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R-Trees and 0-Hyperbolic Spaces

3.1 Geodesic and Geodesically Linear Metric Spaces

We follow closely the development in [39] in this section and leave some of the
more straightforward proofs to the reader.

Definition 3.1. A segment in a metric space pX, dq is the image of an isom-
etry α : ra, bs Ñ X. The end points of the segment are αpaq and αpbq.

Definition 3.2. A metric space pX, dq is geodesic if for all x, y P X, there
is a segment in X with endpoints tx, yu, and pX, dq is geodesically linear if,
for all x, y P X, there is a unique segment in X with endpoints tx, yu.

Example 3.3. Euclidean space Rd is geodesically linear. The closed annulus
tz P R2 : 1 ď |z| ď 2u is not geodesic in the metric inherited from R2, but
it is geodesic in the metric defined by taking the infimum of the Euclidean
lengths of piecewise-linear paths between two points. The closed annulus is
not geodesically linear in this latter metric: for example, a pair of points of
the form z and ´z are the endpoints of two segments – see Figure 3.1. The
open annulus tz P R2 : 1 ă |z| ă 2u is not geodesic in the metric defined
by taking the infimum over all piecewise-linear paths between two points: for
example, there is no segment that has a pair of points of the form z and ´z
as its endpoints.

Lemma 3.4. Consider a metric space pX, dq. Let σ be a segment in X with
endpoints x and z, and let τ be a segment in X with endpoints y and z.

(a) Suppose that dpu, vq “ dpu, zq ` dpz, vq for all u P σ and v P τ . Then σY τ
is a segment with endpoints x and y.

(b) Suppose that σXτ “ tzu and σYτ is a segment. Then σYτ has endpoints
x and y.
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z-z

Fig. 3.1. Two geodesics with the same endpoints in the intrinsic path length metric
on the annulus

Lemma 3.5. Let pX, dq be a geodesic metric space such that if two segments
of pX, dq intersect in a single point, which is an endpoint of both, then their
union is a segment. Then pX, dq is a geodesically linear metric space.

Proof. Let σ, τ be segments, both with endpoints u, v. Fix w P σ, and define w1

to be the point of τ such that dpu,wq “ dpu,w1q (so that dpv, wq “ dpv, w1q).
We have to show w “ w1.

Let ρ be a segment with endpoints w,w1. Now σ “ σ1 Y σ2, where σ1 is a
segment with endpoints u,w, and σ2 is a segment with endpoints w, v – see
Figure 3.2.

We claim that either σ1 X ρ “ twu or σ2 X ρ “ twu. This is so because
if x P σ1 X ρ and y P σ2 X ρ, then dpx, yq “ dpx,wq ` dpw, yq, and either
dpw, yq “ dpw, xq ` dpx, yq or dpw, xq “ dpw, yq ` dpx, yq, depending on how
x, y are situated in the segment ρ. It follows that either x “ w or y “ w,
establishing the claim.

Now, if σ1 X ρ “ twu, then, by assumption, σ1 Y ρ is a segment, and by
Lemma 3.4(b) its endpoints are u,w1. Since w P σ1 Y ρ, dpu,w1q “ dpu,wq `

dpw,w1q, so w “ w1. Similarly, if σ2 X ρ “ twu then w “ w1. [\

Lemma 3.6. Consider a geodesically linear metric space pX, dq.
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Fig. 3.2. Construction in the proof of Lemma 3.5

(i) Given points x, y, z P X, write σ for the segment with endpoints x, y.
Then z P σ if and only if dpx, yq “ dpx, zq ` dpz, yq.

(ii) The intersection of two segments in X is also a segment if it is non-
empty.

(iii) Given x, y P X, there is a unique isometry α : r0, dpx, yqs Ñ X such that
αp0q “ x and αpdpx, yqq “ y. Write rx, ys for the resulting segment. If
u, v P rx, ys, then ru, vs Ď rx, ys.

3.2 0-Hyperbolic Spaces

Definition 3.7. For x, y, v in a metric space pX, dq, set

px ¨ yqv :“
1
2

pdpx, vq ` dpy, vq ´ dpx, yqq

– see Figure 3.3.

Remark 3.8. For x, y, v, t P X,

0 ď px ¨ yqv ď dpx, vq ^ dpy, vq
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Fig. 3.3. px ¨ yqv “ dpw, vq in this tree

and
px ¨ yqt “ dpt, vq ` px ¨ yqv ´ px ¨ tqv ´ py ¨ tqt.

Definition 3.9. A metric space pX, dq is 0-hyperbolic with respect to v if for
all x, y, z P X

px ¨ yqv ě px ¨ zqv ^ py ¨ zqv

– see Figure 3.4.

Lemma 3.10. If the metric space pX, dq is 0-hyperbolic with respect to some
point of X, then pX, dq is 0-hyperbolic with respect to all points of X.

Remark 3.11. In light of Lemma 3.10, we will refer to a metric space that is
0-hyperbolic with respect to one, and hence all, of its points as simply being
0-hyperbolic. Note that any subspace of a 0-hyperbolic metric space is also
0-hyperbolic.

Lemma 3.12. The metric space pX, dq is 0-hyperbolic if and only if

dpx, yq ` dpz, tq ď maxtdpx, zq ` dpy, tq, dpy, zq ` dpx, tqu

for all x, y, z, t P X,
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Fig. 3.4. The 0-hyperbolicity condition holds for this tree. Here px ¨ yqv and py ¨ zqv

are both given by the length of the dotted segment, and px ¨ zqv is the length of the
dashed segment. Note that px ¨yqv ě px ¨zqv ^ py ¨zqv, with similar inequalities when
x, y, z are permuted.

Remark 3.13. The set of inequalities in Lemma 3.12 is usually called the four-
point condition – see Figure 3.5.

Example 3.14. Write CpR`q for the space of continuous functions from R`

into R. For e P CpR`q, put ζpeq :“ inftt ą 0 : eptq “ 0u and write

U :“

$

&

%

e P CpR`q :
ep0q “ 0, ζpeq ă 8,

eptq ą 0 for 0 ă t ă ζpeq,
and eptq “ 0 for t ě ζpeq

,

.

-

for the space of positive excursion paths. Set U ` :“ te P U : ζpeq “ `u.
We associate each e P U ` with a compact metric space as follows. Define

an equivalence relation „e on r0, `s by letting

u1 „e u2, iff epu1q “ inf
uPru1^u2,u1_u2s

epuq “ epu2q.

Consider the following semi-metric on r0, `s
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Fig. 3.5. The four-point condition holds on a tree: dpx, zq ` dpy, tq ď dpx, yq `

dpz, tq “ dpx, tq ` dpy, zq

dTe
pu1, u2q :“ epu1q ´ 2 inf

uPru1^u2,u1_u2s
epuq ` epu2q,

that becomes a true metric on the quotient space Te :“ r0, `s
ˇ

ˇ

„e
– see

Figure 3.6.
It is straightforward to check that the quotient map from r0, `s onto Te is

continuous with respect to dTe . Thus, pTe, dTeq is path-connected and compact
as the continuous image of a metric space with these properties. In particular,
pTe, dTe

q is complete. It is not difficult to check that pTe, dTe
q satisfies the

four-point condition, and, hence, is 0-hyperbolic.

3.3 R-Trees

3.3.1 Definition, Examples, and Elementary Properties

Definition 3.15. An R-tree is a metric space pX, dq with the following prop-
erties.

Axiom (a) The space pX, dq is geodesic.
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0 a b 1

Fig. 3.6. An excursion path on r0, 1s determines a distance between the points a
and b

Axiom (b) If two segments of pX, dq intersect in a single point, which is an
endpoint of both, then their union is a segment.

Example 3.16. Finite trees with edge lengths (sometimes called weighted
trees) are examples of R-trees. To be a little more precise, we don’t think
of such a tree as just being its finite set of vertices with a collection of dis-
tances between them, but regard the edges connecting the vertices as also
being part of the metric space.

Example 3.17. Take X to be the plane R2 equipped with the metric

dppx1, x2q, py1, y2qq :“

#

|x2 ´ y2|, if x1 “ y1,

|x1 ´ y1| ` |x2| ` |y2|, if x1 ‰ y1.

That is, we think of the plane as being something like the skeleton of a
fish, in which the horizontal axis is the spine and vertical lines are the ribs.
In order to compute the distance between two points on different ribs, we use
the length of the path that goes from the first point to the spine, then along
the spine to the rib containing the second point, and then along that second
rib – see Figure 3.7.
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Fig. 3.7. The distance between two points of R2 in the metric of Example 3.17 is
the (Euclidean) length of the dashed path

Example 3.18. Consider the collection T of bounded subsets of R that contain
their supremum. We can think of the elements of T as being arrayed in a
tree–like structure in the following way. Using genealogical terminology, write
hpBq :“ supB for the real–valued generation to which B P T belongs and
B|t :“ pBX s´8, tsqYttu P T for t ď hpBq for the ancestor of B in generation
t. For A,B P T the generation of the most recent common ancestor of A and
B is τpA,Bq :“ suptt ď hpAq ^ hpBq : A|t “ B|tu. That is, τpA,Bq is
the generation at which the lineages of A and B diverge. There is a natural
genealogical distance on T given by

DpA,Bq :“ rhpAq ´ τpA,Bqs ` rhpBq ´ τpA,Bqs.

See Figure 3.8.
It is not difficult to show that the metric space pT , Dq is a R-tree. For

example, the segment with end-points A and B is the set tA|t : τpA,Bq ď

t ď hpAqu Y tB|t : τpA,Bq ď t ď hpBqu.
The metric space pT , Dq is essentially “the” real tree of [47, 137] (the

latter space has as its points the bounded subsets of R that contain their
infimum and the corresponding metric is such that the map from pT , Dq into
this latter space given by A ÞÑ ´A is an isometry). With a slight abuse of
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Fig. 3.8. The set C is the most recent common ancestor of the sets A, B Ă R
thought of as points of “the” real tree of Example 3.18. The distance DpA, Bq is
rs ´ us ` rt ´ us.

nomenclature, we will refer here to pT , Dq as the real tree. Note that pT , Dq

is huge: for example, the removal of any point shatters T into uncountably
many connected components.

Example 3.19. We will see in Example 3.37 that the compact 0-hyperbolic
metric space pTe, dTeq of Example 3.14 that arises from an excursion path
e P U is a R-tree.

The following result is a consequence of Axioms (a) and (b) and Lemma 3.5.

Lemma 3.20. An R-tree is geodesically linear. Moreover, if pX, dq is a R-tree
and x, y, z P X then rx, ys X rx, zs “ rx,ws for some unique w P X.

Remark 3.21. It follows from Lemma 3.4, Lemma 3.6 and Lemma 3.20 that
Axioms (a) and (b) together imply following condition that is stronger than
Axiom (b):

Axiom (b’) If pX, dq is a R-tree, x, y, z P X and rx, ys X rx, zs “ txu, then
rx, ys Y rx, zs “ ry, zs
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Lemma 3.22. Let x, y, z be points of a R-tree pX, dq, and write w for the
unique point such that rx, ys X rx, zs “ rx,ws.

(i) The points x, y, z, w and the segments connecting them form a Y shape,
with x, y, z at the tips of the Y and w at the center. More precisely, ry, wsX

rw, zs “ twu, ry, zs “ ry, ws Y rw, zs and rx, ys X rw, zs “ twu.
(ii) If y1 P rx, ys and z1 P rx, zs, then

dpy1, z1q “

#

|dpx, y1q ´ dpx, z1q|, if dpx, y1q ^ dpx, z1q ď dpx,wq,
dpx, y1q ` dpx, z1q ´ 2dpx,wq, otherwise.

(iii) The “centroid” w depends only on the set tx, y, zu, not on the order in
which the elements are written.

Proof. (i) Since y, w P rx, ys, we have ry, ws Ď rx, ys. Similarly, rw, zs Ď rx, zs.
So, if u P ry, ws X rw, zs, then u P rx, ys X rx, zs “ rx,ws. Hence u P rx,ws X

ry, ws “ twu (because w P rx, ys). Thus, ry, ws X rw, zs “ twu, and ry, zs “

ry, ws Y rw, zs by Axiom (b’).
Now, since w P rx, ys, we have rx, ys “ rx,ws Y rw, ys, so rx, ys X rw, zs “

prx,ws X rw, zsq Y pry, ws X rw, zsq, and both intersections are equal to twu

(w P rx, zs).
(ii) If dpx, y1q ď dpx,wq then y1, z1 P rx, zs, and so dpy1, z1q “ |dpx, y1q´dpx, z1q|.
Similarly, if dpx, z1q ď dpx,wq, then y1, z1 P rx, ys, and once again dpy1, z1q “

|dpx, y1q ´ dpx, z1q|.
If dpx, y1q ą dpx,wq and dpx, z1q ą dpx,wq, then y1 P ry, ws and z1 P rz, ws.

Hence, by part (i),

dpy1, z1q “ dpy1, wq ` dpw, z1q

“ pdpx, y1q ´ dpx,wqq ` pdpx, z1q ´ dpx,wq

“ dpx, y1q ` dpx, z1q ´ 2dpx,wq.

(iii) We have by part (i) that

ry, xs X ry, zs “ ry, xs X pry, ws Y rw, zsq

“ ry, ws Y pry, xs X rw, zsq

“ ry, ws Y pry, ws X rw, zsq Y prw, xs X rw, zsq

Now ry, ws X rw, zs “ twu by part (1) and rw, xs X rw, zs “ twu since
w P rx, zs. Hence, ry, xs X ry, zs “ ry, ws. Similarly, rz, xs X rz, ys “ rz, ws, and
part (iii) follows. [\

Definition 3.23. In the notation of Lemma 3.22, write Y px, y, zq :“ w for
the centroid of tx, y, zu.

Remark 3.24. Note that we have

rx, ys X rw, zs “ rx, zs X rw, ys “ ry, zs X rw, xs “ twu.

Also, dpx,wq “ py ¨zqx, dpy, wq “ px ¨zqy, and dpz, wq “ px ¨yqz. In Figure 3.3,
Y px, y, vq “ w.
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Corollary 3.25. Consider a R-tree pX, dq and points x0, x1, . . . , xn P X. The
segment rx0, xns is a subset of

Ťn
i“1rxi´1, xis.

Proof. If n “ 2, then, by Lemma 3.22,

rx0, x2s “ rx0, Y px0, x1, x2qs Y rY px0, x1, x2q, x2s Ď rx0, x1s Y rx1, x2s.

If n ą 2, then rx0, xns Ď rx0, xn´1s Y rxn´1, xns by the case n “ 2, and the
result follows by induction on n. [\

Lemma 3.26. Consider a R-tree pX, dq. Let α : ra, bs Ñ X be a continuous
map. If x “ αpaq and y “ αpbq, then rx, ys is a subset of the image of α.

Proof. Let A denote the image of α. Since A is a closed subset of X (being
compact as the image of a compact interval by a continuous map), it is enough
to show that every point of rx, ys is within distance ε of A, for all ε ą 0.

Given ε ą 0, the collection tα´1pBpx, ε{2qq : x P Au is an open covering
of the compact metric space ra, bs, so there is a number δ ą 0 such that any
two points of ra, bs that are distance less than δ apart belong to some common
set in the cover.

Choose a partition of ra, bs, say a “ t0 ă ¨ ¨ ¨ ă tn “ b, so that for 1 ď i ď n
we have ti ´ ti´1 ă δ, and, therefore, dpαpti´1q, αptiqq ă ε. Then all points
of rαpti´1q, αptiqs are at distance less than ε from tαpti´1q, αptiqu Ď A for
1 ď i ď n. Finally, rx, ys Ď

Ťn
i“1rαpti´1q, αptiqs, by Corollary 3.25. [\

Definition 3.27. For points x0, x1, . . . , xn in a R-tree pX, dq, write rx0, xns “

rx0, x1, . . . , xns to mean that, if α : r0, dpx0, xnqs Ñ X is the unique isom-
etry with αp0q “ x0 and αpdpx0, xnqq “ xn, then xi “ αpaiq, for some
a0, a1, a2, . . . , an with 0 “ a0 ď a1 ď a2 ď ¨ ¨ ¨ ď an “ dpx0, xnq.

Lemma 3.28. Consider a R-tree pX, dq. If x0, . . . , xn P X, xi ‰ xi`1 for
1 ď i ď n ´ 2 and rxi´1, xis X rxi, xi`1s “ txiu for 1 ď i ď n ´ 1, then
rx0, xns “ rx0, x1, . . . , xns.

Proof. There is nothing to prove if n ď 2. Suppose n “ 3. We can assume
x0 ‰ x1 and x2 ‰ x3, otherwise there is again nothing to prove. Let w “

Y px0, x2, x3q.
Now w P rx0, x2s and x1 P rx0, x2s, so rx2, ws X rx2, x1s “ rx2, vs, where v

is either w or x1, depending on which is closer to x2. But rx2, ws X rx2, x1s Ď

rx2, x3s X rx2, x1s “ tx2u, so v “ x2.
Since x1 ‰ x2, we conclude that w “ x2. Hence rx0, x2s X rx2, x3s “ tx2u,

which implies rx0, x3s “ rx0, x2, x3s “ rx0, x1, x2, x3s.
Now suppose n ą 3. By induction,

rx0, xn´1s “ rx0, x1, . . . , xn´2, xn´1s “ rx0, xn´2, xn´1s.

By the n “ 3 case,

rx0, xns “ rx0, xn´2, xn´1, xns “ rx0, x1, . . . , xn´2, xn´1, xns

as required. [\
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3.3.2 R-Trees are 0-Hyperbolic

Lemma 3.29. A R-tree pX, dq is 0-hyperbolic.

Proof. Fix v P X. We have to show

px ¨ yqv ě px ¨ zqv ^ py ¨ zqv

px ¨ zqv ě px ¨ yqv ^ py ¨ zqv

py ¨ zqv ě px ¨ yqv ^ px ¨ zqv

for all x, y, z. Note that if this is so, then one of px ¨ yqv, px ¨ zqv, py ¨ zqv is at
least as great as the other two, which are equal.

Let q “ Y px, v, yq, r “ Y py, v, zq, and s “ Y pz, v, xq. We have px ¨ yqv “

dpv, qq, py ¨ zqv “ dpv, sq, and pz ¨ xqv “ dpv, rq. We may assume without loss
of generality that

dpv, qq ď dpv, rq ď dpv, sq,

in which case have to show that q “ r – see Figure 3.9.

v

s
x y

q=r

z

Fig. 3.9. The configuration demonstrated in the proof of Lemma 3.29

Now r, s P rv, zs by definition, and dpv, rq ď dpv, sq, so that rv, ss “ rv, r, ss.
Also, by definition of s, rv, xs “ rv, s, xs “ rv, r, s, xs. Hence r P rv, xsXrv, ys “

rv, qs. Since dpv, qq ď dpv, rq, we have q “ r, as required. [\
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Remark 3.30. Because any subspace of a 0-hyperbolic space is still
0-hyperbolic, we can’t expect that the converse to Lemma 3.29 holds. How-
ever, we will see in Theorem 3.38 that any 0-hyperbolic space is isometric to
a subspace of a R-tree.

3.3.3 Centroids in a 0-Hyperbolic Space

Definition 3.31. A set ta, b, cu Ă R is called an isosceles triple if

a ě b^ c, b ě c^ a, and c ě a^ b.

(This means that at least two of a, b, c are equal, and not greater than the
third.)

Remark 3.32. The metric space pX, dq is 0-hyperbolic if and only if
px ¨ yqv, px ¨ zqv, py ¨ zqv is an isosceles triple for all x, y, z, v P X.

Lemma 3.33. (i) If ta, b, cu is any triple then

ta^ b, b^ c, c^ au

is an isosceles triple.
(ii) If ta, b, cu and td, e, fu are isosceles triples then so is

ta^ d, b^ e, c^ fu.

Lemma 3.34. Consider a 0-hyperbolic metric space pX, dq. Let σ, τ be seg-
ments in X with endpoints v, x and v, y respectively. Write x ¨ y :“ px ¨ yqv.

(i) If x1 P σ, then x1 P τ if and only if dpv, x1q ď x ¨ y.
(ii)If w is the point of σ at distance x ¨ y from v, then σX τ is a segment with

endpoints v and w.

Proof. If dpx1, vq ą dpy, vq then x1 R τ , and dpx1, vq ą x ¨ y, so we can assume
that dpx1, vq ă dpy, vq. Let y1 be the point in τ such that dpv, x1q “ dpv, y1q.
Define

α “ x ¨ y, β “ x1 ¨ y, γ “ x ¨ x1, α1 “ x1 ¨ y1.

Since x1 P σ and y1 P τ , we have γ “ dpv, x1q “ dpv, y1q “ y ¨ y1. Hence,
pα, β, γq and pα1, β, γq are isosceles triples. We have to show that x1 P τ if and
only if α ě γ. The two cases α ă γ and α ě γ are illustrated in Figure 3.10
and Figure 3.11 respectively.

Now,
β “ x1 ¨ y ď dpv, x1q “ x ¨ x1 “ γ.

Also,

α1 “ dpv, x1q ´
1
2
dpx1, y1q “ γ ´

1
2
dpx1, y1q ď γ

and
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x
y

x’ y’

v

Fig. 3.10. First case of the construction in the proof of Lemma 3.34. Here γ is
either of the two equal dashed lengths and α “ β “ α1 is the dotted length. As
claimed, α ă γ and x1

R τ .

x1 P τ ô x1 “ y1 ô dpx1, y1q “ 0 ô α1 “ γ.

Moreover, α1 “ γ if and only if β “ γ, because pα1, β, γq is an isosceles
triple and α1, β ď γ. Since pα, β, γq is also an isosceles triple, the equality
β “ γ is equivalent to the inequality α ě γ. This proves part (i). Part (ii) of
the lemma follows immediately. [\

Lemma 3.35. Consider a 0-hyperbolic metric space pX, dq. Let σ, τ be seg-
ments in X with endpoints v, x and v, y respectively. Set x ¨ y :“ px ¨ yqv.
Write w for the point of σ at distance x ¨ y from v (so that w is an endpoint
of σ X τ by Lemma 3.34). Consider two points x1 P σ, y1 P τ , and suppose
dpx1, vq ě x ¨ y and dpy1, vq ě x ¨ y. Then

dpx1, y1q “ dpx1, wq ` dpy1, wq.

Proof. The conclusion is clear if dpx1, vq “ x¨y (when x1 “ w) or dpy1, vq “ x¨y
(when y1 “ w), so we assume that dpx1, vq ą x ¨ y and dpy1, vq ą x ¨ y. As in
the proof of Lemma 3.34, we put

α “ x ¨ y, β “ x1 ¨ y, γ “ x ¨ x1, α1 “ x1 ¨ y1,
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x
y
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v

Fig. 3.11. Second case of the construction in the proof of Lemma 3.34. Here γ “

β “ α1 is the dashed length and α is the dotted length. As claimed, α ě γ and
x1

P τ .

and we also put γ1 “ y ¨y1, so that γ “ dpv, x1q and γ1 “ dpv, y1q. Thus, α ă γ.
Hence, α “ β since pα, β, γq is an isosceles triple. Also, α ă γ1, so that β ă γ1.
Hence, α “ α1 “ β because pα1, β, γq is an isosceles triple.

By definition of α1,

dpx1, y1q “ dpv, x1q ` dpv, y1q ´ 2α1

“ dpv, x1q ` dpv, y1q ´ 2α.

Since w P σ X τ , α “ dpv, wq ă dpv, x1q, dpv, y1q and σ, τ are segments, it
follows that

dpx1, wq “ dpv, x1q ´ α

and
dpy1, wq “ dpv, y1q ´ α,

and the lemma follows on adding these equations. [\
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3.3.4 An Alternative Characterization of R-Trees

Lemma 3.36. Consider a 0-hyperbolic metric space pX, dq. Suppose that there
is a point v P X such that for every x P X there is a segment with endpoints
v, x. Then pX, dq is a R-tree.

Proof. Take x, y P X and let σ, τ be segments with endpoints v, x and v, y
respectively.

By Lemma 3.34, if w is the point of σX τ at distance px ¨ yqv from v, then
σ is the union pσ X τq Y σ1, where

σ1 :“ tu P σ : dpv, uq ě px ¨ yqvu

is a segment with endpoints w, x. Similarly, τ is the union pσX τq Y τ1, where

τ1 :“ tu P τ : dpv, uq ě px ¨ yqvu

is a segment with endpoints w, y.
By Lemma 3.35 and Lemma 3.4, σ1 Y τ1 is a segment with endpoints x, y.

Thus, pX, dq is geodesic.
Note that by Lemma 3.34, σ X τ is a segment with endpoints v, w. Also,

by Lemma 3.34, if σ X τ “ twu then px ¨ yqv “ 0 and σ1 “ σ, τ1 “ τ . Hence,
σ Y τ is a segment. Now, by Lemma 3.10, we may replace v in this argument
by any other point of X. Hence, pX, dq satisfies the axioms for a R-tree. [\

Example 3.37. We noted in Example 3.14 that the compact metric space
pTe, dTeq that arises from an excursion path e P U is 0-hyperbolic. We can
use Lemma 3.36 to show that pTe, dTeq is a R-tree. Suppose that e P U `. Take
x P Te and write t for a point in r0, `s such that x is the image of t under
the quotient map from r0, `s onto Te. Write v P Te for the image of 0 P r0, `s
under the quotient map from r0, `s onto Te. Note that v is also the image of
` P r0, `s. For h P r0, eptqs, set λh :“ supts P r0, ts : epsq “ hu. Then the image
of the set tλh : h P r0, eptqsu Ď r0, `s under the quotient map is a segment in
Te that has endpoints v and x.

3.3.5 Embedding 0-Hyperbolic Spaces in R-Trees

Theorem 3.38. Let pX, dq be a 0-hyperbolic metric space. There exists a
R-tree pX 1, d1q and an isometry φ : X Ñ X 1.

Proof. Fix v P X. Write x ¨ y :“ px ¨ yqv for x, y P X. Let

Y “ tpx,mq : x P X,m P R and 0 ď m ď dpv, xqu.

Define, for px,mq, py, nq P Y ,

px,mq „ py, nq if and only if x ¨ y ě m “ n.



3.3 R-Trees 37

This is an equivalence relation on Y . Let X 1 “ Y { „, and let xx,my denote
the equivalence class of px,mq. We define the metric by

d1pxx,my, xy, nyq “ m` n´ 2rm^ n^ px ¨ yqs.

The construction is illustrated in Figure 3.12.

y x

(x,m) ~ (y,m)

m

V

Fig. 3.12. The embedding of Theorem 3.38. Solid lines represent points that are in
X, while dashed lines represent points that are added to form X 1.

It follows by assumption that d1 is well defined. Note that

d1pxx,my, xx, nyq “ |m´ n|

and xx, 0y “ xv, 0y for all x P X, so d1pxx,my, xv, 0yq “ m. Clearly d1 is
symmetric, and it is easy to see that d1pxx,my, xy, nyq “ 0 if and only if
xx,my “ xy, ny. Also, in X 1,

pxx,my ¨ xy, nyqxv,0y “ m^ n^ px ¨ yq.

If xx,my, xy, ny and xz, py are three points of X 1, then

tm^ n, n^ p, p^mu
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is an isosceles triple by Lemma 3.33(1). Hence, by Lemma 3.33(2), so is tm^

n^px ¨yq, n^p^py ¨zq, p^m^pz ¨xqu. It follows that pX 1, d1q is a 0-hyperbolic
metric space.

If xx,my P X 1, then the mapping α : r0,ms Ñ X 1 given by αpnq “ xx, ny is
an isometry, so the image of α is a segment with endpoints xv, 0y and xx,my. It
now follows from Lemma 3.36 that pX 1, d1q is a R-tree. Further, the mapping
φ : X Ñ X 1 defined by φpxq “ xx, dpv, xqy is easily seen to be an isometry. [\

3.3.6 Yet another Characterization of R-Trees

Lemma 3.39. Let pX, dq be a R-tree. Fix v P X.

(i) For x, y P Xztvu, rv, xs X rv, ys ‰ tvu if and only if x, y are in the same
path component of Xztvu.

(ii)The space Xztvu is locally path connected, the components of Xztvu coin-
cide with its path components, and they are open sets in X.

Proof. (i) Suppose that rv, xsXrv, ys ‰ tvu. It can’t be that v P rx, ys, because
that would imply rx, vs X rv, ys “ tvu. Thus, rx, ys Ď Xztvu and x, y are in
the same path component of Xztvu. Conversely, if α : ra, bs Ñ Xztvu is a
continuous map, with x “ αpaq, y “ αpbq, then ra, bs is a subset of the image
of α by Lemma 3.26, so v R rx, ys, and rv, xs X rv, ys ‰ tvu by Axiom (b’) for
a R-tree.
(ii) For x P Xztvu, the set U :“ ty P X : dpx, yq ă dpx, vqu is an open set
in X, U Ď Xztvu, x P U , and U is path connected. For if y, z P U , then
rx, ys Y rx, zs Ď U , and so ry, zs Ď U by Corollary 3.25. Thus, Xztvu is locally
path connected. It follows that the path components of Xztvu are both open
and closed, and (ii) follows easily. [\

Theorem 3.40. A metric space pX, dq is a R-tree if and only if it is connected
and 0-hyperbolic.

Proof. An R-tree is geodesic, so it is path connected. Hence, it is connected.
Therefore, it is 0-hyperbolic by Lemma 3.29.

Conversely, assume that a metric space pX, dq is connected and 0-
hyperbolic. By Theorem 3.38 there is an embedding of pX, dq in a R-tree
pX 1, d1q. Let x, y P X, suppose v P X 1zX and v P rx, ys. Then rv, xs X rv, ys “

tvu and so by Lemma 3.39, x, y are in different components of Xztvu.
Let C be the component of Xztvu containing x. By Lemma 3.39, C is open

and closed, so XXC is open and closed in X. Since x P XXC, y R XXC, this
contradicts the connectedness of X. Thus, rx, ys Ď X and pX, dq is geodesic.
It follows that pX, dq is a R-tree by Lemma 3.36. [\

Example 3.41. Let P denote the collection of partitions of the positive integers
N. There is a natural partial order ď on P defined by P ď Q if every block
of Q is a subset of some block of P (that is, the blocks of P are unions of
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blocks of Q). Thus, the partition tt1u, t2u, . . .u consisting of singletons is the
unique largest element of P, while the partition tt1, 2, . . .uu consisting of a
single block is the unique smallest element. Consider a function Π : R` ÞÑ P
that is non-increasing in this partial order. Suppose that Πp0q “ tt1u, t2u, . . .u
and Πptq “ tt1, 2, . . .uu for all t sufficiently large. Suppose also that if Π is
right-continuous in the sense that if i and j don’t belong to the same block of
Πptq for some t P R`, then they don’t belong to the same block of Πpuq for
u ą t sufficiently close to t.

Let T denote the set consisting of points of the form pt, Bq, where t P R`

and B P Πptq. Given two point ps,Aq, pt, Bq P T , set

mpps,Aq, pt, Bqq

:“ inftu ą s^ t : A and B subsets of a common block of Πpuqu,

and put

dpps,Aq, pt, Bqq :“ rmpps,Aq, pt, Bqq ´ ss ` rmpps,Aq, pt, Bqq ´ ts.

It is not difficult to check that d is a metric that satisfies the four point
condition and that the space T is connected. Hence, pT, dq is a R-tree by
Theorem 3.40. The analogue of this construction with N replaced by t1, 2, 3, 4u

is shown in Figure 3.13.
Moreover, if we let T̄ denote the completion of T with respect to the metric

d, then T̄ is also a R-tree. It is straightforward to check that T̄ is compact if
and only if Πptq has finitely many blocks for all t ą 0.

Write δ for the restriction of d to the positive integers N, so that

δpi, jq “ 2 inftt ą 0 : i and j belong to the same block of Πptqu.

The completion S of N with respect to δ is isometric to the closure of N in T̄ ,
and S is compact if and only if Πptq has finitely many blocks for all t ą 0. Note
that δ is an ultrametric , that is, δpx, yq ď δpx, zq _ δpz, yq for x, y, z P S. This
implies that at least two of the distances are equal and are no smaller than
the third. Hence, all triangles are isosceles. When S is compact, the open balls
for the metric δ coincide with the closed balls and are obtained by taking the
closure of the blocks of Πptq for t ą 0. In particular, S is totally disconnected.

The correspondence between coalescing partitions, tree structures and ul-
trametrics is a familiar idea in the physics literature – see, for example, [109].

3.4 R–Trees without Leaves

3.4.1 Ends

Definition 3.42. An R-tree without leaves is a R–trees pT, dq that satisfies
the following extra axioms.



40 3 R-Trees and 0-Hyperbolic Spaces

4

3

2

1

{{1},{2},{3},{4}} {{1,2},{3},{4}} {{1,2},{3,4}} {{1,2,3,4}}

Fig. 3.13. The construction of a R-tree from a non-increasing function taking values
in the partitions of t1, 2, 3, 4u.

Axiom (c) The metric space pT, dq is complete.
Axiom (d) For each x P T there is at least one isometric embedding θ : R Ñ T

with x P θpRq.

Example 3.43. “The” real tree pT , Dq of Example 3.18 satisfies Axioms (c)
and (d).

We will suppose in this section that we are always working with a R-tree
pT, dq that is without leaves.

Definition 3.44. An end of T is an equivalence class of isometric embeddings
from R` into T , where we regard two such embeddings φ and ψ as being
equivalent if there exist α P R and β P R` such that α ` β ě 0 and φptq “

ψpt` αq for all t ě β. Write E for the set of ends of T .

By Axiom (d), E has at least 2 points. Fix a distinguished element : of E.
For each x P T there is a unique isometric embedding κx : R` Ñ T such that
κxp0q “ x and κx is a representative of the equivalence class of :. Similarly,
for each ξ P E` :“ Ezt:u there is at least one isometric embedding θ : R Ñ T
such that t ÞÑ θptq, t ě 0, is a representative of the equivalence class of ξ
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and t ÞÑ θp´tq, t ě 0, is a representative of the equivalence class of :. Denote
the collection of all such embeddings by Θξ. If θ, θ1 P Θξ, then there exists
γ P R such that θptq “ θ1pt ` γq for all t P R. Thus, it is possible to select an
embedding θξ P Θξ for each ξ P E` in such a way that for any pair ξ, ζ P E`

there exists t0 (depending on ξ, ζ) such that θξptq “ θζptq for all t ď t0 (and
θξpst0,8rq X θζpst0,8rq “ H). Extend θξ to R˚ :“ R Y t˘8u by setting
θξp´8q :“ : and θξp`8q :“ ξ.

Example 3.45. The ends of the real tree pT , Dq of Example 3.18 can be
identified with the collection consisting of the empty set and the elements
of E`, where E` consists of subsets B Ă R such that ´8 ă inf B and
supB “ `8. If we choose : to be the empty set so that E` plays the
role of E`, then we can define the isometric embedding θA for A P E` by
θAptq :“ pAXs ´ 8, tsq Y ttu “ A|t, in the notation of Example 3.18.

The map pt, ξq ÞÑ θξptq from R ˆE` (resp. R˚ ˆE`) into T (resp. T YE)
is surjective. Moreover, if η P T Y E is in θξpR˚q X θζpR˚q for ξ, ζ P E`,
then θ´1

ξ pηq “ θ´1
ζ pηq. Denote this common value by hpηq, the height of η.

In genealogical terminology, we think of hpηq as the generation to which η
belongs. In particular, hp:q :“ ´8 and hpξq “ `8 for ξ P E`. For the real
tree pT , Dq of Example 3.18 with corresponding isometric embeddings defined
as above, hpBq is just supB, with the usual convention that sup H :“ ´8 (in
accord with the notation of Example 3.18).

Define a partial order ď on T Y E by declaring that η ď ρ if there exists
´8 ď s ď t ď `8 and ξ P E` such that η “ θξpsq and ρ “ θξptq. In
genealogical terminology, η ď ρ corresponds to η being an ancestor of ρ (note
that individuals are their own ancestors). In particular, : is the unique point
that is an ancestor of everybody, while points of E` are characterized by being
only ancestors of themselves. For the real tree pT , Dq of Example 3.18, A ď B
if and only if A “ pBXs ´ 8, supAsq Y tsupAu. In particular, this partial
order is not the usual inclusion partial order (for example, the singleton t0u

is an ancestor of the singleton t1u).
Each pair η, ρ P T Y E has a well-defined greatest common lower bound

η ^ ρ in this partial order, with η ^ ρ P T unless η “ ρ P E`, η “ : or ρ “ :.
In genealogical terminology, η ^ ρ is the most recent common ancestor of η
and ρ. For x, y P T we have

dpx, yq “ hpxq ` hpyq ´ 2hpx^ yq

“ rhpxq ´ hpx^ yqs ` rhpyq ´ hpx^ yqs.
(3.1)

Therefore, hpxq “ dpx, yq ´ hpyq ` 2hpx ^ yq ď dpx, yq ` hpyq and, similarly,
hpyq ď dpx, yq ` hpxq, so that

|hpxq ´ hpyq| ď dpx, yq, (3.2)

with equality if x, y P T are comparable in the partial order (that is, if x ď y
or y ď x).
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If x, x1 P T are such that hpx^ yq “ hpx1 ^ yq for all y P T , then, by (3.1),
dpx, x1q “ rhpxq´hpx^x1qs`rhpx1q´hpx^x1qs “ rhpxq´hpx^xqs`rhpx1q´

hpx1 ^x1qs “ 0, so that x “ x1. Slight elaborations of this argument show that
if η, η1 P T Y E are such that hpη ^ yq “ hpη1 ^ yq for all y in some dense
subset of T , then η “ η1.

For x, x1, z P T we have that if hpx ^ zq ă hpx1 ^ zq, then x ^ x1 “ x ^ z
and a similar conclusion holds with the roles of x and x1 reversed; whereas if
hpx^ zq “ hpx1 ^ zq, then x^ z “ x1 ^ z ď x^ x1. Using (3.1) and (3.2) and
checking the various cases we find that

|hpx^ zq ´ hpx1 ^ zq| ď dpx^ z, x1 ^ zq ď dpx, x1q. (3.3)

For η P T Y E and t P R˚ with t ď hpηq, let η|t denote the unique
ρ P T YE with ρ ď η and hpρq “ t. Equivalently, if η “ θξpuq for some u P R˚

and ξ P E`, then η|t “ θξptq for t ď u. For the real tree of Example 3.18, this
definition coincides with the one given in Example 3.18.

The metric space pE`, δq, where

δpξ, ζq :“ 2´hpξ^ζq,

is complete. Moreover, the metric δ is actually an ultrametric; that is, δpξ, ζq ď

δpξ, ηq _ δpη, ζq for all ξ, ζ, η P E`.

3.4.2 The Ends Compactification

Suppose in this subsection that the metric space pE`, δq is separable. For t P R
consider the set

Tt :“ tx P T : hpxq “ tu “ tξ|t : ξ P E`u (3.4)

of points in T that have height t. For each x P Tt the set tζ P E` : ζ|t “ xu

is a ball in E` of diameter at most 2´t and two such balls are disjoint. Thus,
the separability of E` is equivalent to each of the sets Tt being countable. In
particular, separability of E` implies that T is also separable, with countable
dense set tξ|t : ξ P E`, t P Qu, say.

We can, via a standard Stone–C̆ech-like procedure, embed T Y E in a
compact metric space in such a way that for each y P T Y E the map x ÞÑ

hpx ^ yq has a continuous extension to the compactification (as an extended
real–valued function).

More specifically, let S be a countable dense subset of T . Let π be a strictly
increasing, continuous function that maps R onto s0, 1r. Define an injective
map Π from T into the compact, metrizable space r0, 1sS by Πpxq :“ pπphpx^

yqqqyPS . Identify T with ΠpT q and write T for the closure of T p“ ΠpT qq

in r0, 1sT . In other words, a sequence txnunPN Ă T converges to a point
in T if hpxn ^ yq converges (possibly to ´8) for all y P S, and two such
sequences txnunPN and tx1

nunPN converge to the same point if and only if
limn hpxn ^ yq “ limn hpx1

n ^ yq for all y P S.
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We can identify distinct points in T Y E with distinct points in T . If
txnunPN Ă T and ξ P E` are such that for all t P R we have ξ|t ď xn for all
sufficiently large n, then limn hpxn ^ yq “ hpξ ^ yq for all y P S. We leave the
identification of : to the reader.

In fact, we have T “ T Y E. To see this, suppose that txnunPN Ă T
converges to x8 P T . Put h8 :“ supyPS limn hpxn^yq. Assume for the moment
that h8 P R. We will show that x8 P T with hpx8q “ h8. For all k P N we
can find yk P S such that

h8 ´
1
k

ď lim
n
hpxn ^ ykq ď hpykq ď h8 `

1
k
.

Observe that

dpyk, y`q ď lim sup
n

´

dpyk, xn ^ ykq ` dpxn ^ yk, xn ^ y`q

` dpxn ^ y`, y`q

¯

“ lim sup
n

´

rhpykq ´ hpxn ^ ykqs ` |hpxn ^ ykq ´ hpxn ^ y`q|

` rhpy`q ´ hpxn ^ y`qs

¯

ď
2
k

`

ˆ

1
k

`
1
`

˙

`
2
`
.

Therefore, pykqkPN is a d-Cauchy sequence and, by Axiom (c), this sequence
converges to y8 P T . Moreover, by (3.2) and (3.3), limn hpxn ^y8q “ hpy8q “

h8.
We claim that y8 “ x8; that is, limn hpxn ^ zq “ hpy8 ^ zq for all z P S.

To see this, fix z P T and ε ą 0. If n is sufficiently large, then

hpxn ^ zq ď hpy8q ` ε (3.5)

and
hpy8q ´ ε ď hpxn ^ y8q ď hpy8q. (3.6)

If hpy8 ^ zq ď hpy8q ´ ε, then (3.6) implies that y8 ^ z “ xn ^ z. On the
other hand, if hpy8 ^ zq ě hpy8q ´ ε, then (3.6) implies that

hpxn ^ zq ě hpy8q ´ ε, (3.7)

and so, by (3.5) and (3.6),

|hpy8 ^ zq ´ hpxn, zq|

ď rhpy8q ´ phpy8q ´ εqs _ rphpy8q ` εq ´ phpy8q ´ εqs

“ 2ε.
(3.8)

We leave the analogous arguments for h8 “ `8 (in which case x8 P E`)
and h8 “ ´8 (in which case x8 “ :) to the reader.
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We have just seen that the construction of T does not depend on T (more
precisely, any two such compactifications are homeomorphic). Moreover, a
sequence txnunPN Ă T Y E converges to a limit in T Y E if and only if
limn hpxn ^ yq exists for all y P T , and two convergent sequences txnunPN and
tx1

nunPN converge to the same limit if and only if limn hpxn ^yq “ limn hpx1
n ^

yq for all y P T .

3.4.3 Examples of R-Trees without Leaves

Fix a prime number p and constants r´, r` ě 1. Let Q denote the rational
numbers. Define an equivalence relation „ on QˆR as follows. Given a, b P Q
with a ‰ b write a´ b “ pvpa,bqpm{nq for some vpa, bq,m, n P Z with m and n
not divisible by p. For vpa, bq ě 0 put wpa, bq “

řvpa,bq

i“0 ri
`, and for vpa, bq ă 0

put wpa, bq :“ 1 ´
ř´vpa,bq

i“0 ri
´. Set wpa, aq :“ `8. Given pa, sq, pb, tq P Q ˆ R

declare that pa, sq „ pb, tq if and only if s “ t ď wpa, bq. Note that

vpa, cq ě vpa, bq ^ vpb, cq (3.9)

so that
wpa, cq ě wpa, bq ^ wpb, cq (3.10)

and „ is certainly transitive (reflexivity and symmetry are obvious).
Let T denote the collection of equivalence classes for this equivalence re-

lation. Define a partial order ď on T as follows. Suppose that x, y P T are
equivalence classes with representatives pa, sq and pb, tq. Say that x ď y if and
only if s ď wpa, bq ^ t. It follows from (3.10) that ď is indeed a partial order.
A pair x, y P T with representatives pa, sq and pb, tq has a unique greatest
common lower bound x ^ y in this order given by the equivalence class of
pa, s^ t^ wpa, bqq, which is also the equivalence class of pb, s^ t^ wpa, bqq.

For x P T with representative pa, sq, put hpxq :“ s. Define a metric d on T
by setting dpx, yq :“ hpxq`hpyq´2hpx^yq. We leave it to the reader to check
that pT, dq is a R–tree satisfying Axioms (a)–(d), and that the definitions of
x ď y, x ^ y and hpxq fit into the general framework of Section 3.4, with
the set E` corresponding to Q ˆ R–valued paths s ÞÑ papsq, sq such that
s ď wpapsq, aptqq ^ t.

Note that there is a natural Abelian group structure on E`: if ξ and ζ
correspond to paths s ÞÑ papsq, sq and s ÞÑ pbpsq, sq, then define ξ ` ζ to
correspond to the path s ÞÑ papsq ` bpsq, sq. We mention in passing that there
is a bi–continuous group isomorphism between E` and the additive group
of the p–adic integers Qp. (This map is, however, not an isometry if E` is
equipped with the δ metric and Qp is equipped with the usual p-adic metric.)




