Skip to main content

The Role of Exopolymers in Microbial Adaptation to Sea Ice

  • Chapter
Psychrophiles: from Biodiversity to Biotechnology

The cellular exterior that a microbe presents to its surroundings marks its first line of defense against environmental pressures that range from energy deprivation and other extreme conditions, including ionic and thermal stress, to viral and higherorder attack. The production of exopolymers, whether to provide an immediate individual coating of multiple functions or to be freely released and shared by other organisms in consortial arrangements or biofilm formations, is a hallmark of microbial life in soil, water, and host (plant and animal)-associated environments. The basic features of exopolymers and their functions pertain to all manner of environments and microbial adaptation, largely independently of ambient temperature. At extreme temperatures, however, where phase changes come into play, special considerations arise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aletsee L, Jahnke J (1992) Growth and productivity of the psychrophilic marine diatoms Thalassiosira antarctica Comber and Nitzschia frigida Grunow in batch cultures at temperatures below the freezing point of sea water. Polar Biol 11:643–647.

    Article  Google Scholar 

  • Alldredge AL, Passow U, Logan BU (1993) The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Res 40:1131–1140.

    Article  CAS  Google Scholar 

  • Allegretto EA, Caple G, Culbertson LB (1992) Inhibition of ice nucleation by synthetic polymers. ABS PAP ACS 183:19.

    Google Scholar 

  • Angell CA, Bressel RD, Green JL, Kanno H, Oguni M, Sare EJ (1994) Liquid fragility and the glass transition in water and aqueous solutions. J Food Eng 22:115–142.

    Article  Google Scholar 

  • Assur A (1958) Composition of sea ice and its tensile strength. Nat Res Council Publ 598:106–138.

    Google Scholar 

  • Bakaltcheva I, Ganong JP, Holtz BL, Peat RA, Reid T (2000) Effects of high-molecular-weight cryoprotectants on platelets and the coagulation cystem. Cryobiology 40:283–293.

    Article  CAS  PubMed  Google Scholar 

  • Battin TJ, Sengschmitt D (1999) Linking sediment biofilms, hydrodynamics, and river bed clogging: evidence from a large river. Microb Ecol 37:185–196.

    Article  CAS  PubMed  Google Scholar 

  • Bigg EK (1953) The supercooling of water. Proc Phys Soc Lond 66:688–694.

    Article  Google Scholar 

  • Bryers JD, Drummond F (1998) Local macromolecule diffusion coefficients in structurally non-uniform bacterial biofilms using fluorescence recovery after photobleaching (FRAP). Biotechnol Bioeng 60:462–473.

    Article  CAS  PubMed  Google Scholar 

  • Chiovitti A, Dugdale TM, Wetherbee R (2006) Diatom adhesives: Molecular and mechanical properties, In: Smith, AM, Callow JA (eds) Biological adhesives. Springer, Berlin, pp 79–103.

    Chapter  Google Scholar 

  • Collins RE, Carpenter SD, Deming JW (2007) The dynamics of particles, bacteria, and pEPS in sea ice through an Arctic winter. J Mar Systems, in press.

    Google Scholar 

  • Cooksey KE, Wigglesworth-Cooksey B (1995) Adhesion of bacteria and diatom to surfaces in the sea: a review. Aquat Microb Ecol 9:87–96.

    Article  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Ann Rev Microbiol 49:711–745.

    Article  CAS  Google Scholar 

  • Cota GF, Smith REH (1991) Ecology of bottom ice algae. II Dynamics, distribution and productivity. J Mar Sys 2:279–295.

    Article  Google Scholar 

  • Cox GFN, Weeks WF (1975) Brine drainage and initial salt entrapment in sodium chloride ice. CRREL Res Rep 345.

    Google Scholar 

  • Cunningham AB (1993) Influence of biofilm accumulation on porous media hydrodynamic properties. In: McCarthy SF, Wobber FJ (eds) Manipulation of groundwater colloids for environmental restoration. Lewis, Boca Raton, pp 103–109.

    Google Scholar 

  • Dash JG, Rempel AW, Wettlaufer JS (2006) The physics of premelted ice and its geophysical consequences. Rev Mod Phys 78:695–741.

    Article  CAS  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes. Ocean Mar Biol Ann Rev 28:73–153.

    Google Scholar 

  • Decho AW, Lopez GR (1993) Exopolymer microenvironments of microbial flora: Multiple and interactive effects on trophic relationships. Limnol Oceanogr 38:1633–1645.

    CAS  Google Scholar 

  • Deming JW (2007) Life in ice formations at very cold temperatures. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington DC, pp 133–145.

    Google Scholar 

  • Duddu SP, Guangzhong Z, Monte D, Paul R (1997) The relationship between protein aggregation and molecular mobility below the glass transition temperature of lyophilized formulations containing a monoclonal antibody. Pharm Res 14:596–600.

    Article  CAS  PubMed  Google Scholar 

  • Dudman WF (1977) The role of surface polysaccharides in natural environments. In: Sutherland IW (ed) Surface carbohydrates of the prokaryotic cell. Academic Press, London, pp 357–414.

    Google Scholar 

  • Fazio SA, Uhlinger DJ, Parker JH, White DC (1982) Estimations of uronic acids as quantitative measures of extracellular and cell wall polysaccharide polymers from environmental samples. Appl Environ Microbiol 47:135–143.

    Google Scholar 

  • Geddie JL, Sutherland IW (1993) Uptake of metals by bacterial polysaccharides. J Appl Bacteriol 74:467–472.

    CAS  Google Scholar 

  • Giannelli V, Thomas DN, Kattner G, Kennedy H, Dieckmann GS (2001) Behaviour of dissolved organic matter and inorganic nutrients during experimental sea-ice formation. Ann Glaciol 33:317–321.

    Article  CAS  Google Scholar 

  • Giannouli P, Morris ER (2003) Cryogelation of xanthan. Food Hydrocol 17:495–501.

    Article  CAS  Google Scholar 

  • Gleitz M, Thomas DN (1993) Variation in phytoplankton standing stock, chemical composition and physiology during sea-ice formation in the southeastern Weddell Sea, Antarctica. J Exp Mar Biol Ecol 173:211–230.

    Article  CAS  Google Scholar 

  • Goff HD, Caldwell KB, Stanley DW, Maurice TJ (1993) Influence of polysaccharides on the glass transition in frozen sucrose solutions and ice cream. J Dairy Sci 76:1268–1277.

    CAS  Google Scholar 

  • Goff HD, Ferdinando D, Schorsch C (1999) Fluorescence microscopy to study galactomannan structure in frozen sucrose and milk protein solutions. Food Hydrocolloids 13:353–362.

    Article  CAS  Google Scholar 

  • Hart TD, Chamberlain AHL, Lynch JM, Newling B, McDonald PJ (1999) A stray field magnetic resonance study of water diffusion in bacterial exopolysaccharides. Enzyme Microbiol Technol 24:339–347.

    Article  CAS  Google Scholar 

  • Hart TD, Lynch JM, Chamberlain AHL (2001) Anion exclusion in microbial and soil polysaccharides. Biol Fertil Soil 34:201–209.

    Article  CAS  Google Scholar 

  • Hayashi Y, Shinyashiki N, Yagihara S, Yoshiba K, Teramoto A, Nakamura N, Miyazaki Y, Sorai M, Wang Q (2002) Ordering in aqueous polysaccharide solutions. I. Dielectric relaxation in aqueous solutions of a triple-helical polysaccharide schiaphyllan. Biopolymers 63:21–31.

    Article  CAS  PubMed  Google Scholar 

  • Heissenberger A, Herndl GJ (1994) Formation of high molecular weight material by free living marine bacteria. Mar Ecol Prog Ser 57:207–217.

    Google Scholar 

  • Heller MC, Carpenter JF, Randolph TW (1996) Effects of phase separating systems on lyophilized hemoglobin. J Pharm Sci 85:1358–1362.

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa Y, Tanaka T, Katayama S (1984) Effects of network structure on the phase transition of acrylamide-sodium acrylate copolymer gels. In: Marshall KC (ed) Life science research reports No. 31. Microbial adhesion and aggregation; Report of the Dahlem Workshop, Berlin, West Germany, Jan. 15–20 1984. Springer, New York, pp 177–188.

    Google Scholar 

  • Hoagland KD, Rosowski JR, Gretz MR Roemer SR (1993) Diatom extracellular polymeric substances: Function, fine structure, chemistry, and physiology. J Phycol 29:537–566.

    Article  CAS  Google Scholar 

  • Hung WT, Chang IL, Hong SG, Young JD, Chen GW, Lee DE (1996) Floc migration and chemical composition change in a freezing chamber. J Environ Sci Health Part A, Environ Sci Engi Toxic Haz Sub Con 31:1053–1066.

    Google Scholar 

  • Izutsu K, Kojima S (2000) Freeze-concentration separates proteins and polymer excipients into different amorphous phases. Pharm Res 17:1316–1322.

    Article  CAS  PubMed  Google Scholar 

  • Izutsu K, Yoshioka S, Kojima S (1995) Effect of cryoprotectants on the eutectic crystallization of NaCl in frozen solution studied by differencial scanning calorimetry (DSC) and broad-line pulsed NMR. Chem Pharm Bull 43:1804–1806.

    CAS  Google Scholar 

  • Junge K, Krembs C, Deming J, Stierle A, Eicken H (2001) A microscopic approach to investigate bacteria under in-situ conditions in sea-ice samples. Ann Glaciol 33:304–310.

    Article  CAS  Google Scholar 

  • Junge K, Eicken H, Swanson BD, Deming JW (2006) Bacterial incorporation of leucine into protein down to −20 degrees C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52:417–429.

    Article  CAS  PubMed  Google Scholar 

  • Kawahara H, Ikugawa H, Obata H (1996) Isolation and characterization of a marine ice-nucleating bacterium, Pseudomonas sp. KUIN-5, which produces cellulose and secretes it into the culture broth. Biosci Biotech Biochem 60:1474–1478.

    Article  CAS  Google Scholar 

  • Kim G (2004) Hydraulic conductivity change of bio-barrier formed in the subsurface by the adverse conditions including freeze–thaw cycles. Cold Reg Sci Technol 38:153–164.

    Article  Google Scholar 

  • Koerstgens V, Flemming H-C, Wingender J, Borchard W (2001) Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Sci Technol 43:49–57.

    Google Scholar 

  • Krembs C, Engel E (2001) Abundance and variability of microorganisms and TEP across the ice–water interface of melting first-year sea-ice in the Laptev Sea (Arctic). Mar Biol 138:173–185.

    Article  Google Scholar 

  • Krembs C, Junge K, Deming JW, Eicken H (2000) First observations on concentration and potential production and fate of organic polymers in winter sea ice from the Chukchi Sea. (Abstract), International Glaciology Society Symposium on Sea Ice and its Interactions with the Ocean, Atmosphere and Biosphere, June 2000, Fairbanks.

    Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: Implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res 49:2163–2181.

    Article  CAS  Google Scholar 

  • Krembs C, Deming JW, Eicken H (2003) Exopolymeric substances, an important component of microbial life in sea ice at low temperatures. Abstract Book, American Society of Limnology and Oceanography 2003 Aquatic Sciences Meeting February 9–14, 2001, Salt Lake City, Utah p 80.

    Google Scholar 

  • Kristiansen E, Zachariassen KE (2005) The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology 51:262–280.

    Article  CAS  PubMed  Google Scholar 

  • Lasa I (2006) Towards the identification of the common features of bacterial biofilm development. Internat Microbiol 9:21–28.

    CAS  Google Scholar 

  • Logan BE, Hunt JR (1987) Advantages of microbes of growth in permeable aggregates in marine systems. Limnol Oceanogr 32:1034–1048.

    Article  CAS  Google Scholar 

  • Mancuso-Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: A review. Mar Biotechnol 7:253–271.

    Article  CAS  Google Scholar 

  • Marcotte M, Taherian-Hoshahili AR, Ramaswamy HS (2001) Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Res Int 34:695–703.

    Article  CAS  Google Scholar 

  • Matias RF, Al-Amoudi A, Dubochet J, Beveridge TJ (2003) Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J Bacteriol 185:6112–6118.

    Article  CAS  PubMed  Google Scholar 

  • McConville MJ, Wetherbee R, Bacic A (1999) Subcellular location and composition of the wall and secreted extracellular sulphated polysaccharides/proteoglycans of diatom Stauroneis amphioxys Gregory. Protoplasma 206:188–200.

    Article  CAS  Google Scholar 

  • McMinn A, Skerratt J, Trull TC, Ashworth C (1999) Nutrient stress gradient in the bottom 5 cm of fast ice, McMurdo Sound, Antarctica. Polar Biol 21:220–227.

    Article  Google Scholar 

  • Meiners K, Brinkmeyer R, Granskog MA, Lindfors A (2004) Abundance, size distribution and bacterial colonization of exopolymer particles in Antarctic sea ice (Bellingshausen Sea). Aquat Microb Ecol 35:283–296.

    Article  Google Scholar 

  • Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupa R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918.

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Franks F (1982) Nucleation rates of ice in undercooled water and aqueous solutions of polyethylene glycol. Cryobiology 19:163–171.

    Article  CAS  PubMed  Google Scholar 

  • Miller-Livney T, Hartel W (1997) Ice recrystallization in ice cream: Interactions between sweeteners and stabilizers. J Dairy Sci 80:447–456.

    Article  CAS  Google Scholar 

  • Olien CR (1989) An overview of interfacial tension as a component of freeze stress in winter cereal plants. Thermochim Acta 154:377–380.

    Article  CAS  Google Scholar 

  • Passow U (2000) Formation of transparent exopolymer particles, TEP, from dissolved precursor material. Mar Ecol Prog Ser 192:1–11.

    Article  CAS  Google Scholar 

  • Percival E, Rahman MA, Weigel H (1980) Chemistry of the polysaccharide of the diatom Coscinodiscus nobilis. Phytochemistry 19:809–811.

    Article  CAS  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636.

    Article  CAS  PubMed  Google Scholar 

  • Raymond JA, Knight CA (2003) Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology 46:174–181.

    Article  CAS  PubMed  Google Scholar 

  • Regand A, Goff HD (2003) Structure and ice recrystallization in frozen stabilized ice cream model systems. Food Hydrocol 17:95–102.

    Article  CAS  Google Scholar 

  • Riedel A, Michel C, Gosselin M (2006) Seasonal study of sea-ice exopolymeric substances on the Mackenzie shelf: implications for transport of sea-ice bacteria and algae. Aquat Microb Ecol 45:195–206.

    Article  Google Scholar 

  • Riedel A, Michel C, Gosselin M, LeBlanc B (2007) Enrichment of nutrients and organisms in newly formed sea ice on the Mackenzie shelf: significance of heterotrophic regeneration and exopolymeric substances, nutrients and EPS in newly formed sea ice. Mar Ecol Prog Ser, in press.

    Google Scholar 

  • Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291.

    CAS  PubMed  Google Scholar 

  • Rysgaard S, Glud RN (2004) Anaerobic N2 production in Arctic sea ice. Limnol Oceanog 49:86–94.

    Article  CAS  Google Scholar 

  • Santchi PH, Banois E, Wilkinson KJ, Zhang J, Buffle J (1998) Fibrillar polysaccharides in marine macromolecular organic matter as imaged by atomic force microscopy and transmission electron microscopy. Limnol Oceanogr 43:896–908.

    Article  Google Scholar 

  • Schlekat CE, Decho AW, Chandler GT (1998) Sorption of cadmium to bacterial extracellular polymeric sediment coatings under estuarine conditions. Environ Toxicol Chem 17:1867–1874.

    Article  CAS  Google Scholar 

  • Sjöberg H, Persson S, Caram-Lelham N (1999) How interactions between drugs and agarose-carrageenan hydrogels influence the simultaneous transport of drugs. J Control Rel 59:391–400.

    Article  Google Scholar 

  • Sutton RL (1991) Critical cooling rates to avoid ice crystallization in aqueous cryoprotectant solutions containing polymers. Chem Soc Faraday Trans 87:3747–3751.

    Article  CAS  Google Scholar 

  • Sutton RL, Lips A, Piccirillo G, Sztehlo A (1996) Kinetics of ice recrystallization in aqueous fructose solutions. J Food Sci 61:741–745.

    Article  CAS  Google Scholar 

  • Stoner DL, Stedtfeld RD, Tyler TL, White FJ, McJunkin TR, Randall A, LaViolette RA (2003) Impact of microorganisms on unsaturated flow at fracture intersections. Geophys Res Lett 30:1960.

    Article  Google Scholar 

  • Stoodley P, Yang S, Lappin-Scott H, Lewandowski Z (1997) Relationship between mass transfer coefficient and liquid flow velocity in heterogenous biofilms using microelectrodes and confocal microscopy. Biotechnol Bioeng 56:681–688.

    Article  CAS  PubMed  Google Scholar 

  • Streefland L, Auffret A, Frank F (1998) Bond cleavage reactions in solid aqueous carbohydrate solutions. Pharm Res 15:843–849.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Hatakeyama T, Hatakeyama H (2000) Phenomenological theory describing the behaviour of non-freezing water in structure formation process of polysaccharide aqueous solutions. Carb Polym 41: 91–95.

    Article  CAS  Google Scholar 

  • Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 71:7327–7333.

    Article  PubMed  CAS  Google Scholar 

  • Vali G (1995) Principles of ice nucleation. In: Lee RE Jr., Warren GJ, Gusta LF (eds) Biological ice nucleation and its applications. APS Press, St Paul, pp 1–28.

    Google Scholar 

  • Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85.

    Article  CAS  Google Scholar 

  • Vetter YA, Deming JW, Jumars PA, Krieger-Brockett, BB (1998) A predictive model of bacterial foraging by means of freely-released extracellular enzymes. Microb Ecol 36:75–92.

    Article  CAS  PubMed  Google Scholar 

  • Wells ML (1998) Marine colloids: A neglected dimension. Nature 39:530–531.

    Article  CAS  Google Scholar 

  • Wetherbee R, Lind JL, Burke J, Quatrano RS (1998) Minireview: The first kiss: Establishment and control of initial adhesion by raphid diatoms. J Phycol 34:9–15.

    Article  Google Scholar 

  • Wettlaufer JS, Worster MG, Huppert HE (1997) The phase evolution of young sea ice. Geophys Res Lett 24:1251–1254.

    Article  CAS  Google Scholar 

  • Wolfe J, Bryant G (1999) Freezing, drying, and/or vitrification of membrane-solute-water systems. Cryobiology 39:103–129.

    Article  CAS  PubMed  Google Scholar 

  • Wowk B, Fahy GM (2002) Inhibition of bacterial ice nucleation by polyglycerol polymers. Cryobiology 44:14–23.

    Article  CAS  PubMed  Google Scholar 

  • Yallop ML, Paterson DM, Wellsbury P (2000) Interrelationships between rates of microbial production, exopolymer production, microbial biomass, and sediment stability in biofilms of intertidal sediments. Microb Ecol 39:116–127.

    Article  CAS  PubMed  Google Scholar 

  • Zachariassen KE, Kristiansen E (2000) Ice nucleation and antinucleation in nature. Cryobiology 41:257–279.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krembs, C., Deming, J.W. (2008). The Role of Exopolymers in Microbial Adaptation to Sea Ice. In: Margesin, R., Schinner, F., Marx, JC., Gerday, C. (eds) Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74335-4_15

Download citation

Publish with us

Policies and ethics