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Graph Laplacians

In this chapter we recall the definition of (generalized) graph Laplacians and
present the basic properties of their eigenfunctions. Moreover, we establish the
main tools that will be used throughout the book. For a thorough overview
of other properties of graph Laplacians not required for our investigations of
eigenfunctions we refer the interested reader to the survey by Merris [133].

2.1 Basic Properties of Graph Laplacians

Let G(V,E) be a simple graph with vertex set V and edge set E. We use the
convention that |V | = n and |E| = m, i.e., G is a graph with n vertices and
m edges. The Laplacian of G is the matrix

L(G) = D(G)−A(G) (2.1)

where D(G) is the diagonal matrix whose entries are the degrees of the vertices
of G, i.e. Dvv = d(v), and A(G) denotes the adjacency matrix of G. For the
function Lf we find

(Lf)(x) =
∑

y∼x

[f(x)− f(y)] = d(x) f(x) −
∑

y∼x

f(y) . (2.2)

We denote the eigenvalues of L by λi enumerated in increasing order, i.e.,

0 = λ1 ≤ λ2 ≤ · · · ≤ λn . (2.3)

The quadratic form of the graph Laplacian can be computed via Green’s
formula as

〈f,Lf〉 =
∑

x,y∈V

Lxyf(x)f(y) =
∑

xy∈E

(f(x)− f(y))2 . (2.4)

This equality immediately shows that the graph Laplacian is a nonnegative
operator, i.e., all eigenvalues are greater than or equal to 0.
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A symmetric matrix M(G) is called a generalized Laplacian (or discrete
Schrödinger operator) of G if it has nonpositive off-diagonal entries and for
x = y, Mxy < 0 if and only if the vertices x and y are adjacent. On the other
hand, for each symmetric matrix with nonpositive off-diagonal entries there
exists a graph where two distinct vertices x and y are adjacent if and only if
Mxy < 0. Similarly to (2.2) we have

(Mf)(x) =
∑

y∼x

(−Mxy)[f(x) − f(y)] + p(x) f(x) , (2.5)

where p(x) = Mxx +
∑

y∼x Mxy. The last part p(x) can be viewed as some
potential on vertex x. Defining a matrix W consisting of Wxy = Mxy for
x = y and Wxx = −

∑
y �=xMxy and a diagonal matrix P with the potentials

p(x) as its entries we can decompose every generalized Laplacian as

M = W + P .

W can be seen as discrete elliptic operator . The quadratic form of the gener-
alized Laplacian can then be computed as

〈f,Mf〉 =
∑

xy∈E

(−Mxy)(f(x) − f(y))2 +
∑

x∈V

p(x) f(x)2 ; (2.6)

an alternative presentation is

〈f,Mf〉 =
∑

x∈V

Mxxf(x)2 + 2
∑

xy∈E

Mxyf(x)f(y) . (2.7)

The following remarkable result for the eigenvalues of a generalized Laplacian
can be easily derived.

Theorem 2.1 ([22]). Let λ be an eigenvalue of a generalized Laplacian M =
W + P with eigenfunction f . Then either

∑
v∈V f(v) =

∑
v∈V p(v) f(v) = 0,

or

λ =
∑

v∈V p(v) f(v)∑
v∈V f(v)

.

Proof. Let 1 = (1, . . . , 1)T. Then a straightforward computation gives

〈1,Mf〉 =
∑

v∈V (
∑

w∼v(−Mvw)(f(v)− f(w)) + p(v) f(v))
=
∑

v,w∈V (−Mvw)(f(v)− f(w)) +
∑

v∈V p(v) f(v)

=
∑

v,w∈V Mvwf(w)−
∑

v,w∈V Mvwf(v) +
∑

v∈V p(v) f(v)

=
∑

v∈V p(v) f(v) .

Since f is an eigenfunction we find 〈1,Mf〉 = λ
∑

v∈V f(v), and thus the
proposition follows. ��
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Remark 2.2. The case
∑

v∈V f(v) = 0 happens, for example, for all eigenfunc-
tions corresponding to an eigenvalue λ > λ1 when the eigenfunction f1 of λ1

is constant. This is the case if and and only if p(v) is constant for all v ∈ V .

The spectrum of the (generalized) Laplacian provides quite detailed in-
formation on the structure of the underlying graph. We refer the interested
reader to classical books and surveys, e.g. [17, 35, 41, 46, 85, 133, 137].

One of these basic results is related to the multiplicity of the first eigen-
value and the connectivity of the graph. Notice, that all eigenvalues of a
discrete elliptic matrix W are nonnegative as an immediate consequence of
(2.6). Moreover, its smallest eigenvalue is λ1 = 0.

Theorem 2.3. Let W(G) be a generalized Laplacian without potential (i.e.
P = 0). Then the multiplicity of the smallest eigenvalue λ1 of W(G) is equal
to the number of components of G. In particular, λ1 is simple if and only if
G is connected.

Proof. Assume G is the disjoint sum of connected components H1, . . . , Hk.
Denote by fi the characteristic function of V (Hi), i.e. f(v) = 1 if v ∈ V (Hi)
and 0 otherwise. Obviously, M(G)fi = 0. Since f1, . . . , fk are linearly inde-
pendent, the multiplicity of eigenvalue 0 is at least k.

Conversely, if f is an eigenfunction of eigenvalue 0, then by (2.6) f must
be constant on each edge of G and hence on each component Hi. Therefore f
is a linear combination of the characteristic functions fi. ��

We assume throughout this book that all graphs are connected unless stated
otherwise explicitly.

2.2 Weighted Graphs

We have introduced Laplacian and generalized Laplacian matrices on simple
unweighted graphs. However, it is straightforward to generalize these concepts
to weighted graphs . Let wxy > 0 denote the weight for edge xy; we set wxy = 0
if x and y are not adjacent. Then we can define the Laplacian Lw as

(Lwf)(x) =
∑

y∼x

wxy(f(x)− f(y)) . (2.8)

Obviously this is a special case of (2.5) with −Mxy = wxy and p(x) = 0. Thus
Lw can be seen as a generalized Laplacian on the corresponding unweighted
graph (where two vertices x and y are adjacent if and only if wxy > 0). Thus
without loss of generality we will restrict our interest to generalized Laplacian
on unweighted graphs.
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2.3 The Rayleigh Quotient

The Rayleigh quotient RM(f) of a function f : V → R with respect to a
generalized Laplacian M is defined as the fraction

RM(f) =
〈f,Mf〉
〈f, f〉 . (2.9)

For the graph Laplacian L this can equivalently be written as

RL(f) =

∑
xy∈E(f(x) − f(y))2
∑

x∈V f(x)2
.

The Rayleigh quotient plays a crucial rôle in our investigations. Its impor-
tance is based on the following fundamental theorem from spectral theory
for symmetric matrices (which we restate here for graph Laplacians), see e.g.
[100].

Proposition 2.4 (Spectral Decomposition). For a generalized Laplacian
M for a graph G there exists an orthonormal basis of the R

n that consists of
eigenfunctions f1, . . . , fn corresponding to the eigenvalues λ1, . . . , λn. More-
over, for every function g : V → R we find

Mg =
n∑

i=1

λi〈g, fi〉 fi

and for the quadratic form,

〈g,Mg〉 =
n∑

i=1

λi〈g, fi〉2 .

As an immediate consequence we have the following corollary.

Corollary 2.5. Let f1, . . . , fn denote orthogonal eigenfunctions correspond-
ing to the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn of a generalized Laplacian M. Let
Fi = {f1, . . . , fi} be the set of the first i eigenfunctions and F⊥

i its orthogonal
complement. Then

λk = min
g∈F⊥

k−1

RM(g) = min
g∈F⊥

k−1

〈g,Mg〉
〈g, g〉 .

Moreover, RM(g) = λk for some g ∈ F⊥
k−1 if and only if g is an eigenfunction

corresponding to λk.

Proof. Every function g ∈ F⊥
k−1 can be written as g =

∑n
i=k ai fi. Hence

RM(g) =
∑n

i=k λi a
2
i /
∑n

i=k a
2
i ≥

∑n
i=k λk a

2
i /
∑n

i=k a
2
i = λk and equality

holds if and only if all terms with eigenvalues λi > λk vanish. Thus the result
follows. ��
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Corollary 2.6 (Minimax-Theorem). Let Wk and W⊥
k denote the sets of

subspaces of R
n of dimension at least k and of codimension at most k, respec-

tively. Then

λk = min
W∈Wk

max
0�=g∈W

〈g,Mg〉
〈g, g〉 = max

W∈W⊥
k−1

min
0�=g∈W

〈g,Mg〉
〈g, g〉

Proof. Every function g can be written as g =
∑n

i=1 aifi for some ai where
{f1, . . . , fn} is the orthonormal basis of eigenfunctions from Prop. 2.4. Hence
RM(g) = 〈g,Mg〉

〈g,g〉 =
∑n

i=1 a
2
i λi/

∑n
i=1 a

2
i . Then for every W ∈ Wk we can

find some g ∈ W where a1 = . . . ak−1 = 0 and thus supg∈W RM(g) ≥
supg∈W,a1=...=ak−1=0

∑n
i=k a

2
iλi/

∑n
i=k a

2
i ≥ λk. Consequently,

inf
W∈Wk

sup
g∈W
RM(g) ≥ λk .

Equality holds if W is the subspace that is spanned by the first k eigenfunc-
tions. Thus the first equality follows. The second equality is shown analo-
gously. ��

2.4 Calculus on Graphs

Friedman and Tillich [76, 77] developed a Calculus on Graphs where ideas for
motivating the discrete Dirichlet matrix [75] are extended to a more general
setting; see Sect. 1.5 for a more detailed description.

The geometric realization of a graph G(V,E) is the metric space G consist-
ing of V and arcs of length 1 glued between u and v for every edge e = uv ∈ E.
For weighted graphs these arcs have length 1/wuv. This definition of the arc
lengths needs some explanation. Setting the length of such arcs to the recip-
rocal of weights of the corresponding edge is motivated by the application of
graphs in physical models (see e.g. Hückel theory in Sect. 1.6) or in numer-
ical approximations of the continuous operators (see e.g. Sect. 1.2). Shorter
distances between the nodes (i.e., smaller arc lengths) result in stronger cou-
pling in these systems and hence are modeled by higher weights for these
connections.

We define two measures on G (and G). A vertex measure, µV , is supported
on the vertex set V with µV (v) > 0 for all v ∈ V ; and an edge measure
µE , supported on the union of arcs of G, with µE(v) = 0 for all v ∈ V
and whose restriction to any open subinterval of an edge (arc) e ∈ E is its
Lebesgue measure times a constant ae > 0. In our setup we have the measures
µV (v) = 1 and ae = 1 (which are called traditional in [76]). Hence for any
graph G, µV (G) = |V | and µE(G) = |E| (or

∑
e∈E 1/we in case of a weighted

graph).
Let S denote the set of all continuous functions on G which are differen-

tiable on G \V . Then we introduce a Laplacian operator L(G) by the Rayleigh
quotient for functions f ∈ S given as
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RL(f) =

∫
G |∇f |

2dµE∫
G |f |2dµV

.

The operator L(G) can be seen as the continuous version of the corresponding
graph Laplacian L(G). On G we can avoid the problems that arise from the
discreteness of our situation. Many concepts in analysis translate almost im-
mediately to this setting. For example, nodal domains (Sect. 3.1) of an (eigen-)
function f are separated by points in G where f vanishes; in opposition to the
traditional setting where such points need not exist as f is supported on V
only (see Sect. 3.1).

These two concepts, L(G) and L(G), coincide [75, 76]. The Rayleigh quo-
tient RL(f) is minimized if and only if f ∈ S is an edgewise linear function,
i.e. a function whose restriction to an edge is linear. The eigenvalues and
eigenfunctions of L(G) exist and are those of L(G), i.e. the restrictions of the
L(G)-eigenfunctions to V are the graph Laplacian eigenfunctions.

In this setting the motivation for the Dirichlet operator, introduced in
Sect. 1.5, is obvious: Restrict S to {f ∈ S : f(v) = 0 for all v ∈ ∂V }. We then
have the following analog to eigenfunctions of the classical Laplace-Beltrami
operator. If G1 and G2 are graphs with boundary, then we say that G2 is
an extension of G1, written G1 ⊆ G2, if there exists an isometric embedding
of the realization of G1 into G2 which preserves the degree of each interior
vertex. If G1 and G2 are connected graphs and the above embedding is not
onto, we say that G2 is a strict extension, G1 ⊂ G2.

Proposition 2.7 ([75]). Let λ◦(G) denote the first Dirichlet eigenvalue.
Then the following holds:

(1) λ◦(G) is continuous as a function of G in the metric
ρ(G,G′) = µE(G−G′) + µE(G′ −G).

(2) λ◦(G) is monotone in G, i.e., if G ⊂ G′ then λ◦(G) > λ◦(G′).

2.5 Basic Properties of Eigenfunctions

As we have already seen the graph Laplacian is a nonnegative operator. If G is
a connected graph with n vertices then the constant function 1 : x �→ 1 is the
unique eigenfunction with eigenvalue 0, L1 = 0 (for a proof see Cor. 2.23).
Each eigenfunction of an eigenvalue greater than 0 is orthogonal to 1 by
Prop. 2.4. Thus there are at least two vertices with values of opposite sign,
and of course

∑
x∈V f(x) = 0. For vertices where an eigenfunction vanishes

we have the following important property which holds for every generalized
Laplacian.

Lemma 2.8. Let f be an eigenfunction of M(G) with a zero vertex z, i.e.,
a vertex where f vanishes, f(z) = 0. Then

∑
y∼z Myzf(y) = 0. Moreover,

either all neighbors of the zero vertex z are zero vertices themselves, or z is
adjacent to vertices of both strict signs.
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Proof. 0 = f(z) =
∑

y∈V

Myzf(y) =
∑

y∼z

Myzf(y) +Mzzf(z) =
∑

y∼z

Myzf(y).

��

The next property can be interpreted as a discrete analog of the maximum
principle for the Laplace operator. We say that x is a local maximum of a
function f if f(x) ≥ f(y) for all y ∼ x and f(x) > f(z) for at least one z ∼ x.
A local minimum is defined analogously.

Theorem 2.9 ([81, 90]). An eigenfunction f of a graph Laplacian L(G)
cannot have a nonnegative local minimum or a nonpositive local maximum.

Proof. Suppose x is a local minimum of f with f(x) ≥ 0. Then
∑

y∼x[f(x)−
f(y)] < 0 and thus by (2.2), 0 ≤ λf(x) = (Lf)(x) =

∑
y∼x[f(x)− f(y)] < 0,

a contradiction. ��

Remark 2.10. This theorem analogously holds for generalized Laplacians with-
out a potential p(x) in (2.5). However, if p(x) = 0 for some vertices then it
might fail. For example, consider a simple path P3, with generalized Laplacian

M =

⎛

⎝
3 −1 −1
−1 1 0
−1 0 1

⎞

⎠ .

Then λ1 = 2 −
√

3 has an eigenfunction with a positive minimum on the
second vertex.

Merris [134] considers several “eigenfunction principles” for the graph
Laplacian. In the following we review some of them.

Theorem 2.11 ([134]). Let G be a graph with n vertices. If 0 = λ < n is an
eigenvalue of L(G), then any eigenfunction affording λ takes the value 0 on
every vertex of degree n− 1.

Proof. Let v be a vertex of degree n−1. (Lf)(v) = (n−1) f(v)−
∑

x �=v f(x) =
λ f(v), hence n f(v) = λ f(v) and f(v) = 0. ��

Theorem 2.12 ([134]). Let λ be an eigenvalue of L(G) afforded by eigen-
function f . If f(u) = f(v), then λ is an eigenvalue of L(G′) afforded by f ,
where G′ is the graph obtained from G by deleting or adding the edge e = uv
depending on whether or not e = uv is an edge of G.

The reduced graph G{W} is obtained from G by deleting all vertices in
V \W that are not adjacent to a vertex of W and subsequent deletion of any
remaining edges that are not incident with a vertex of W .

Theorem 2.13 ([134]). For a graph G(V,E) fix a nonempty subset W of V .
Suppose f is an eigenfunction of the reduced graph G{W} that affords λ and is
supported by W in the sense that if f(u) = 0, then u ∈ W . Then the extension
f ′ with f ′(v) = f(v) for v ∈ W and f ′(v) = 0 otherwise is an eigenfunction
of G affording λ.
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Theorem 2.14 ([134]). Let f be an eigenfunction affording λ of a graph G
with n vertices. Let Nv be the set of neighbors of v. Suppose f(u) = f(v) = 0,
where Nu∩Nv = ∅. Let G′ be the graph on n−1 vertices obtained by coalescing
u and v into a single vertex, which is adjacent in G′ precisely to those vertices
that are adjacent in G to u or to v. The function f ′ obtained by restricting f
to V (G) \ {u} is an eigenfunction of G′ affording λ.

If G is a regular graph, then the eigenvalues of the Laplacian are deter-
mined by the eigenvalues of the adjacency matrix.

Proposition 2.15. Let G be a k-regular graph. If the adjacency matrix
A(G) has eigenvalues λ1, . . . , λn, then the Laplacian L(G) has eigenvalues
k − λ1, . . . , k − λn.

Proof. If G is k-regular, then L(G) = D(G) −A(G) = kI −A. Thus every
eigenfunction of A with eigenvalue λ is an eigenfunction of L(G) with eigen-
value k − λ. ��

The next well-known result describes the relation between the Laplacian
spectrum of G and the Laplacian spectrum of its complement Gc. The matrix
J is the n× n matrix each of whose entries are 1.

Theorem 2.16. If G is a graph with n vertices and f is an eigenfunction
of L(G) with eigenvalue λ = 0, then f is an eigenfunction of L(Gc) with
eigenvalue n− λ.

Proof. We start observing that L(G) + L(Gc) = nI − J and Jf = 0 as f is
orthogonal to the constant function 1. Then,

nf = (nI− J)f = L(G)f + L(Gc)f = λf + L(Gc)f .

Therefore, L(Gc)f = (n− λ)f . ��

2.6 Graph Automorphisms and Eigenfunctions

It is sometimes possible to infer directly from the graph structure at which ver-
tices some or all eigenfunctions of L(G) vanish. Theorem 2.11 is an example.
Symmetry properties of G are particularly useful for this purpose.

An automorphism of a graph G is a permutation of its vertex set V (G)
that maps edges onto edges and nonedges onto nonedges. The set of all au-
tomorphisms of G forms a group. We denote this automorphism group of G
by Aut(G). For an X ∈ Aut(G) and a given eigenfunction f we define the
function Xf by

Xf(v) = f(X(v)) .

Moreover
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VX = {v ∈ V : X(v) = v} and OX(v) = {Xk(v) : k ∈ Z}

denote the set of vertices that are fixed under the action of X and the orbit
of the vertex v under the action of X , respectively.

Lemma 2.17. Let X ∈ Aut(G) for some graph G. If f is an eigenfunction of
L(G) corresponding to eigenvalue λ, then Xf is also an eigenfunction of λ.

Proof. L(Xf)(v) =
∑

w∼v(Xf(v)−Xf(w)) =
∑

w∼v(f(X(v))− f(X(w))) =∑
w∼X(v)(f(X(v))− f(w)) = Lf(X(v)) = λf(X(v)) = λXf(v). ��

Theorem 2.18. For an eigenfunction f and an automorphism X ∈ Aut(G)
one of the following three cases holds:

(1) Xf = f . In particular, f is constant on every orbit OX(v).
(2) Xf = −f , and f vanishes on all orbits of odd size. In particular, f van-

ishes on the fixed points VX . Moreover, there must be an orbit of even
size.

(3) Xf and f are linearly independent, and consequently λ is an eigenvalue
of multiplicity greater than one.

Proof. Let s denote the size of the orbit OX(v) of vertex v (s = 1 if v ∈ VX),
i.e., Xsv = v. Assume Xf = αf for some α ∈ R. Then we find f(v) =
f(Xsv) = Xf(Xs−1v) = αf(Xs−1v) = · · · = αsf(v). Thus f(v) = 0 and
f vanishes on the orbit of v, or αs = 1 and hence α = 1 (case (1)), or
α = −1 (case (2)). Obviously if f(v) = Xsf(v) = (−1)sf(v) then f vanishes
on all orbits of odd size s and there must be an orbit of even size since
otherwise f would be identical to zero. Another immediate consequence of
these considerations is that when neither (1) nor (2) holds, then Xf and f
are linearly independent (case (3)). ��

Theorem 2.19. Let X ∈ Aut(G) and let f1 and f2 be Laplacian eigenfunc-
tions of G with properties (1) and (2) of Thm. 2.18, respectively. Then f1 and
f2 are orthogonal, i.e., 〈f1, f2〉 = 0.

Proof. Since X is a permutation operator on V , we have XtX = I. Thus we
find 〈f1, f2〉 = 〈XtXf1, f2〉 = 〈Xf1, Xf2〉 = 〈f1,−f2〉 = −〈f1, f2〉 and the
proposition follows. ��

2.7 Quasi-Abelian Cayley Graphs

In highly symmetric graphs one can expect a close connection between eigen-
functions of the graph Laplacian and group-theoretic properties. We exploit
this connection here to derive explicit expressions for the eigenfunctions of
the graph Laplacian of a class of highly symmetric graphs.

Let G be a finite group and let S be a symmetric set of generators of G,
i.e., 〈S〉 = G, S = S−1, and ı /∈ S, where ı is the identity of G. A graph
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Γ (G, S) with vertex set G and edges {s, t} if and only if t−1s ∈ S is called a
Cayley graph. A Cayley graph Γ (G, S) is called quasi-Abelian if S is the union
of some conjugacy classes of G.

Cayley graphs are vertex transitive and hence regular. The characteristic
function of S will be denoted by Θ : G→ {0, 1}. Clearly, a Cayley graph on a
commutative group is quasi-Abelian, because in this case each group element
forms its own conjugacy class. Some interesting properties of quasi-Abelian
Cayley graphs are discussed in [172, 179].

In the case of Cayley graphs we have to distinguish between the “Fourier
series expansion” (1.5) with respect to the Laplacian matrix of the graph
Γ (G, S), and the representation theoretical Fourier transformation on the
group G itself. It should not come as a surprise that there is an intimate
connection between these two. In fact, the connection between the algebraic
properties of Γ (G, S) and the representation theory of the underlying group
G derives from the following simple facts: The regular representation ρreg of
G is defined by

ρreg(s)f(t) = f(s−1t)

for any f : G −→ C. Substituting Θ for f we find ρreg(s)Θ(t) = Θ(s−1t) = 1 if
{t, s} is an edge of Γ (G, S) and 0 otherwise. Thus we may write the adjacency
matrix A(G, S) of Γ (G, S) in the form

A(G, S) =
∑

s∈S

ρreg(s) .

For any function f : G→ C and any matrix representation � = {ρ(s)}s∈G

of G we call the matrix sum

f̂(�) =
∑

x∈G

f(x)ρ(x)

the (group theoretic) Fourier Transform of f at �. Consider a complete set
{�1, . . . , �h} of inequivalent irreducible matrix representations of G. Let dk

denote the dimension of �k. Then

f(s) =
1
|G|

h∑

k=1

dk tr(ρk(s−1)) f̂(�k)

inverts the Fourier transform.
Following e.g. [55, Sect. 8A] we assume that the irreducible representations

�k are unitary, i.e., that ρk(t)∗ = ρk(t−1) and introduce

ρ̃k
ij(s) :=

√
dkρk

ji(s
−1) .

These functions are orthonormal w.r.t. the scalar product

〈ϕ, ψ〉 =
1
|G|
∑

s∈|G|
ϕ(s)ψ∗(s)
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and form a new basis for the vector space of functions of G. Now we are in
the position to state the main result of this section.

Theorem 2.20 ([151]). Let Γ (G, S) be a quasi-Abelian Cayley graph with a
finite group G.

(i) The function εk
ij : G→ C defined as

εk
ij(u) =

1√
|G|

ρ̃k
ij(u) =

√
dk

|G|ρ
k
ij(u

−1)

is a normalized eigenfunction of L(Γ ) with eigenvalue

λk = |S| − 1
dk

∑

s∈S

χk(s)

where χk(s) = tr(ρk(s)) is the character of �k at s.
(ii) All quasi-Abelian Cayley graphs on G have a common basis of eigenfunc-

tions and hence their Laplacian matrices commute.

Proof. (i) We verify by explicit computation that ρ̃k
ij is an eigenfunction of

the adjacency matrix:
∑

u∈G

Avuρ̃
k
ij(u) =

∑

u∈G

Θ(vu−1)ρ̃k
ij(u)

=
∑

u∈G

{
1
|G|
∑

r,s,t

√
drΘ̂ts(ρr)ρ̃r

st(uv
−1)

}
ρ̃k

ij(u)

=
∑

u∈G

1
|G|
∑

r,s,t

Θ̂ts(�r)
∑

y

ρ̃r∗
ys(u)ρ̃r

yt(v)ρ̃
k
ij(u)

=
∑

r,s,t

Θ̂ts(�r)
∑

y

ρ̃r
yt(v)

1
|G|
∑

u∈G

ρ̃k
ij(u)ρ̃r∗

ys(u)

=
∑

r,s,t

Θ̂ts(�r)
∑

y

ρ̃r
yt(v)δkrδiyδjs =

∑

t

Θ̂tj(�k)ρ̃k
it(v) .

Here we have used that ρk(st−1) = ρk(s)ρk(t−1) = ρk(s)ρk∗(t) translates to

√
drρ̃

r
st(vu

−1) =
h∑

y=1

ρ̃r∗
ys(u)ρ̃r

yt(v) .

Next we use the fact that Θ is a class function. Hence its Fourier transform
is diagonal

Θ̂(ρk) =
1
dk

∑

s∈S

χk(s) Idk
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where χk(s) = tr(ρk(s)) is the character of the representation �k at s. We
have therefore

∑

u∈G

Avuρ̃
k
ij(u) =

∑

t

1
dk

∑

s∈S

χk(s)δtj ρ̃k
it(v) =

1
dk

∑

s∈S

χk(s)× ρ̃k
ij(v) .

Changing the normalizations back to the standard scalar product of C and
using L = |S|I−A leads to claim (i) of the theorem.

(ii) We have just shown that {ρ̃ij} is an orthonormal basis of eigenfunctions
of L whenever S is the union of conjugacy classes of G. Thus the Laplacian
matrices of all quasi-Abelian Cayley graphs of the group G share a common
orthonormal basis of eigenfunctions. Since the graph Laplacians are symmetric
matrices, they commute under these circumstances. ��

Theorem 2.20 generalizes the following well known result for Abelian
Cayley graphs which is discussed e.g. by Lovász [128]:

Corollary 2.21. Let G be a commutative group, and let S be a symmetric set
of generators of G. Then the irreducible characters χk of G are eigenfunctions
of A(G, S) with corresponding eigenvalue Λk =

∑
s∈S χk(s).

2.8 The Perron-Frobenius Theorem

Let A be an n × n real symmetric matrix. Analogously to the generalized
Laplacians we can associate a graph G such that two vertices u and v are
connected by an edge if and only if Auv = 0. Then A is called irreducible if
its underlying graph is connected1.

Theorem 2.22 (Perron-Frobenius Theorem). Let A and B be real sym-
metric irreducible nonnegative n× n matrices. Then

(i) the spectral radius ρ(A) is a simple eigenvalue of A. If x is an eigen-
function for ρ(A), then no entries of x are zero, and all have the same
sign.

(ii) If moreover A−B is nonnegative, then ρ(B) ≤ ρ(A), with equality if and
only if B = A.

For a proof see, e.g., [100].
We can apply this theorem to get a statement about the smallest eigenvalue

λ1 and its eigenfunctions of a generalized Laplacian of G.

Corollary 2.23. Let G be a connected graph with a generalized Laplacian
M. Then the smallest eigenvalue λ1 of M is simple and the corresponding
eigenfunction can be taken to have all entries positive.
1 A nonsymmetric matrix is called irreducible if the corresponding graph is strongly

connected, i.e., if, for all u, v ∈ V , there is a directed path from u to v. The Perron-
Frobenius Theorem then holds as well.
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Proof. We use an argument of Godsil and Royle [85]. If M is a generalized
Laplacian of G, then for any c, the matrix M− cI is a generalized Laplacian
of G with the same eigenfunctions as M. We choose a constant c such that all
diagonal entries of M − cI are nonpositive. As a consequence of the Perron-
Frobenius Theorem, the largest eigenvalue of −M + cI is simple and the
associated eigenfunction may be taken to have only positive entries. ��

A positive eigenfunction to the smallest eigenvalue λ1 of M of a connected
graph is called a Perron vector of G.




