Remark 3.21. Tt follows from Lemma 3.4, Lemma 3.6 and Lemma 3.20 that

Axioms (a) and (b) together imply following condition that is stronger than

Axiom (b):

Axiom (b’) If (X,d) is a R-tree, x,y,z € X and [z,y] n [z, 2] = {z}, then
[xvy] Y [mvz] = [y,z]
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Lemma 3.22. Let x,y,z be points of a R-tree (X,d), and write w for the
unique point such that [z,y] N [z, z] = [z, w].

(i) The points x,y, z,w and the segments connecting them form a Y shape,
with ©,y, z at the tips of the Y and w at the center. More precisely, [y, w]n

[w, 2] = {w}, [y, 2] = [y, w] v [w, 2] and [z,y] A [w, 2] = {w}.
(i) If y' € [x,y] and 2’ € [z, z], then

d(y/ Z/) _ |d($,y/) - d(l‘7zl)|, Zfd(I,y/) A d(xazl) < d(wi)y
d(z,y') + d(x, 2') — 2d(x,w), otherwise.

(iii) The “centroid” w depends only on the set {x,y,z}, not on the order in
which the elements are written.

Proof. (i) Since y,w € [z,y], we have [y, w] € [z,y]. Similarly, [w, z] € [z, z].
So, if u € [y, w] N [w, 2], then u € [z,y] N [z, z] = [z, w]. Hence u € [z, w] N
[y,w] = {w} (because w € [z,y]). Thus, [y,w] N [w,z] = {w}, and [y, z] =
[y, w] U [w, z] by Axiom (b’).

Now, since w € [z,y], we have [z,y] = [z,w] U [w,y], so [x,y] N [w, 2] =
([z,w] N [w, z]) U ([y,w] N [w, z]), and both intersections are equal to {w}
(w e [z,z2]).

(ii) If d(z,vy') < d(z,w) theny', 2’ € [z, z] and so d(y', 2') = |d(x,y")—d(x, 2)|.
Similarly, if d(x, z) < d(z,w), then ¢/, 2’ € [z,y], and once again d(y/,2’) =
|d(z,y') — d(x,2')].
If d(x,y') > d(z,w) and d(x, 2") > d(x,w), then y' € [y, w] and 2’ € [z, w].
Hence, by part (i),
d(y',2") =dy',w) + d(w, 2")
= (d(z,y") — d(z,w)) + (d(z,2") — d(z,w)
=d(z,y") +d(z,2') — 2d(z,w).
(iii) We have by part (i) that

[y,m] A [:%Z] = [y,:c] N ([va] o [’U),Z])
= [y, wl v (ly, 2] n [w, 2])
= [y, w]u ([y, w] ~ [w, 2]) v ([w, 2] A [w, 2])
Now [y, w] n [w,z] = {w} by part (1) and [w,z] N [w, 2] = {w} since
w € [z, z]. Hence, [y, z] N[y, z] = [y, w]. Similarly, [z, z] n [z,y] = [z, w], and
part (iii) follows. =
Definition 3.23. In the notation of Lemma 3.22, write Y (x,y,z2) := w for
the centroid of {z,y, z}.

Remark 3.24. Note that we have

[z, 9] 0 [w, 2] = [2,2] 0 [w,y] = [y, 2] 0 [w, 2] = {w}.

Also, d(z,w) = (y-2)q, d(y, w) = (z-2),, and d(z,w) = (x-y). In Figure 3.3,
Y(z,y,v) = w.
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Corollary 3.25. Consider a R-tree (X, d) and points xg,x1,...,2, € X. The
segment [zo, x| is a subset of | Ji—[wi—1, z;].

Proof. If n = 2, then, by Lemma 3.22,
[20, 22] = [%0, Y (0, 21, 22)] U [Y (20, 71, 72), ¥2] S [0, 71] U [21, 22].

If n > 2, then [zo, 2] S [®0, Tn-1] U [Tn-1,2n] by the case n = 2, and the
result follows by induction on n. m]

Lemma 3.26. Consider a R-tree (X,d). Let « : [a,b] — X be a continuous
map. If x = a(a) and y = «(b), then [x,y] is a subset of the image of .

Proof. Let A denote the image of «. Since A is a closed subset of X (being
compact as the image of a compact interval by a continuous map), it is enough
to show that every point of [z,y] is within distance € of A, for all e > 0.

Given € > 0, the collection {a~1(B(x,¢/2)) : x € A} is an open covering
of the compact metric space [a,b], so there is a number § > 0 such that any
two points of [a, b] that are distance less than § apart belong to some common
set in the cover.

Choose a partition of [a,b],say a = tg < -+ < t, =b,sothatfor 1 <i<n
we have t; — ;1 < ¢, and, therefore, d(c(t;—1),a(t;)) < e. Then all points
of [a(t;—1),a(t;)] are at distance less than e from {a(t;_1),a(t;)} < A for
1 <i < n. Finally, [z,y] < U/, [a(ti—1), a(t;)], by Corollary 3.25. o

Definition 3.27. For points xg,x1, ..., T, in a R-tree (X, d), write [xo, x,] =
[zo,Z1,...,2,] to mean that, if « : [0,d(zo,xn)] — X is the unique isom-
etry with «(0) = =z and o(d(xo,z,)) = z,, then x; = «ala;), for some
ap,a1,ag,...,a, with 0 =ag < ay; <ag < -+ < a, = d(xg, xy,).

Lemma 3.28. Consider a R-tree (X,d). If xg,...,2, € X, 2; # x;iyq1 for
1 <i<n—2and [xi—1,2;] N[5, 2i41] = {x;} for 1 < i < n—1, then
[T0, Tn] = [0, T1, .- -, Tn].

Proof. There is nothing to prove if n < 2. Suppose n = 3. We can assume
ro # x1 and xo # x3, otherwise there is again nothing to prove. Let w =
Y(Q?o, ZTo, .’L'g,)

Now w € [xg, x2] and 1 € [xg, 2], S0 [x2, w] N[22, 1] = [22,v], where v
is either w or z1, depending on which is closer to z3. But [z, w] N[22, 21] S
[o, 3] N [z, 21] = {22}, SO0 v = xa.

Since 1 # x2, we conclude that w = x2. Hence [zg, z2] N[22, 23] = {22},
which implies [zg, 23] = [z0, 22, x3] = [20, 21, T2, 3].

Now suppose n > 3. By induction,

[xo,afn_ﬂ = [l‘o,l‘h P ,.Z‘n_g,xn_l] = [Z‘Q,xn_g,l‘n_l].
By the n = 3 case,
[.T(), mn] = [x()a Tn—2,Tp—1, xn] = [an T1yeeeyTp—2,Tp—1, xn]

as required. m]
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3.3.2 R-Trees are 0-Hyperbolic

Lemma 3.29. A R-tree (X, d) is 0-hyperbolic.
Proof. Fix v e X. We have to show

(@Y= (2 2)0 A (Y- 2)0

(- 2)0 = ( Jo A (Y- 2)o
(Y- 2)v = (2 y)o A (- 2)

for all x,y, z. Note that if this is so, then one of (x - y),, (x - 2)y, (y - 2), is at
least as great as the other two, which are equal.

Let ¢ = Y(z,v,y), r = Y(y,v,2), and s = Y(z,v,2). We have (z -y), =
d(v,q), (y - 2)y = d(v,s), and (z - ), = d(v,r). We may assume without loss
of generality that

Z (T Y)y A
Z (T Y)y A

v

d(v,q) < d(v,r) < d(v,s),

in which case have to show that ¢ = r — see Figure 3.9.

q=r

Fig. 3.9. The configuration demonstrated in the proof of Lemma 3.29

Now r, s € [v, z] by definition, and d(v,r) < d(v, s), so that [v, s] = [v, 7, s].
Also, by definition of s, [v,z] = [v, s, z] = [v, 7, s,z]. Hence r € [v,z]n[v,y] =
[v,¢q]. Since d(v, q) < d(v,r), we have ¢ = r, as required. O
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Remark 3.30. Because any subspace of a 0-hyperbolic space is still
0-hyperbolic, we can’t expect that the converse to Lemma 3.29 holds. How-
ever, we will see in Theorem 3.38 that any 0-hyperbolic space is isometric to
a subspace of a R-tree.

3.3.3 Centroids in a 0-Hyperbolic Space
Definition 3.31. A set {a,b,c} = R is called an isosceles triple if
azbnarc,b=cnrna, andc>=a nb.

(This means that at least two of a,b,c are equal, and not greater than the
third.)

Remark 3.32. The metric space (X,d) is 0-hyperbolic if and only if
(T Y)y, (@ 2)0, (y-2), is an isosceles triple for all z,y, z,v e X.

Lemma 3.33. (i) If {a,b, ¢} is any triple then
{a Ab,bAccnal

is an isosceles triple.
(ii) If {a,b,c} and {d,e, f} are isosceles triples then so is

{and,brecn [}

Lemma 3.34. Consider a 0-hyperbolic metric space (X,d). Let o,7 be seg-
ments in X with endpoints v,z and v,y respectively. Write x -y := (x - y),.

(i) If ' € o, then 2’ € 7 if and only if d(v,2') < x - y.
(i) If w is the point of o at distance x -y from v, then o N T is a segment with
endpoints v and w.

Proof. If d(2’,v) > d(y,v) then 2’ ¢ 7, and d(z’,v) > x - y, so we can assume
that d(2’,v) < d(y,v). Let 3 be the point in 7 such that d(v,z’) = d(v,y’).
Define

a=x-y, B=2"-y, y=z-2/,d =2"-y.

Since 2’ € o and ¢y’ € T, we have v = d(v,2’) = d(v,y") = y - v'. Hence,
(o, B,7) and (o, B, 7y) are isosceles triples. We have to show that 2’ € 7 if and
only if a = 7. The two cases a < v and « > ~y are illustrated in Figure 3.10
and Figure 3.11 respectively.

Now,

B=a"y<dwva)=x12"=

Also,

and
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1]
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Vi

Fig. 3.10. First case of the construction in the proof of Lemma 3.34. Here 7 is
either of the two equal dashed lengths and @ = 3 = o' is the dotted length. As
claimed, o < v and 2’ ¢ 7.

derer =y sdd,y)=0sd =1.

Moreover, o/ = v if and only if 8 = ~, because (¢, 3,7) is an isosceles
triple and o/, 3 < . Since («, 3,7) is also an isosceles triple, the equality
[ = v is equivalent to the inequality « = 7. This proves part (i). Part (ii) of
the lemma follows immediately. m]

Lemma 3.35. Consider a 0-hyperbolic metric space (X,d). Let o,7 be seg-
ments in X with endpoints v,z and v,y respectively. Set x -y = (T - y)y.
Write w for the point of o at distance x -y from v (so that w is an endpoint
of o N1 by Lemma 3.34). Consider two points ' € o, y € 7, and suppose
d(z’',v) = x -y and d(y',v) = x -y. Then

d(z',y') = d(2',w) + d(y', w).

Proof. The conclusion is clear if d(2/,v) = z-y (when 2’ = w) or d(y',v) = z-y
(when 3/ = w), so we assume that d(2/,v) > 2 -y and d(y',v) > x - y. As in
the proof of Lemma 3.34, we put

/ / / / /
a=z-y B=a2"y y=z-2 o =2y,
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PR ——

Fig. 3.11. Second case of the construction in the proof of Lemma 3.34. Here v =
B = o is the dashed length and « is the dotted length. As claimed, o = v and
2 er.

and we also put v/ = y-¢/, so that v = d(v,2’) and ' = d(v,y’). Thus, o < .
Hence, o = [3 since («, 3,7) is an isosceles triple. Also, o < 4/, so that 5 < +'.
Hence, o = o’ = 3 because (o, 3,7) is an isosceles triple.

By definition of o/,

d(a',y’) = d(
d(

Since w € 0 N7, a = d(v,w) < d(v,2’),d(v,y’) and o,7 are segments, it
follows that

v,2') +d(v,y’) — 2/
v,2') +d(v,y') — 2a.

d(z',w) =d(v,2") — «

and
d(y/7 w) = d(’U, y/) - Q,

and the lemma follows on adding these equations. ]
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3.3.4 An Alternative Characterization of R-Trees

Lemma 3.36. Consider a 0-hyperbolic metric space (X, d). Suppose that there
is a point v € X such that for every x € X there is a segment with endpoints
v,x. Then (X,d) is a R-tree.

Proof. Take z,y € X and let 0,7 be segments with endpoints v,z and v,y
respectively.

By Lemma 3.34, if w is the point of o n 7 at distance (x - y), from v, then
o is the union (o N 7) U o7, where

o1 ={uecoc :dv,u)= (@ y)y}
is a segment with endpoints w, z. Similarly, 7 is the union (o n7) U 71, where
m1i={uer :dw,u) = (v y)}

is a segment with endpoints w, y.

By Lemma 3.35 and Lemma 3.4, o1 U 77 is a segment with endpoints x, y.
Thus, (X, d) is geodesic.

Note that by Lemma 3.34, o0 n 7 is a segment with endpoints v, w. Also,
by Lemma 3.34, if o n 7 = {w} then (z-y), = 0 and 01 = 0, 7 = 7. Hence,
o u T is a segment. Now, by Lemma 3.10, we may replace v in this argument
by any other point of X. Hence, (X, d) satisfies the axioms for a R-tree. o

Ezxample 3.37. We noted in Example 3.14 that the compact metric space
(T.,dr,) that arises from an excursion path e € U is 0-hyperbolic. We can
use Lemma 3.36 to show that (7., dr.) is a R-tree. Suppose that e € U*. Take
x € T, and write ¢ for a point in [0, ¢] such that x is the image of ¢ under
the quotient map from [0, ¢] onto T,. Write v € T, for the image of 0 € [0, {]
under the quotient map from [0, ¢] onto T,. Note that v is also the image of
L€ [0,¢]. For h € [0,e(t)], set Ay :=sup{s € [0,¢] : e(s) = h}. Then the image
of the set {\, : h € [0,e(t)]} € [0,¢] under the quotient map is a segment in
T. that has endpoints v and z.

3.3.5 Embedding 0-Hyperbolic Spaces in R-Trees

Theorem 3.38. Let (X,d) be a 0-hyperbolic metric space. There exists a
R-tree (X',d") and an isometry ¢ : X — X'.

Proof. Fix ve X. Write z -y := (z - y), for z,y € X. Let
Y={z,m):ze X meRand 0 <m < d(v,x)}.
Define, for (z,m), (y,n) €Y,

(z,m) ~ (y,n) if and only if x - y = m = n.
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This is an equivalence relation on Y. Let X’ =Y/ ~, and let (zz,m) denote
the equivalence class of (z,m). We define the metric by

d'({z,m),{y,n)) =m+n—2[mAnna (z-y)]

The construction is illustrated in Figure 3.12.

Fig. 3.12. The embedding of Theorem 3.38. Solid lines represent points that are in
X, while dashed lines represent points that are added to form X".

It follows by assumption that d’ is well defined. Note that

d/(<xa m>a <1’, TL>) = |m - TL|
and (z,0) = (v,0) for all x € X, so d'({x,m),{v,0)) = m. Clearly d’ is
symmetric, and it is easy to see that d'({xz,m),{y,n)) = 0 if and only if
{x,m)y = {y,n). Also, in X',
z,m) - Y. m)) w0y =m An A (T-y).
If {x,m),{y,n) and {z, p) are three points of X’, then

{m An,nAppnam}
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is an isosceles triple by Lemma 3.33(1). Hence, by Lemma 3.33(2), so is {m A
na(zy),nApa(y-z),prmna(z-x)}. It follows that (X’,d’) is a 0-hyperbolic
metric space.

If (x,m) € X', then the mapping « : [0, m] — X' given by a(n) = (x,n) is
an isometry, so the image of « is a segment with endpoints (v, 0) and (x, m). It
now follows from Lemma 3.36 that (X, d’) is a R-tree. Further, the mapping
¢ : X — X' defined by ¢(x) = (x,d(v,z)) is easily seen to be an isometry. o

3.3.6 Yet another Characterization of R-Trees

Lemma 3.39. Let (X,d) be a R-tree. Fizve X.

(i) For z,y € X\{v}, [v,z] n [v,y] # {v} if and only if x,y are in the same
path component of X\{v}.

(ii) The space X\{v} is locally path connected, the components of X\{v} coin-
cide with its path components, and they are open sets in X.

Proof. (i) Suppose that [v, 2] n[v,y] # {v}. It can’t be that v € [z, y], because
that would imply [z,v] N [v,y] = {v}. Thus, [z,y] € X\{v} and z,y are in
the same path component of X\{v}. Conversely, if o : [a,b] — X\{v} is a
continuous map, with = a(a), y = a(b), then [a,b] is a subset of the image
of @ by Lemma 3.26, so v ¢ [z,y], and [v,z] N [v,y] # {v} by Axiom (b’) for
a R-tree.

(ii) For 2 € X\{v}, the set U := {y € X : d(x,y) < d(z,v)} is an open set
in X, U € X\{v}, € U, and U is path connected. For if y,z € U, then
[z,y] Uz, z] € U, and so [y, z] € U by Corollary 3.25. Thus, X\{v} is locally
path connected. It follows that the path components of X\{v} are both open
and closed, and (ii) follows easily. =

Theorem 3.40. A metric space (X,d) is a R-tree if and only if it is connected
and 0-hyperbolic.

Proof. An R-tree is geodesic, so it is path connected. Hence, it is connected.
Therefore, it is 0-hyperbolic by Lemma 3.29.

Conversely, assume that a metric space (X,d) is connected and 0-
hyperbolic. By Theorem 3.38 there is an embedding of (X,d) in a R-tree
(X',d"). Let x,y € X, suppose v € X"\ X and v € [z,y]. Then [v,z] N [v,y] =
{v} and so by Lemma 3.39, z,y are in different components of X\{v}.

Let C be the component of X\{v} containing z. By Lemma 3.39, C'is open
and closed, so X nC'is open and closed in X. Sincex € X nC, y ¢ X nC, this
contradicts the connectedness of X. Thus, [x,y] € X and (X, d) is geodesic.
It follows that (X, d) is a R-tree by Lemma 3.36. O

Ezxample 3.41. Let P denote the collection of partitions of the positive integers
N. There is a natural partial order < on P defined by P < @ if every block
of @ is a subset of some block of P (that is, the blocks of P are unions of
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blocks of Q). Thus, the partition {{1},{2},...} consisting of singletons is the
unique largest element of P, while the partition {{1,2,...}} consisting of a
single block is the unique smallest element. Consider a function IT : Ry — P
that is non-increasing in this partial order. Suppose that I7(0) = {{1}, {2},...}
and IT(t) = {{1,2,...}} for all ¢ sufficiently large. Suppose also that if IT is
right-continuous in the sense that if ¢ and j don’t belong to the same block of
II(t) for some t € R, then they don’t belong to the same block of IT(u) for
u > t sufficiently close to t.

Let T denote the set consisting of points of the form (¢, B), where ¢t € R,
and B € I1(t). Given two point (s, A), (t,B) € T, set

m((s, A), (¢, B))
;= inf{u > s A t: A and B subsets of a common block of IT(u)},

and put
d((st)a (th)) = [m((st)7 (th)) - 8] + [m((st)v (t’B)) - t]'

It is not difficult to check that d is a metric that satisfies the four point
condition and that the space T is connected. Hence, (T,d) is a R-tree by
Theorem 3.40. The analogue of this construction with N replaced by {1, 2, 3,4}
is shown in Figure 3.13.

Moreover, if we let T denote the completion of T with respect to the metric
d, then T is also a R-tree. It is straightforward to check that T is compact if
and only if I7(¢) has finitely many blocks for all ¢ > 0.

Write § for the restriction of d to the positive integers N, so that

0(i,7) = 2inf{t > 0 : 4 and j belong to the same block of IT(t)}.

The completion S of N with respect to ¢ is isometric to the closure of N in T,
and S is compact if and only if I7(¢) has finitely many blocks for all ¢ > 0. Note
that J is an wltrametric , that is, 6(x,y) < d(x, 2) v §(z,y) for x,y, z € S. This
implies that at least two of the distances are equal and are no smaller than
the third. Hence, all triangles are isosceles. When S is compact, the open balls
for the metric § coincide with the closed balls and are obtained by taking the
closure of the blocks of I1(t) for ¢ > 0. In particular, S is totally disconnected.

The correspondence between coalescing partitions, tree structures and ul-
trametrics is a familiar idea in the physics literature — see, for example, [109].

3.4 R—Trees without Leaves

3.4.1 Ends

Definition 3.42. An R-tree without leaves is a R-trees (T,d) that satisfies
the following extra axioms.
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{1L2h(30{4  {{1.,2).{3}{4}} {{1.21.{3.4}} {{(1.2,3.4}}

Fig. 3.13. The construction of a R-tree from a non-increasing function taking values
in the partitions of {1,2, 3,4}.

Aziom (c¢) The metric space (T,d) is complete.
Aziom (d) For each x € T there is at least one isometric embedding 6 : R — T
with x € (R).

Ezample 3.43. “The” real tree (7, D) of Example 3.18 satisfies Axioms (c)
and (d).

We will suppose in this section that we are always working with a R-tree
(T, d) that is without leaves.

Definition 3.44. Anend of T is an equivalence class of isometric embeddings
from R into T, where we regard two such embeddings ¢ and ¥ as being
equivalent if there exist « € R and § € Ry such that « + 8 = 0 and ¢(t) =
Yt + «) for allt = . Write E for the set of ends of T

By Axiom (d), E has at least 2 points. Fix a distinguished element { of E.
For each x € T there is a unique isometric embedding x, : R, — T such that
k(0) = x and K, is a representative of the equivalence class of f. Similarly,
for each € € E, := FE\{f} there is at least one isometric embedding § : R — T'
such that ¢ — 6(t), t = 0, is a representative of the equivalence class of &
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and t — 0(—t), t = 0, is a representative of the equivalence class of f. Denote
the collection of all such embeddings by O¢. If 6,6 € O, then there exists
v € R such that 6(t) = ¢'(¢t + ) for all ¢t € R. Thus, it is possible to select an
embedding 0, € O¢ for each £ € E in such a way that for any pair ,( € ',
there exists oy (depending on &, ¢) such that 6¢(t) = 0.(t) for all ¢t <ty (and
Oc(Jto, o) N Oc(Jto, 0[) = &). Extend 6 to R* := R U {£ow} by setting
Oc(—o0) :=t and ¢ (+0) := &.

Ezample 3.45. The ends of the real tree (7,D) of Example 3.18 can be
identified with the collection consisting of the empty set and the elements
of £, where £, consists of subsets B < R such that —o0 < inf B and
sup B = +o0. If we choose { to be the empty set so that £, plays the
role of £, then we can define the isometric embedding 64 for A € £, by
04(t) := (An] — o0, t]) U {t} = AJt, in the notation of Example 3.18.

The map (t,§) — 0¢(t) from R x E (resp. R* x E) into T (resp. T U E)
is surjective. Moreover, if 7 € T U E is in 6¢(R*) n 6.(R*) for {,( € E4,
then Ogl(n) = 051(77). Denote this common value by h(n), the height of n.
In genealogical terminology, we think of h(n) as the generation to which 7
belongs. In particular, h(f) := —o0 and h(§) = +oo for £ € E,. For the real
tree (7, D) of Example 3.18 with corresponding isometric embeddings defined
as above, h(B) is just sup B, with the usual convention that sup ¢ := —o0 (in
accord with the notation of Example 3.18).

Define a partial order < on T u E by declaring that n < p if there exists
—0 < s <t < +wand £ € E; such that n = 0¢(s) and p = 6¢(¢). In
genealogical terminology, < p corresponds to 1 being an ancestor of p (note
that individuals are their own ancestors). In particular, { is the unique point
that is an ancestor of everybody, while points of E are characterized by being
only ancestors of themselves. For the real tree (7, D) of Example 3.18, A < B
if and only if A = (Bn] — oo,sup A]) u {sup A}. In particular, this partial
order is not the usual inclusion partial order (for example, the singleton {0}
is an ancestor of the singleton {1}).

Each pair n,p € T U E has a well-defined greatest common lower bound
1N A p in this partial order, with n A pe T unlessn =pe E,, n="Tor p=71.
In genealogical terminology, n A p is the most recent common ancestor of n
and p. For z,y € T' we have

d(z,y) = h(z) + h(y) = 2h(z A y)
= [h(x) = h(z A y)] + [(y) — bz A y)].

Therefore, h(x) = d(z,y) — h(y) + 2h(z A y) < d(z,y) + h(y) and, similarly,
h(y) < d(z,y) + h(x), so that

[h(z) = h(y)| < d(z,y), (3.2)

with equality if x,y € T' are comparable in the partial order (that is, if x <y
ory < ).

(3.1)
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If o, 2’ € T are such that h(x A y) = h(2’ A y) for all y € T, then, by (3.1),
d(z,z') = [h(z) = h(z Arz)]+[h(z") = h(z Az")] = [h(z) = h(z Ax)]+[h(z") —
h(z’ A 2’)] =0, so that & = a’. Slight elaborations of this argument show that
if n,n € T U E are such that h(n A y) = h(n' A y) for all y in some dense
subset of T, then n = 7'.

For x,2’,z € T we have that if h(z A 2) < h(z/ A 2), then x A 2/ =2 A 2
and a similar conclusion holds with the roles of x and 2’ reversed; whereas if
h(z A z) =h(a' Az),then x A z=2a" Az <z A2’ Using (3.1) and (3.2) and
checking the various cases we find that

|h(x A 2) —h(z" A 2)| <d(x A z,2" A 2) <d(z,2). (3.3)

For n € T U E and t € R* with t < h(n), let n|t denote the unique
pe T uE with p<nand h(p) = t. Equivalently, if = 0¢(u) for some u € R*
and § € E, then n|t = 0¢(t) for ¢ < u. For the real tree of Example 3.18, this
definition coincides with the one given in Example 3.18.

The metric space (F,0), where

O(€,¢) =271,

is complete. Moreover, the metric ¢ is actually an ultrametric; that is, §(€, ¢) <
6(&,m) v é(n,¢) forall ¢, e EL.

3.4.2 The Ends Compactification

Suppose in this subsection that the metric space (F.,0) is separable. For t € R
consider the set

T, = {zeT: hx)=t)={t: £ B, ) (3.4)

of points in T that have height t. For each x € T} the set {( € E, : (|t = x}
is a ball in F, of diameter at most 2~ and two such balls are disjoint. Thus,
the separability of F is equivalent to each of the sets T} being countable. In
particular, separability of £, implies that T is also separable, with countable
dense set {{|t: £ € By, t € Q}, say.

We can, via a standard Stone—Cech-like procedure, embed 7' U E in a
compact metric space in such a way that for each y € T'U E the map = —
h(z A y) has a continuous extension to the compactification (as an extended
real-valued function).

More specifically, let S be a countable dense subset of T'. Let 7 be a strictly
increasing, continuous function that maps R onto ]0,1[. Define an injective
map IT from T into the compact, metrizable space [0, 1]° by IT(x) := (7(h(z A
Y)))yes. Identify T with II(T) and write T for the closure of T(= II(T))
in [0,1]7. In other words, a sequence {Z,},en = T converges to a point
in T if h(x, A y) converges (possibly to —o0) for all y € S, and two such
sequences {Zp}neny and {z] },en converge to the same point if and only if
lim,, h(zy, A y) = lim, h(z), A y) for all y € S.
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We can identify distinct points in 7' U E with distinct points in 7. If
{Zp}tneny € T and € € E are such that for all ¢t € R we have |t < z,, for all
sufficiently large n, then lim,, h(z, A y) = h(£ A y) for all y € S. We leave the
identification of { to the reader.

In fact, we have T = T U E. To see this, suppose that {z,}pey < T
converges to Lo, € T. Put hy := SUp,eg limy, h(z, Ay). Assume for the moment
that hy € R. We will show that x4 € T with h(2y) = he. For all k € N we
can find y; € S such that

1

1
hoo - < hmh(:rn A yk) < h(yk) < hoo + E

k
Observe that

d(yr, ye) < limsup(d(yk, Tn AYk) + d(Zn A Yi, Tn A Ye)

+ d(zy A yz,ye))

= nmnsup([h@k) — h@n A )]+ @ A ) — B A g
+ [h(ye) = hea A o))

<2 (L Ly, 2
SR\

Therefore, (yx)ren is a d-Cauchy sequence and, by Axiom (c), this sequence
converges to Yo € T. Moreover, by (3.2) and (3.3), lim,, h(zn AYoo) = M(yoo) =
N

We claim that yo, = z; that is, lim,, h(z, A 2) = h(ye A z) for all z € S.
To see this, fix z € T and € > 0. If n is sufficiently large, then

Wy A 2) < h(yep) + € (3.5)

and
h(yoo) — € < h(zn A Yoo) < P(Yoo)- (3.6)

If h(yo A 2) < h(ye) — €, then (3.6) implies that yo A 2 = 2, A 2. On the
other hand, if h(ys A 2) = h(ye) — €, then (3.6) implies that

h(xn A 2) = h(ye) — €, (3.7)
and so, by (3.5) and (3.6),

|h(yoo A 2) = (@, 2)|
< [h(yeo) = (R(Ye) — )] v [(2(yeo) + €) — (A(ye) — €)] (3.8)
= 2¢.

We leave the analogous arguments for hy, = 400 (in which case z, € Ey)
and hy, = —o0 (in which case x4, = f) to the reader.
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We have just seen that the construction of T' does not depend on T' (more
precisely, any two such compactifications are homeomorphic). Moreover, a
sequence {Zplney € T U E converges to a limit in 7" u F if and only if
lim,, h(x, A y) exists for all y € T', and two convergent sequences {z, } ,en and
{a!, }nen converge to the same limit if and only if lim,, h(z,, Ay) = lim,, h(z], A
y) for all y e T

3.4.3 Examples of R-Trees without Leaves

Fix a prime number p and constants r_,r, > 1. Let Q denote the rational
numbers. Define an equivalence relation ~ on Q x R as follows. Given a,b € Q
with a # b write a — b = p*(@) (m/n) for some v(a,b), m,n € Z with m and n
not divisible by p. For v(a,b) = 0 put w(a,b) = Z;)i%’b) ri, and for v(a,b) <0
put w(a,b) :=1— Zi_:vo(a’b) rt. Set w(a,a) := +o0. Given (a, s), (b,t) € Q x R
declare that (a,s) ~ (b,t) if and only if s = ¢t < w(a,b). Note that

v(a,c) = v(a,b) A v(b,c) (3.9)

so that
w(a,c) = w(a,b) A w(b,c) (3.10)

and ~ is certainly transitive (reflexivity and symmetry are obvious).

Let T denote the collection of equivalence classes for this equivalence re-
lation. Define a partial order < on 7' as follows. Suppose that z,y € T are
equivalence classes with representatives (a, s) and (b,t). Say that x < y if and
only if s < w(a,b) A t. It follows from (3.10) that < is indeed a partial order.
A pair z,y € T with representatives (a,s) and (b,¢) has a unique greatest
common lower bound x A y in this order given by the equivalence class of
(a,s At Aw(a,b)), which is also the equivalence class of (b, s A t A w(a,b)).

For 2 € T with representative (a, s), put h(z) := s. Define a metric d on T'
by setting d(z,y) := h(z) +h(y) — 2h(z A y). We leave it to the reader to check
that (T, d) is a R-tree satisfying Axioms (a)—(d), and that the definitions of
x <y, x Ay and h(x) fit into the general framework of Section 3.4, with
the set E. corresponding to Q x R—valued paths s — (a(s),s) such that
s <w(a(s),a(t)) A t.

Note that there is a natural Abelian group structure on F,: if £ and (
correspond to paths s — (a(s),s) and s — (b(s),s), then define £ + ¢ to
correspond to the path s — (a(s) + b(s), s). We mention in passing that there
is a bi—continuous group isomorphism between FE, and the additive group
of the p-adic integers Q,. (This map is, however, not an isometry if F, is
equipped with the § metric and Q, is equipped with the usual p-adic metric.)





