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Natural Boundaries II: Algebraic Groups

6.1 Introduction

In this chapter, we use the analysis of the previous section to prove that the
zeta functions of the classical groups GO2l+1,GSp2l or GO+

2l of types Bl for
l ≥ 2, Cl for l ≥ 3 and Dl for l ≥ 4 have natural boundaries. These results
were announced in [18]. We recall the definition of the local factors and the
formula in terms of the root system established in [36] and [21].

Let G be one of the classical reductive groups GLl+1, GO2l+1, GSp2l or
GO+

2l. For any field K, G(K) will denote the appropriate subgroup of GLn(K).
Hey [35] and Tamagawa [56] proved that when G = GLl+1, the zeta function
of G is something very classical, namely ZG(s) = ζ(s) . . . ζ(s − l), and hence
has meromorphic continuation to the whole complex plane. Emboldened by
the case of GLl+1, the following definition of the zeta function of the classical
group G had been proposed:

Definition 6.1. 1. For each prime p, let µG denote the Haar measure on
G(Qp) normalised such that µG(G(Zp)) = 1. Define the local or p-adic
zeta function of G to be

ZG,p(s) =
∫

G+
p

|det(g)|sp µG(g) ,

where G+
p = G(Qp) ∩ Mn(Zp), the set of matrices whose entries are all

p-adic integers, and | · |p denotes the p-adic valuation.
2. Define the global zeta function of G to be

ZG(s) =
∏

p prime

ZG,p(s) .

Given any algebraic group G defined over a number field K and some
K-rational representation ρ : G → GLn we can define in a similar manner
an associated zeta function. In this paper we restrict ourselves to the above
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case of the classical groups, i.e. Q-split reductive algebraic groups of type
Al, Bl, Cl, and Dl and their natural representations. In [18] we consider the
exceptional types and the effect of changing the representation.

We describe now the formula in terms of the root system for the local zeta
functions.

Let T denote the diagonal matrices of G(Qp), namely a maximal split
torus for G(Qp). Let Π = {α1, . . . , αl} be a basis for the root system Φ ⊂
Hom(T, Qp) of G(Qp) and let � be the dominant weight of the contragredient
(irreducible) representation ρ∗ = Tρ−1 of the natural representation ρ that
we are taking for G(Qp). Let m denote the order of the centre of the derived

group [G(C), G(C)]. Note that in particular m divides n. Let α0 = detn/m
∣∣∣
T
.

Then there exist integers ci > 0 for 1 ≤ i ≤ l such that

�m = α−1
0 ·

l∏
i=1

αci
i .

The second set of numerical data we need for our formula are the positive
integers b1, . . . , bl which express the sum of the positive roots in terms of the
primitive roots:

∏
α∈Φ+

α =
l∏

i=1

αbi
i .

We can now write down our formula for the zeta function. Let W denote
the finite Weyl group of Φ and λ(w) the length of an element w of the Weyl
group in terms of the fundamental reflections in the hyperplanes defined by
the primitive roots.

Define two polynomials PG(X,Y ), QG(X,Y ) ∈ Z[X,Y ] by

PG(X,Y ) =
∑

w∈W

X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj ,

QG(X,Y ) = (1 − Y m)
l∏

j=1

(
1 − Xbj Y cj

)
.

Then for each prime p,

ZG,p(s) =
PG(p, p−(n/m)s)
QG(p, p−(n/m)s)

.

It was proved in [36] and [21] that these polynomials satisfy a functional
equation

PG(X−1, Y −1)
QG(X−1, Y −1)

= (−1)l+1Xcard(Φ+)Y m PG(X,Y )
QG(X,Y )

.
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We are interested in the global behaviour of the zeta function defined as
an Euler product of all these local factors. The denominator is always well
behaved since it is just built out of the Riemann zeta function ζp(s). The
interest lies in the numerator.

We record now the results of our analysis of the polynomial PG(X,Y )
for the classical groups and in particular that for large enough l the poly-
nomials for G = GO2l+1,GSp2l and GO+

2l satisfy, after some factorisation,
the conditions of Corollary 5.9 in the previous chapter and hence have a nat-
ural boundary. We tabulate first the combinatorial data for the four examples
(Table 6.1):

Table 6.1. Combinatorial data for algebraic groups

m bi ci

GLl+1 Al l + 1 i(l − i + 1) l − i + 1
GO2l+1 Bl 1 i(2l − i) 1

GSp2l Cl 2

{
i(2l − i + 1) if i < l

l(l + 1)/2 if i = l

{
2 if i < l

1 if i = l

GO+
2l Dl 2

{
i(2l − i − 1) if i < l − 1

l(l − 1)/2 if i ≥ l − 1

{
2 if i < l − 1

1 if i ≥ l − 1

Let PG(s) =
∏

PG(p, p−s) and αPG
be the abscissa of convergence of

PG(s).
To satisfy the conditions of Corollary 5.10 it suffices to know what the

ghosts of PG(X,Y ) look like. The following descriptions were announced in
[16] and proved in [18]. For convenience, we set b0 = 0.

Proposition 6.2. 1. The ghost polynomial P̃G(X,Y ) associated to G =
GO2l+1 is

l−1∏
i=0

(1 + XbiY ) .

Hence ZGO2l+1(s) has a friendly ghost.
2. The ghost polynomial P̃G(X,Y ) associated to GSp2l is

l−1∏
i=0

(1 + Xbi/2Y )
l−2∏
i=0

(1 + Xbi/2+1Y ) .

Hence ZGSp2l
(s) has a friendly ghost.

3. The ghost polynomial P̃G(X,Y ) associated to GO+
2l or Dl and its natural

representation is
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l−2∏
i=0

(1 + Xbi/2Y )2 .

Hence ZGO+
2l

(s) has a friendly ghost.

Corollary 6.3. If G = GO2l+1, GSp2l or GO+
2l then the inverse of the gradi-

ents of the Newton polygon of PG(X,Y ) are all integers.

Proof. This follows since the gradients are the same as the gradients of the
Newton polygon of the ghost. ��
Corollary 6.4. The abscissa of convergence αPG

of PG(s) =
∏

PG(p, p−s)
for G = GO2l+1, GSp2l or GO+

2l is bl.

Proof. 1. If G = GO2l+1 then bl−1 is the maximal inverse gradient in the
Newton polygon. Hence αPG

= bl−1 + 1 = bl.
2. If G = GSp2l then bl−1/2 is the maximal inverse gradient in the Newton

polygon. Hence αPG
= bl−1/2 + 1 = bl.

3. If G = GO+
2l then bl−2/2 is the maximal inverse gradient in the Newton

polygon. Hence αPG
= bl−2/2 + 1 = bl. ��

Note that in each case there is a term Xbl−1Y appearing in both PG(X,Y )
and its ghost. In fact there is another way to see why bl is the abscissa of
convergence without passing to the ghost although the analysis below was
essential in determining the ghost.

We know that αPG
= max{ 1+nk

k : k = 1, . . . , r }. We shall need to analyse
the root system and the combinatorial data to ascertain the value of αPG

.
Choose a subset of simple roots Π0 ⊆ Π. Let Φ0 be the sub-root system

that Π0 generates. Notice that in the expression for PG(X,Y ) we can realise
the monomial term X−λ(w)

∏
αj∈Π0

Xbj Y cj where w is a Weyl element such
that Π0 =

{
w−1αj

} ⊂ Φ−. For each choice of Π0, such elements w exist since
we can take w = w0 to be the unique element of W0, the Weyl group of Φ0,
that sends all positive roots Φ+

0 to negative roots Φ−
0 . To calculate the abscissa

of convergence αPG
we are going to be interested in choosing a w which is of

minimal length since

αPG
= max

{
1 − λ(w) +

∑
αj∈Π0

bj∑
αj∈Π0

cj
: Π0 ⊆ Π, w ∈ W s.t. w−1Π0 ⊂ Φ−

}

The following lemma tells us that for any choice of a subset of simple roots
Π0, w0 is the most efficient way to realise the corresponding monomial term:

Lemma 6.5. Let Π0 be a subset of the simple roots Π and let Φ0 be the
sub-root system of Φ generated by Π0. Then the length of the shortest element
w ∈ W with the property that w(Π0) ⊂ Φ− but w(Π \Π0) ⊂ Φ+ is card(Φ+

0 ) =
λ(w0).
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Proof. Let w0 be the element which maps Φ+
0 to Φ−

0 . Certainly then w0(Π0) ⊂
Φ−. The length of this element is card(Φ+

0 ) in terms of the natural generators
wα where α ∈ Π0. We can’t get any shorter than this using all generators
wα where α ∈ Π since the length is still the number of positive roots sent to
negative roots in Φ which is at least card(Φ+

0 ). But notice that we have now
shown that it is exactly that number hence Π \ Π0 must be sent to positive
roots since (Π \Π0)∩Φ0 = ∅. But now the length of any element sending Π0

to negative roots must be at least card(Φ+
0 ) since the length is the number

of positive roots in Φ+ sent to negative roots and if Π0 gets sent to negative
roots then so does Φ+

0 . This completes the proof of the lemma. ��
Lemma 6.6. αPG

= bl.

Proof. First note that αPG
≥ bl since we can take Π0 = {αl} and w0 = wl

the reflection in αl which is a word of length 1. Next note that card(Φ+
0 ) ≥

card(Π0). An analysis of the combinatorial data will confirm that bl − 1 =
(bl − 1)/cl = max{ bi − 1/ci : i = 1, . . . , l }. The easiest way to check this is to
note that for example in the case Cl we have (2l− i + 1)/2 =

∑l−1
j=l−i j. Then

we can use the fact that for any positive integers x1, . . . , xr, y1, . . . , yr we have
x1+...+xr

y1+...+yr
≤ max xi

yi
to deduce that for w ∈ W such that w−1Π0 ⊂ Φ−,

1 − λ(w) +
∑

αj∈Π0
bj∑

αj∈Π0
cj

≤
1 +
∑

αj∈Π0
(bj − 1)∑

αj∈Π0
cj

≤
⎛⎝ ∑

αj∈Π0

cj

⎞⎠−1

+ max{ bi − 1/ci : αi ∈ Π0 } .

Therefore αPG
≤ 1 + (bl − 1) = bl. This completes the lemma. ��

We now put βP = bl − 1 = max{ nk

k : k ∈ I } where I = { k : 1+nk

k = αP }.
The three examples Bl, Cl and Dl are perfect to illustrate the application
of Hypotheses 1 and 2 (p. 134) of the previous chapter. For Bl with l ≥ 2,
we will find that the two hypotheses are satisfied and that βP is a natural
boundary. For Cl with l ≥ 3, we will find that Hypothesis 2 actually fails,
but because P (X,Y ) has a factor of the form (1 + XβP Y ) and hence the first
candidate natural boundary can be passed. We then show that if P (X,Y ) =
(1 + XβP Y )P1(X,Y ) then P1(X,Y ) will give us a natural boundary. For Dl

with l ≥ 4, we will find that Hypothesis 1 fails. Again this is due to a factor
of the form (1 + XβP Y ). Once this is removed we find that both Hypotheses
1 and 2 are satisfied and βP is in fact a natural boundary.

6.2 G = GO2l+1 of Type Bl

Proposition 6.7. If G = GO2l+1 of type Bl and l ≥ 2, then PG(s) has a
natural boundary at βP = bl−1 = bl − 1 = l2 − 1.
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Proof. We make the change of variable U = XβP Y and V = X−1 so that
P (X,Y ) = F (U, V ). Then A(U) = F (0, U) = 1 + U . This follows because for
all Π0 ⊆ Π, w ∈ W such that w−1Π0 ⊂ Φ− except for the case Π0 = {αl}
and w0 = wl we have:

−λ(w) +
∑

αj∈Π0
bj∑

αj∈Π0
cj

< βP =
bl − 1

cl

We set ω = −1, the unique root of A(U). Clearly Hypothesis 1 is satisfied
since A(U) does not have a multiple root at ω.

To check Hypothesis 2 we need to determine

B1(U) =
∂

∂V
F (V,U)

∣∣∣∣
V =0

=
∑

βP k−i=1

ai,kUk .

We claim that for i = βP k − 1, ai,k �= 0 if and only if k = 1. For k = 1
we are required to show there is a monomial of the form Xbl−1−1Y . This
can be realised by taking Π0 = {αl−1} and w0 = wl−1 the reflection defined
by the root αl−1. For k > 1, for each choice of Π0 with k elements and a
corresponding w such that w−1Π0 ⊂ Φ−,

−λ(w) +
∑

αj∈Π0

bj ≤
∑

αj∈Π0

(bj − 1)

< (k − 1)(bl−1 − 1) + bl − 1 if Π0 �= {αl−1, αl}
≤ (k − 1)(βP − 1) + βP ≤ i

since the bi are a strictly increasing sequence. For Π0 = {αl−1, αl} we just
have to use the stronger inequality that if w−1Π0 ⊂ Φ− then λ(w) ≥ 3. Hence
we have shown that for each k > 1, there are no monomials of the form
XβP k−1Y k. Hence B1(U) = aβP −1,1U and

− B1(ω)
ωA′(ω)

= −aβP −1,1.

Since aβP −1,1 > 0, Hypothesis 2 is satisfied. Therefore we can apply Theo-
rem 5.13 to deduce that PG(s) has a natural boundary at βP = bl−1 = bl−1 =
l2 − 1. ��
Corollary 6.8. If G = GO2l+1 of type Bl and l ≥ 2 then ZG(s) has abscissa
of convergence at αG = bl +1 and a natural boundary at βP = bl−1 = bl −1 =
l2 − 1.

Proof. We just have to add that QG(s)−1 =
∏

QG(p, p−s)−1 is a meromorphic
function with abscissa of convergence at αG = bl + 1. ��
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6.3 G = GSp2l of Type Cl or G = GO+
2l of Type Dl

In these two examples, there is an initial problem with performing the analysis
of the previous example because (1 + XβP Y ) is a factor of PG(X,Y ). This
means that after the substitution U = XβP Y and V = X−1, P (X,Y ) =
F (U, V ) = (1 + U)F1(U, V ) and hence for all n

Bn(−1) =
1
n!

∂

∂V n
F (V,U)

∣∣∣∣
V =0,U=−1

= 0 .

Hence Hypothesis 2 is never satisfied. This is what we would expect since if
(1 + XβP Y ) is a factor then the potential natural boundary it might cause
at s = βP can be passed by multiplying by the meromorphic function

∏
(1 +

pβP p−s)−1. Note that in the case of G = GO+
2l of type Dl, even Hypothesis

1 fails since A(U) = F (0, U) = 1 + 2U + U2. In this case once the factor
(1 + XβP Y ) is removed the remaining term F1(U, V ) still has the property
that U = −1 is a zero of F1(U, 0). We will find that s = βP will now produce
a natural boundary. In the case G = GSp2l of type Cl we will have to move a
little further to the left to find our natural boundary.

The polynomial PG(X,Y ) actually has a number of other natural factors,
not only (1 + XβP Y ). This fact was announced in [16]. Its proof is technical
and has been consigned to Appendix B:

Theorem 6.9. If G = GSp2l of type Cl or G = GO+
2l of type Dl then

PG(X,Y ) has a factor of the form

(1 + Y )
r∏

i=1

(1 + Xbi/2Y ) ,

where r = l − 1 for G = GSp2l and r = l − 2 for G = GO+
2l.

Corollary 6.10. 1. If G = GSp2l then

PG(X,Y ) = (1 + Y )
l−1∏
i=1

(1 + Xbi/2Y )RG(X,Y ) ,

where RG(X,Y ) has ghost polynomial

R̃G(X,Y ) = (1 + XY )
l−2∏
i=1

(1 + Xbi/2+1Y ) .

2. If G = GO+
2l then

PG(X,Y ) = (1 + Y )
l−2∏
i=1

(1 + Xbi/2Y )RG(X,Y ) ,
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where RG(X,Y ) has ghost polynomial

R̃G(X,Y ) = (1 + Y )
l−2∏
i=1

(1 + Xbi/2Y ) .

In Appendix B we give a description of the polynomials RG(X,Y ) in terms
of the root system.

6.3.1 G = GSp2l of Type Cl

Let us recall the structure of the root system Cl and its corresponding Weyl
group. Let ei be the standard basis for the l-dimensional vector space Rl,
where we assume l ≥ 3.

C+
l = { 2ei, ei ± ej : 1 ≤ i < j ≤ l } with simple roots α1 = e1 − e2, . . . ,

αl−1 = el−1 − el, αl = 2el. W (Cl) is a semi-direct product of the symmetric
group on ei and the group (Z/2Z)l operating by ei �→ (±1)iei.

We shall write w = πwσw where πw is the permutation and σw is the sign
change.

Let wl be the element sending αl to −αl. The element wl is the sign change
ei �→ ei for i = 1, . . . , l − 1 and el �→ −el. Let Φk+1 be the sub-root system
generated by {αl−k, . . . , αl } and wΦk+1 be the element sending Φ+

k+1 to Φ−
k+1.

For G = GSp2l we prove in Appendix B that for k = 1, . . . , l,

PG(X,Y ) = (1 + Xbk−1/2Y )

⎛⎝ ∑
w∈W (k)

X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj

⎞⎠
= (1 + Xbk−1/2Y )Pk(X,Y ) ,

where

W (k) =
{

w = πwσw : w−1(αk−1) and (wΦl−k+1ww(k))−1(αk−1)
have the same sign and (σw−1)k = 1

}
∪
{

w = πwσw : w−1(αk−1) and (wΦl−k+1ww(k))−1(αk−1)
have opposite signs and (σw−1)k = −1

}
= W (k)+ ∪ W (k)− ,

where for each w ∈ W , w(k) denotes the permutation of eπw−1 (i) for
i = k, . . . , l which alters the order. Here it suffices to know the following:
for G = GSp2l,

PG(X,Y )

= (1 + Xbl−1/2Y )(1 + Xbl−2/2Y )P (X,Y )

= (1 + Xbl−1/2Y )(1 + Xbl−2/2Y )

×
⎛⎝ ∑

w∈W (l)∩W (l−1)

X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj

⎞⎠ .
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The ghost of P (X,Y ) indicates that the first candidate natural boundary
is at β = bl−2/2 + 1. We see that Hypotheses 1 and 2 apply now to P (X,Y ).
We make our change of variable U = XβY and V = X−1 so that P (X,Y ) =
F (U, V ). The corresponding polynomial A(U) = 1 + U hence this satisfies
Hypothesis 1 for the unique root ω = −1.

To check Hypothesis 2 we need to determine

B1(U) =
∂

∂V
F (V,U)

∣∣∣∣
V =0

=
∑

βk−i=1

ai,kUk .

We claim that for i = βk−1, ai,k �= 0 if and only if k = 1. For k = 1, we are
required to show that there is a monomial of the form Xbl−2/2Y in P (X,Y ).
Now Xbl−2/2Y = Xbl−3Y . This can be realised by taking w = wlwl−1wl−2,
where wi is the reflection defined by the root αi. Now

w−1 : el �→ −el−2

: el−1 �→ el

: el−2 �→ el−1

We show that w ∈ W (l). Now (wlwl−1wl−2)
−1 (αl−1) = el + el−2 ∈ Φ+

and (wlwlwl−1wl−2)−1(αl−1) = el − el−2 ∈ Φ−. Since (σw−1)l = −1 this
implies that w ∈ W (l).

Next we need that w ∈ W (l − 1). We have that (wlwl−1wl−2)−1(αl−2) =
αl−1 ∈ Φ+. Now w(l − 1) is defined as the permutation which swaps el−2 =
eπw−1 (l) and el = eπw−1 (l−1) and wΦ2 sends el to −el and el−1 to −el−1.
Hence

w(l − 1)−1w−1w−1
Φ2

(αl−2) = el−1 + el−2 .

Since (σw−1)l−1 = 1 this implies that w ∈ W (l − 1).
Finally {αj : αj ∈ wlwl−1wl−2(Φ−) } = {αl} and λ(wlwl−1wl−2) = 3.
Consider any monomial term XrY 2j+ε where 2j + ε > 1 and ε = 0 or 1.

Then

r = −λ(w) +
∑

αi∈Π′
bi ,

where w is an element of W (l) such that w−1 sends Π ′ (a subset of the simple
roots of size j +ε) to negative roots. Now β = bl−2/2+1 = bl−1/2−1 = bl−2
and bi is strictly increasing for i ≤ l − 1. Suppose first that j ≥ 2 then since
λ(w) ≥ j + ε,

r = −λ(w) +
∑

αi∈Π′
bi

≤ (j − 1)bl−2 + bl−1 + εbl − λ(w)
≤ 2jβ + εbl − (ε + 1) − (j − 1)
< (2j + ε)β − 1 .
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Suppose that j = 1. Then (except if Π ′ = {αl−1 } or {αl−1, αl })

r = −λ(w) +
∑

αi∈Π′
bi

≤ bl−2 + εbl − λ(w)
≤ (2j + ε)β − 2 .

This finishes the cases except for Π ′ = {αl−1} or {αl−1, αl}.
If w ∈ W (l) ∩ W (l − 1) and Π ′ = {αl−1}, then we are required to show

that

1 < 2β − r

= (bl−1 − 2) − (bl−1 − λ(w)) ,

i.e. that λ(w) ≥ 4. In this case (σw−1)l = 1 and w−1(αl−1) ∈ Φ− hence
w−1w−1

l (αl−1)=w−1(el−1+el) ∈ Φ−. This in turn implies that (σw−1)l−1=−1
and πw−1(l − 1) < πw−1(l) So we have already found three positive roots
(el−1 + el, el−1 − el and 2el−1) that are sent to negative roots by w−1.
We just have to demonstrate a fourth such root to guarantee λ(w) ≥ 4.
Now since (σw−1)l−1 = −1 and w ∈ W (l − 1) we get that w−1(αl−2) and
(wΦ2ww(l−1))−1(αl−2) = w−1(ww(l−1)w−1wΦ2)(αl−2) have opposite signs.
So we just need to know that (ww(l − 1)w−1wΦ2)(αl−2) �= el−1 ± el but
is a positive root. Now (ww(l − 1)w−1wΦ2)(el−2) = el−2 whilst (ww(l − 1)
w−1wΦ2)(el−1) = −(σw)πw−1 (l)el which confirms both these facts. Hence we
have a fourth positive root (either αl−2 or (ww(l − 1)w−1wΦ2)(αl−2)) sent to
a negative root by w−1. This confirms that λ(w) ≥ 4.

We show that if w ∈ W (l) ∩ W (l − 1) then Π ′ �= {αl−1, αl}. Sup-
pose otherwise. In this case (σw−1)l = −1 and w−1(αl−1) ∈ Φ− hence
(1) (σw−1)l−1 = −1 and (2) w−1w−1

l (αl−1) = w−1(el−1 + el) ∈ Φ+ since
w ∈ W (l). But

w−1(el−1 + el) = −eπw−1 (l−1) − eπw−1 (l) ∈ Φ− .

Hence we have a contradiction.
This completes the analysis and confirms that B1(U) = aβ−1,1U where

aβ−1,1 ≥ 1 (in fact it is possible to show that aβ−1,1 = 1). Hence

− B1(−1)
(−1)A′(−1)

= −aβ−1,1

and so �
(
− Bγ(ω)

ωA′(ω)

)
< 0, confirming Hypothesis 2. Therefore we can apply

Theorem 5.13 to deduce that PG(s) has a natural boundary at βP = bl−2/2+
1 = l(l + 1)/2 − 2.

Corollary 6.11. If G = GSp2l of type Cl then ZG(s) has abscissa of conver-
gence at αG = bl+1 and a natural boundary at βP = bl−2/2+1 = l(l+1)/2−2.
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Proof. We just have to add that QG(s)−1 =
∏

QG(p, p−s)−1 is a meromorphic
function with abscissa of convergence at αG = bl + 1. ��

Note that had we not factored out (1+Xbl−2/2Y ) as well to define P (X,Y )
we would have got that B1(−1) = 0. In the next example we only have to
remove one factor.

6.3.2 G = GO+
2l of Type Dl

We turn now to proving that Hypotheses 1 and 2 hold for Dl if l ≥ 4. We recall
the structure of the root system in this case. D+

l = { ei ± ej : 1 ≤ i < j ≤ l }
with simple roots α1 = e1−e2, . . . , αl−1 = el−1−el, αl = el−1 +el. W (Dl) is
a semi-direct product of the symmetric group on ei and the group (Z/2Z)l−1

operating by ei �→ (±1)iei with
∏

i(±1)i = 1. Again we write an element of
w as πwσw.

In a similar fashion to the case of GSp2l we prove for GO+
2l in Appendix B

that k = 1, . . . , l − 1

PG(X,Y ) = (1 + Xbk−1/2Y )

⎛⎝ ∑
w∈W (k)

X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj

⎞⎠
= (1 + Xbk−1/2Y )Pk(X,Y ) ,

where

W (k) =
{

w = πwσw : w−1(αk−1) and (wΦl−k+1ww(k))−1(αk−1)
have the same sign and (σw−1)k = 1

}
∪
{

w = πwσw : w−1(αk−1) and (wΦl−k+1ww(k))−1(αk−1)
have opposite signs and (σw−1)k = −1

}
= W (k)+ ∪ W (k)− ,

where for each w ∈ W , w(k) denotes the permutation of eπw−1 (i) for i =
k, . . . , l which alters the order. In this case we only need to know that

PG(X,Y ) = (1 + Xbl−2/2Y )P (X,Y )

= (1 + Xbl−2/2Y )

⎛⎝ ∑
w∈W (l−1)

X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj

⎞⎠ .

The ghost of P (X,Y ) indicates that the first candidate natural bound-
ary is at β = bl−2/2. We see that Hypotheses 1 and 2 apply now to
P (X,Y ). We make our change of variable U = XβY and V = X−1 so that
P (X,Y ) = F (U, V ). The corresponding polynomial A(U) = 1 + U hence this
satisfies Hypothesis 1 for the unique root ω = −1.
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To check Hypothesis 2 we need to determine

B1(U) =
∂

∂V
F (V,U)

∣∣∣∣
V =0

=
∑

βk−i=1

bi,kUk .

We claim that for i = βk − 1, ai,k �= 0 if and only if k = 1.
For k = 1, we are required to show that there is a monomial of the form

Xbl−2/2−1Y in P (X,Y ). If we rewrite Xbl−2/2−1Y = Xbl−2Y = Xbl−1−2Y we
see that we are looking for an element w ∈ W (l− 1) of length two with either
w−1(αl) or w−1(αl−1) ∈ Φ−. If we choose either w = wl−1wl−2 or w = wlwl−2

then we can satisfy these criterion.

Lemma 6.12. 1. If w = wl−1wl−2 then {αi ∈ Π : αi ∈ w(Φ−) } = {αl−1}
and w ∈ W (l − 1)+.

2. If w = wlwl−2 then {αi ∈ Π : αi ∈ w(Φ−) } = {αl} and w ∈ W (l − 1)−.

Proof. 1.

wl−2wl−1 : el−2 − el−1 �→ el−1 − el

: el−1 − el �→ el − el−2

: el−1 + el �→ el + el−2 .

This is enough to check that {αi ∈ Π : αi ∈ w(Φ−) } = {αl−1}. The
element w(l−1) is the permutation of el = eπw−1 (l−1) and el−2 = eπw−1 (l)

whilst the element wΦ2 maps el−1 to −el−1 and el to −el. Hence

w(l − 1)w−1wΦ2 : el−2 − el−1 �→ el−1 + el−2 ∈ Φ+ .

Since wl−2wl−1(el−2 − el−1) ∈ Φ+ and (σw−1)l−1 = 1 this confirms that
w ∈ W (l − 1)+.

2.

wl−2wl : el−2 − el−1 �→ el−1 + el

: el−1 − el �→ −el + el−2

: el−1 + el �→ −el − el−2 .

From this we can deduce {αi ∈ Π : αi ∈ w(Φ−) } = {αl}. The element
w(l − 1) is again the permutation of el = eπw−1 (l−1) and el−2 = eπw−1 (l).
Hence

w(l − 1)w−1wΦ2 : el−2 − el−1 �→ el−1 − el−2 ∈ Φ− .

Since wl−2wl(el−2 − el−1) ∈ Φ+ and (σw−1)l−1 = −1 this confirms that
w ∈ W (l − 1)−.
So aβ−1,1 ≥ 2 (and in fact it is possible to show that aβ−1,1 = 2).
Now we need to show that we don’t pick up any other terms.
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Suppose we have a monomial term XrY 2j+el−1+el corresponding to a
w ∈ W (l − 1) where el−1 (respectively, el) = 0 or 1 according to whether
αl−1 (respectively, αl) ∈ {αi ∈ Π : αi ∈ w(Φ−) } = Π ′ and Π ′ is a set of
size j + el−1 + el.
Firstly assume j > 1. Then using the fact that bi is a strictly increasing
sequence for i ≤ l − 2 and bl = bl−1 = bl−2/2 + 1 we can deduce

r = −λ(w) +
∑

αi∈Π′
bi

≤ (j − 1)bl−3 + bl−2 + el−1bl−1 + elbl − (j + el−1 + el)
< (2j + el−1 + el)β − j

< (2j + el−1 + el)β − 1 .

So we are left with the cases that Π ′ = {αl−2}, {αl−2, αl−1}, {αl−2, αl}
or {αl−2, αl−1, αl}. It suffices to show that λ(w) > |Π ′|. Recall that λ(w)
is the number of positive roots sent to negative roots by w. Hence it
suffices to show at least one positive root outside of Π ′ which gets sent to
a negative root.
In the case that Π ′ = {αl−2} we just have to demonstrate that λ(w) > 1.
Now there is a unique element w of length one with w−1(αl−2) ∈ Φ−,
namely the reflection wl−2 : el−2 − el−1 �→ el−1 − el−2. We need to show
that this element is not in W (l − 1). Now (σw−1

l−2
)l−1 = 1. So we just

need to demonstrate that wl−2(l − 1)w−1
l−2wΦ2(αl−2) ∈ Φ+. The element

wl−2(l − 1) is again the element swapping el−2 and el. Then wl−2(l −
1)w−1

l−2wΦ2(αl−2) = el−1 + el ∈ Φ+. Hence wl−2 /∈ W (l − 1) and any
element in W (l−1) with Π ′ = {αl−2} must have length greater than one.
Recall that λ(w) is the number of positive roots sent to negative roots
by w. Hence it suffices to show at least one positive root outside of Π ′

which gets sent to a negative root. In the case that Π ′ = {αl−2, αl−1},
{αl−2, αl} or {αl−2, αl−1, αl} then since el−2 − el−1 and el−1 + εel are
sent to negative roots (where ε = ±1 according to the choice of Π ′) then
el−2 + εel = (el−2 − el−1) + (el−1 + εel) is also sent to a negative root.
Hence λ(w) > |Π ′|. ��
This completes the analysis and confirms that B1(U) = aβ−1,1U where

aβ−1,1 ≥ 1 (in fact it is possible to show that aβ−1,1 = 2). Hence

− B1(−1)
(−1)A′(−1)

= −aβ−1,1

and so �
(
− Bγ(ω)

ωA′(ω)

)
< 0, confirming Hypothesis 2. Therefore we can apply

Theorem 5.13 to deduce that PG(s) has a natural boundary at βP = bl−2/2 =
l(l − 1)/2 − 1.

Corollary 6.13. If G = GO+
2l of type Dl then ZG(s) has abscissa of conver-

gence at αG = bl + 1 and a natural boundary at βP = bl−2/2 = l(l− 1)/2− 1.




