Skip to main content

Nodal Domain Theorems for Special Graph Classes

  • Chapter
Laplacian Eigenvectors of Graphs

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1915))

  • 2610 Accesses

In Sect. 3.6 we have seen that the upper bound for the number of (strong or weak) nodal domains that is given by the discrete nodal domain theorem cannot be improved without further restrictions. On the other hand, we have seen that there exist graphs where this bound is not sharp. In general it is unknown, whether this upper bound is sharp for an arbitrary graph. The situation is similar for the (trivial) lower bound in Thm. 3.33. Furthermore, no generalmethod is known to construct an eigenfunction of a given eigenvalue λk that maximizes or minimizes the number of (strong or weak) nodal domains. In this chapter we take a closer look to the situation for trees, cographs, and product graphs (in particular to the Boolean hypercube), where it is possible to derive improved upper and lower bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Nodal Domain Theorems for Special Graph Classes. In: Laplacian Eigenvectors of Graphs. Lecture Notes in Mathematics, vol 1915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73510-6_4

Download citation

Publish with us

Policies and ethics