
2

Wavelet and Gabor Frames

In this section we give a brief survey of the main notations, definitions, and
results from frame theory, wavelet analysis, and time-frequency analysis which
will be used throughout the book. We conclude this chapter with a section on
amalgam spaces in the setting of locally compact groups, since in the sequel
amalgam spaces will be employed in different group settings.

2.1 Frame Theory

In this section we briefly recall the definition and basic properties of frames
and Schauder bases in Hilbert spaces. For more information on frame theory
we refer to the various books and papers authored by Casazza [14], Christensen
[20, 21], Daubechies [41], Heil and Walnut [76], and Young [128], and concern-
ing Schauder bases theory we refer to Heil [70], Lindenstrauss and Tzafriri [99],
Marti [101], Singer [114], and Young [128].

Let H be a separable Hilbert space, and let I be an indexing set. A sequence
{fi}i∈I ⊆ H is a frame for H if there exist constants 0 < A ≤ B < ∞ such
that

A ‖f‖2 ≤
∑

i∈I

|〈f, fi〉|2 ≤ B ‖f‖2 for all f ∈ H. (2.1)

The constants A and B are called lower and upper frame bounds, respectively.
If A and B can be chosen such that A = B, then {fi}i∈I is a tight frame. If
we can take A = B = 1, it is called a Parseval frame.

Let {fi}i∈I be a frame for H. Then the frame operator

Sf =
∑

i∈I

〈f, fi〉 fi

is a bounded, positive, and invertible mapping of H onto itself, which satisfies

A Id ≤ S ≤ B Id,
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where Id denotes the identity operator. The canonical dual frame is {f̃i}i∈I ,
where f̃i = S−1fi. For each f ∈ H we have the frame expansions

f =
∑

i∈I

〈f, fi〉 f̃i =
∑

i∈I

〈f, f̃i〉fi.

In the special case that {fi}i∈I forms a Parseval frame, the frame operator S
is the identity, the dual frame coincides with the frame itself, and the frame
expansions reduce to f =

∑
i∈I 〈f, fi〉 fi.

A sequence which satisfies the upper frame bound estimate in (2.1), but
not necessarily the lower estimate, is called a Bessel sequence and B is a Bessel
bound. In this case,

∥∥∥
∑

i∈I

cifi

∥∥∥
2

≤ B
∑

i∈I

|ci|2 for any (ci)i∈I ∈ �2(I). (2.2)

In particular, ‖fi‖2 ≤ B for every i ∈ I.

A sequence {fi}i∈N is a Schauder basis for H if for each f ∈ H there exist
unique scalars ci(f), i ∈ N, such that

f =
∞∑

i=1

ci(f)fi. (2.3)

Then there exists a unique biorthogonal system {f̃i}i∈N in H, which is also a
Schauder basis, called the dual basis, and which satisfies

f =
∞∑

i=1

〈f, fi〉 f̃i =
∞∑

i=1

〈f, f̃i〉 fi for all f ∈ H.

The associated partial sum operators are SN (f) =
∑N

i=1 〈f, f̃i〉 fi for f ∈ H.
The basis constant is the finite number C = supN ‖SN‖. If for each f ∈ H the
series f =

∑
i ci(f) fi converges with respect to any ordering of the indices,

then {fi}i∈N is called an unconditional basis. Consequently, for a Schauder
basis the ordering in (2.3) can be crucial. If 0 < infi ‖fi‖ ≤ supi ‖fi‖ < ∞ then
{fi}i∈N is a bounded basis. A sequence {fi}i∈N which is a Schauder basis for
its closed linear span within H, denoted by spani∈N

{fi}, is called a Schauder
basic sequence.

We conclude this section with the following well-known result concerning
the relationship between Schauder bases, Riesz bases, and frames (compare
Casazza [14] or Christensen [21]).

Proposition 2.1. The following three statements are equivalent:

(i) {fi}i∈N is a Schauder basis and a frame for H,
(ii) {fi}i∈N is a Riesz basis for H,
(iii) {fi}i∈N is a bounded unconditional basis for H.



2.2 Wavelet Analysis 13

2.2 Wavelet Analysis

In this section we will focus on the basic definitions, notations, and results
in wavelet analysis which will be used in the sequel. For more information
on wavelet theory we refer the reader to the books by Chui [24], Daubechies
[41], and Hernández and Weiss [79], and the papers authored by Heil and
Walnut [76] and Weiss and Wilson [124]. Most of the following definitions can
be generalized to higher dimensions, but since in this book we focus on the
one-dimensional situation, we just state the one-dimensional definitions. Let
A = R

+ × R denote the affine group, endowed with the multiplication

(a, b) · (x, y) =
(
ax, b

x + y
)
.

The identity element of A is e = (1, 0), and inverses are given by

(a, b)−1 =
(

1
a ,−ab

)
.

The left-invariant Haar measure on A is µA = dx
x dy. We denote the norm and

inner product on L2(A) with respect to this Haar measure by ‖·‖L2(A) and
〈·, ·〉L2(A), respectively, whereas the norm and inner product on L2(R) will be
denoted by ‖·‖ or ‖·‖2 and 〈·, ·〉.

Let σ be the unitary representation of A on L2(R) defined by

(σ(a, b)ψ)(x) = 1√
a
ψ(x

a − b) = DaTbψ(x),

where Da denotes the dilation operator Daf(x) = 1√
a
f(x

a ) and Tb denotes the
translation operator Tbf(x) = f(x − b).

For f ∈ L1(Rd), we will use the following convention for the Fourier trans-
form:

f̂(ξ) =
∫ ∞

−∞
f(x)e−2πi〈x,ξ〉 dx.

Its extension to a unitary mapping from L2(Rd) to L2(Rd) will also be denoted
by f̂ . The inverse Fourier transform shall be denoted by f∨.

Given ψ ∈ L2(R), called an analyzing wavelet, the continuous wavelet
transform (CWT) Wψf of f ∈ L2(R) with respect to ψ is

Wψf(a, b) =
〈
f, σ(a, b)ψ

〉
=
〈
f, DaTbψ

〉
= 1√

a

∫ ∞

−∞
f(x)ψ(x

a − b) dx.

We have
|Wψf(a, b)| ≤ ‖f‖2 ‖ψ‖2 for all (a, b) ∈ A

and Wψf ∈ C(A). However, Wψ does not map L2(R) into L2(A) for each
ψ ∈ L2(R). We say that ψ ∈ L2(R) is admissible if the admissibility constant
Cψ defined by
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Cψ =
∫ ∞

−∞

|ψ̂(ξ)|2
|ξ| dξ

is finite. This condition is also sometimes called the admissibility condition.
In particular, this is equivalent to the condition that both integrals

C−
ψ =

∫ 0

−∞

|ψ̂(ξ)|2
|ξ| dξ and C+

ψ =
∫ ∞

0

|ψ̂(ξ)|2
|ξ| dξ

are finite. We further set

L2
A(R) = {ψ ∈ L2(R) : ψ is admissible}.

Note that if ψ ∈ L1(R) ∩ L2
A(R), then we must have ψ̂(0) = 0, since ψ̂ is

continuous. If ψ is admissible, then Wψ maps L2(R) into L2(A), cf. Heil and
Walnut [76, Cor. 3.3.6]. Precisely, we have that if ψ ∈ L2

A(R) and f ∈ L2(R),
then

‖Wψf‖2
L2(A) = C+

ψ

∫ ∞

0

|f̂(ξ)|2 dξ + C−
ψ

∫ 0

−∞
|f̂(ξ)|2 dξ ≤ Cψ ‖f‖2

2 .

Furthermore, the roles of f and ψ can be interchanged by using the relation
Wfψ(a, b) = Wψf((a, b)−1). We remark that this lack of symmetry is due to
the fact that the Haar measure on A is not unimodular.

The next lemma lists several useful equivalent forms of the CWT:

Lemma 2.2. If f, ψ ∈ L2(R), then

Wψf(a, b) = 1√
a

∫ ∞

−∞
f(x)ψ(x−ab

a ) dx

=
√

a

∫ ∞

−∞
f̂(ξ) ψ̂(aξ) e2πiabξ dξ

= (f̂ · Da−1 ψ̂)∨(ab).

The Besov spaces Bα
p,q(R), where α > 0 and 1 ≤ p, q ≤ ∞, are the natu-

ral function spaces associated with the CWT, namely, their norms quantify
time-scale concentration of functions or distributions. They consist of func-
tions in Lp(R) with “smoothness α,” with the parameter q allowing for a finer
graduation of the quantification of smoothness. There are many equivalent
definitions of the Besov spaces, and we refer to Triebel [122] for more infor-
mation. An important fact is that equivalent norms for the Besov spaces can
be formulated in terms of the discrete wavelet transform (see Meyer [102]) or
the continuous wavelet transform (see Perrier and Basdevant [106]).

For practical purposes, however, discrete wavelet systems are needed,
i.e., wavelet systems {σ(a, b)ψ}(a,b)∈Λ, where Λ does not equal A, but instead
is just a sequence in A. We remark that although Λ will always denote a
countable sequence of points in A and not merely a subset, for simplicity
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we will write Λ ⊆ A. In particular, this means that we allow repetitions of
points. Further recall that the disjoint union S =

⋃n
i=1 Si of a finite col-

lection of sequences S1, . . . , Sn contained in some set is the sequence S =
{s11, . . . , s1n, s21, . . . , s2n, . . . }, where each Si is indexed as Si = {ski}k∈N,
i.e., S is the sequence obtained by amalgamating S1, . . . , Sn.

Definition 2.3. (a) Given an analyzing wavelet ψ ∈ L2(R), a sequence of
time-scale indices Λ ⊆ A, and a weight function w : Λ → R

+, the weighted
(irregular) wavelet system generated by ψ, Λ, and w is defined by

W(ψ,Λ,w) = {w(a, b)
1
2 σ(a, b)ψ}(a,b)∈Λ

= {w(a, b)
1
2 DaTbψ}(a,b)∈Λ

= {w(a, b)
1
2 1√

a
ψ(x

a − b)}(a,b)∈Λ.

If w = 1 we omit writing it.

(b) Let ψ1, . . . , ψL ∈ L2(R), and let Λ1, . . . , ΛL ⊆ A with associated weight
functions w� : Λ� → R

+ for � = 1, . . . , L be given. Then the weighted (irregu-
lar) wavelet system generated by {(ψ�, Λ�, w�)}L

�=1 is the disjoint union

L⋃

�=1

W(ψ�, Λ�, w�).

This definition of weighted wavelet systems includes as special cases the
classical affine systems, the quasi-affine systems, and the co-affine systems
(defined below). In particular, it is important to allow the case of nonconstant
weights in order to obtain the quasi-affine systems.

The most often employed and studied wavelet systems are the classical
affine systems

W(ψ, {(aj , bk)}j,k∈Z),

where ψ ∈ L2(R) and a > 1, b > 0. Since these systems lack the property
of being shift-invariant, i.e., of being invariant under integer translations, the
so-called quasi-affine systems

W(ψ, {(aj , bk)}j<0,k∈Z ∪ {(aj , a−jbk)}j≥0,k∈Z, w),

where

w(aj , bk) = 1, j < 0, k ∈ Z,

w(aj , a−jbk) = a−j , j ≥ 0, k ∈ Z,

were developed for a ∈ Z, b > 0 by Ron and Shen [109] and for a ∈ Q by
Bownik [11]. Further contributions werde made by Chui, Shi, and Stöckler
[35], Gressman, Labate, Weiss, and Wilson [61], and Johnson [88]. In [61]
Gressman, Labate, Weiss, and Wilson also studied classical affine systems for
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b = 1 with interchanged ordering of dilation and translation, i.e., wavelet
systems of the form

{TkDaj ψ}j,k∈Z = {Daj Ta−jkψ}j,k∈Z,

where a > 1. This amounts, in the terminology of this book and letting b > 0
be arbitrary, to taking

W(ψ, {(aj , a−jbk)}j,k∈Z).

These are the so-called co-affine systems. We also refer to Johnson [90].
Recently a general notion of oversampled affine systems was introduced

by Hernández, Labate, Weiss, and Wilson [78] and extended by Johnson
[89], which includes not only the classical affine, but also the quasi-affine
and co-affine systems as special cases.

Definition 2.4. Given ψ ∈ L2(R), a > 1, b > 0, and {rj}j∈Z ⊆ R
+, an

oversampled affine system is a weighted wavelet system of the form W(ψ,Λ,w)
with

Λ =
{
(aj , bk

rj
)
}

j,k∈Z
and w(aj , bk

rj
) = 1

rj
.

Example 2.5. The following are special cases of oversampled affine systems.

(i) The classical affine systems are obtained by setting rj ≡ 1.
(ii) The quasi-affine systems of Ron and Shen [109] are obtained when a is an

integer, b = 1, and

rj =

{
1, j < 0,

aj , j ≥ 0.

(iii) The quasi-affine systems of Bownik [11] are obtained when a = p
q is ratio-

nal, b = 1, and

rj =

{
q−j , j < 0,

pj , j ≥ 0.

(iv) The co-affine systems of Gressman, Labate, Weiss, and Wilson [61] are
obtained by setting rj = aj and b = 1.

2.3 Time-Frequency Analysis

As in the section before, we will state the basic definitions, notations, and
results from time-frequency analysis as far as we will need them later. We
mention the books by Daubechies [41], Feichtinger and Strohmer [56, 57], and
Gröchenig [63] as references for further details.
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In time-frequency analysis, time-frequency shifts play the role that time-
scale shifts play in the wavelet setting. The time-frequency plane is actually
the Heisenberg group H = R

d × R
d × T endowed with the multiplication

(a, b, c)(a′, b′, c′) = (a + a′, b + b′, cc′e−2πi〈a,b′〉).

The toral component will later be ignored. This group is equipped with the
so-called Schrödinger representation, which is the irreducible unitary repre-
sentation of H on L2(Rd) defined by

(ρ(a, b, c)g)(x) = c e2πi〈b,x〉g(x − a) = cMbTag(x),

where Mb denotes the modulation operator Mbf(x) = e2πi〈b,x〉f(x).
The analogue of the continuous wavelet transform is the Short-Time

Fourier transform (STFT) of f ∈ L2(Rd) with respect to g ∈ L2(Rd) given by

Vgf(a, b) = 〈f, ρ(a, b, 1)g〉 = 〈f,MbTag〉 =
∫ ∞

−∞
f(x) e−2πi〈b,x〉g(x − a) dx

for (a, b) ∈ R
d × R

d = R
2d. We have

|Vgf(a, b)| ≤ ‖f‖2 ‖g‖2 for all (a, b) ∈ R
2d

and Vgf ∈ C(R2d). Unlike the wavelet case, all vectors in L2(R) are admissible,
because the Haar measure on the Heisenberg group is unimodular. The STFT
Vg maps L2(Rd) into L2(R2d) for all g ∈ L2(Rd). Given g1, g2 ∈ L2(Rd) and
f1, f2 ∈ L2(Rd), the orthogonality relations for the STFT are

〈
Vg1f1, Vg2f2

〉
= Cg1,g2 〈f1, f2〉 , (2.4)

where Cg1,g2 =
∫∞
−∞ g1(x) g2(x) dx. There is a great deal of symmetry between

g and f in the STFT; more precisely, Vfg(a, b) = e−2πi〈a,b〉Vgf(−a,−b), hence,
in particular, ‖Vgf‖2 = ‖Vfg‖2.

The modulation spaces are the natural function spaces associated with the
STFT, namely, their norms quantify time-frequency concentration of functions
or distributions in the same way that the Besov space norms quantify time-
scale concentration. In particular, the modulation space M1(Rd) consists of
all functions f ∈ L1(Rd) for which the following norm is finite:

‖f‖M1(Rd) = ‖Vgf‖L1(R2d) =
∫

Rd

∫

Rd

|Vgf(a, b)| db da,

where g is any nonzero Schwartz-class function (each choice of g yields the
same space under an equivalent norm). This modulation space was first defined
by Feichtinger in [47] and is therefore also called the Feichtinger algebra (and
is sometimes denoted by S0); it is an algebra under both pointwise multiplica-
tion and convolution, and has many other remarkable properties. Notice that
M1(Rd) ⊆ L2(Rd). Moreover, we have the following well-known result on the
relation between integrable STFTs and generators being in M1(Rd).
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Proposition 2.6. The following conditions are equivalent.

(i) f ∈ M1(Rd).
(ii) Vff ∈ L1(R2d).

For more details on modulation spaces we refer the reader to Gröchenig [63].

As in wavelet theory discrete versions of the continuous Gabor systems are
of considerable interest. Notice that also in this case, although Λ will always
denote a sequence of points in R

d and not merely a subset, for simplicity we
will write Λ ⊆ R

d. Recall the definition of a disjoint union of sequences from
Section 2.2.

Definition 2.7. (a) Given a generator g ∈ L2(R), a sequence of time-
frequency indices Λ ⊆ R

2d, and a weight function w : Λ → R
+, the weighted

(irregular) Gabor system generated by g, Λ, and w is defined by

G(g, Λ,w) = {w(a, b)
1
2 ρ(a, b, 1)g}(a,b)∈Λ

= {w(a, b)
1
2 MbTag}(a,b)∈Λ

= {w(a, b)
1
2 e2πi〈b,x〉g(x − a)}(a,b)∈Λ.

If w = 1 we omit writing it.

(b) Let g1, . . . , gL ∈ L2(Rd), and let Λ1, . . . , ΛL ⊆ R
2d with associated

weight functions w� : Λ� → R
+ for � = 1, . . . , L be given. Then the weighted

(irregular) Gabor system generated by {(g�, Λ�, w�)}L
�=1 is the disjoint union

L⋃

�=1

G(g�, Λ�, w�).

This definition of weighted Gabor systems includes as special cases the so-
called regular Gabor systems, which are Gabor systems of the form G(g, aZ

d×
bZd), where a, b > 0.

One tool for studying irregular nonweighted Gabor systems is the notion
of Beurling density. For h > 0 and x = (x1, . . . , xd) ∈ R

d, we let Qh(x) denote
the cube centered at x with side length h, i.e., Qh(x) =

∏d
j=1

[
xj − h

2 , xj + h
2

)
.

Then the upper Beurling density of a sequence Λ in R
d is defined by

D+(Λ) = lim sup
h→∞

sup
x∈Rd

#(Λ ∩ Qh(x))
hd

,

and its lower Beurling density is

D−(Λ) = lim inf
h→∞

inf
x∈Rd

#(Λ ∩ Qh(x))
hd

.
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If D−(Λ) = D+(Λ), then we say that Λ has uniform Beurling density and
denote this density by D(Λ). For example, the lattice Λ = aZ × bZ ⊆ R

2,
a, b > 0 has the uniform Beurling density D(Λ) = 1

ab .
It was shown by H. Landau [97, Lem. 4], that these densities do not depend

on the particular choice of sets Qh(x), h > 0, x ∈ R
d, in the sense that we

can substitute these sets by sets x + hU , where U ⊆ R
d is a compact set with

|U | = 1, i.e., of Lebesgue measure 1, whose boundary has measure zero, yet
still obtain the same notion.

For more details on Beurling density and its connections to Gabor frames
we refer the reader to the papers authored by Balan, Casazza, Heil, and Z. Lan-
dau [7] and by Christensen, Deng, and Heil [22]. New characterizations and
an extension of the notion of Beurling density to weighted sequences can be
found in Kutyniok [93]. This paper also contains a fundamental relationship
between this density, the frame bounds, and the norm of the generator for
weighted Gabor frames.

2.4 Amalgam Spaces

An amalgam space combines a local criterion for membership with a global
criterion. The first amalgam spaces were introduced by Wiener in his study of
generalized harmonic analysis [125, 126]. A comprehensive general theory
of amalgam spaces on locally compact groups was introduced and extensively
studied by Feichtinger and Gröchenig, e.g., [48, 52, 53, 50]. For an exposi-
tory introduction to Wiener amalgams on R with extensive references to the
original literature, we refer to Heil [71]. In the following we will give a brief
survey of amalgam spaces of the type WG(L∞, Lp) and WG(C,Lp), where
1 ≤ p < ∞ and G is a locally compact group. For the theory of locally com-
pact groups we refer the reader to Folland [58] and Hewitt and Ross [80, 81].

Let G be a locally compact group and let µG denote a left-invariant Haar
measure on G. Then the Wiener amalgam spaces WG(L∞, Lp) and WG(C,Lp)
are defined as follows.

Definition 2.8. Given 1 ≤ p < ∞, the amalgam space WG(L∞, Lp) on the
locally compact group G consists of all functions f : G → C such that

‖f‖WG(L∞,Lp) =
(∫

G

ess supa∈G|f(a)φ(x−1a))|p dµG(x)
)1/p

< ∞,

where φ is a fixed continuous function with compact support satisfying 0 ≤
φ(x) ≤ 1 for all x ∈ G, and φ(x) = 1 on some compact neighborhood of the
identity. The amalgam space WG(C,Lp) is the closed subspace of WG(L∞, Lp)
consisting of the continuous functions in WG(L∞, Lp).

WG(L∞, Lp) is a Banach space, and its definition is independent of the
choice of φ, in the sense that each choice of φ yields the same space under an



20 2 Wavelet and Gabor Frames

equivalent norm. For proofs and more details, see Feichtinger and Gröchenig
[52, 53].

The space WG(L∞, Lp) can be equipped with an equivalent discrete-type
norm. For this, we first require some notation. Given some neighborhood U of
the identity in G, a sequence {xi}i∈I in G is called U -dense, if

⋃
i∈I xiU = G.

It is called V -separated, if for some relatively compact neighborhood V of
the identity the sets {xiV }i∈I are pairwise disjoint. The sequence is called
relatively separated, if it is the finite union of V -separated sequences.

Definition 2.9. A sequence of continuous functions {φi}i∈I on G is called a
bounded partition of unity, or BUPU, if

(i) 0 ≤ φi(x) ≤ 1 for all i ∈ I and x ∈ G.
(ii)
∑

i∈I φi ≡ 1.
(iii) There exists a compact neighborhood U of the identity in G with nonempty

interior and a U -dense, relatively separated sequence {xi}i∈I such that
supp(φi) ⊆ xiU for all i ∈ I.

Then we have the following result from Feichtinger [49] (compare also
Feichtinger and Gröchenig [52]).

Theorem 2.10. If {φi}i∈I is a BUPU, then

‖f‖WG(L∞,Lp) �
(
∑

i∈I

‖fφi‖p
∞

) 1
p

,

where � denotes the equivalence of norms.




