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Wavelet and Gabor Frames

In this section we give a brief survey of the main notations, definitions, and
results from frame theory, wavelet analysis, and time-frequency analysis which
will be used throughout the book. We conclude this chapter with a section on
amalgam spaces in the setting of locally compact groups, since in the sequel
amalgam spaces will be employed in different group settings.

2.1 Frame Theory

In this section we briefly recall the definition and basic properties of frames
and Schauder bases in Hilbert spaces. For more information on frame theory
we refer to the various books and papers authored by Casazza [14], Christensen
[20, 21], Daubechies [41], Heil and Walnut [76], and Young [128], and concern-
ing Schauder bases theory we refer to Heil [70], Lindenstrauss and Tzafriri [99],
Marti [101], Singer [114], and Young [128].

Let H be a separable Hilbert space, and let I be an indexing set. A sequence
{fi}ier € H is a frame for H if there exist constants 0 < A < B < oo such
that

AP <D WL P < BIFIP forall f e H. (2.1)
iel
The constants A and B are called lower and upper frame bounds, respectively.
If A and B can be chosen such that A = B, then {f;}:cs is a tight frame. If
we can take A = B =1, it is called a Parseval frame.
Let {f;}icr be a frame for H. Then the frame operator

SfF=> (1) fi

il
is a bounded, positive, and invertible mapping of H onto itself, which satisfies

Ald < S < BId,
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where Id denotes the identity operator. The canonical dual frame is { ﬁ}ze I,
where f; = S~!f;. For each f € H we have the frame expansions

F=Y A0 o= F) fee
i€l i€l
In the special case that {f;};cr forms a Parseval frame, the frame operator S
is the identity, the dual frame coincides with the frame itself, and the frame

expansions reduce to f = >"._; (f, fi) fi.
A sequence which satisfies the upper frame bound estimate in (2.1), but

not necessarily the lower estimate, is called a Bessel sequence and B is a Bessel
bound. In this case,

Hzcifi
iel

In particular, || f;]|> < B for every i € I.

2
<B Z |ci|? for any (c;)ier € £2(1). (2.2)
iel

A sequence {f;}ien is a Schauder basis for H if for each f € H there exist
unique scalars ¢;(f), ¢ € N, such that

f= ici(f)fi- (2.3)

Then there exists a unique biorthogonal system { fi}ieN in H, which is also a
Schauder basis, called the dual basis, and which satisfies

f:Z<f7fi> fi:Z<faJZi>fi for all f € H.
i=1 i=1

The associated partial sum operators are Sy(f) = Zfil {f, ﬁ) fi for f € H.
The basis constant is the finite number C' = supy ||Sn||. If for each f € H the
series f = >, ¢;(f) fi converges with respect to any ordering of the indices,
then {f;}ien is called an unconditional basis. Consequently, for a Schauder
basis the ordering in (2.3) can be crucial. If 0 < inf; || f;|| < sup, || fi|| < oo then
{fi}ien is a bounded basis. A sequence {f;}ien which is a Schauder basis for
its closed linear span within H, denoted by span;cy{f;}, is called a Schauder
basic sequence.

We conclude this section with the following well-known result concerning
the relationship between Schauder bases, Riesz bases, and frames (compare
Casazza [14] or Christensen [21]).

Proposition 2.1. The following three statements are equivalent:
(i) {fi}ien is a Schauder basis and a frame for H,
(ii) {fi}ien is a Riesz basis for H,

(iil) {fi}ien is a bounded unconditional basis for H.
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2.2 Wavelet Analysis

In this section we will focus on the basic definitions, notations, and results
in wavelet analysis which will be used in the sequel. For more information
on wavelet theory we refer the reader to the books by Chui [24], Daubechies
[41], and Herndndez and Weiss [79], and the papers authored by Heil and
Walnut [76] and Weiss and Wilson [124]. Most of the following definitions can
be generalized to higher dimensions, but since in this book we focus on the
one-dimensional situation, we just state the one-dimensional definitions. Let
A = RT x R denote the affine group, endowed with the multiplication

(a,b) - (z,y) = (az, % +y).
The identity element of A is e = (1,0), and inverses are given by
(a,b)"" = (%, —ab).

The left-invariant Haar measure on A is g = df dy. We denote the norm and
inner product on L?(A) with respect to this Haar measure by (2 (ay and
(-, L2(A) respectively, whereas the norm and inner product on L?(R) will be
denoted by |[|-|| or [|-|l, and (-, ).

Let o be the unitary representation of A on L?(R) defined by

(0(a, b)) (x) = (% —b) = DuTib(x),

where D, denotes the dilation operator D, f(x) = ﬁf(%) and T}, denotes the
translation operator T, f(x) = f(xz — b).

For f € L'(R?), we will use the following convention for the Fourier trans-
form:

fo= [ " f(a)e e dn.

Its extension to a unitary mapping from L?(R%) to L?(R%) will also be denoted
by f. The inverse Fourier transform shall be denoted by fV.
Given ¢ € L%*(R), called an analyzing wavelet, the continuous wavelet

transform (CWT) Wy f of f € L?(R) with respect to 1 is

Wol(ab) = (f, o)) = (. DuTiw) = 2 [ 1) 5E — D,

We have
Wy f(a,0)] < |Iflly [l for all (a,b) € A

and Wy f € C(A). However, Wy, does not map L*(R) into L?*(A) for each
1 € L2(R). We say that 1 € L?(R) is admissible if the admissibility constant
Cy defined by
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R
C“/_m g *

is finite. This condition is also sometimes called the admissibility condition.
In particular, this is equivalent to the condition that both integrals

0 N 2 oo |7 2
B Ly e [T
=/ g % and ci= g

are finite. We further set

L4 (R) = {¢) € L*(R) : ¢ is admissible}.

Note that if ¢ € LY(R) N L4 (R), then we must have ¢ (0) = 0, since ) is
continuous. If ¢ is admissible, then Wy, maps L*(R) into L?(A), cf. Heil and
Walnut [76, Cor. 3.3.6]. Precisely, we have that if ¢ € L% (R) and f € L*(R),
then

0

Wl =C5 [ 1F©F s+ [ 1P de < o 1513,

— 00

Furthermore, the roles of f and v can be interchanged by using the relation
Wip(a,b) = Wy f((a,b)~1). We remark that this lack of symmetry is due to
the fact that the Haar measure on A is not unimodular.

The next lemma lists several useful equivalent forms of the CWT:

Lemma 2.2. If f,7 € L?(R), then

Wollad) = 2 [ 1) W=D b

=a / 7€) Dlag) ik d
— (f - Dy rh)¥ (ab).

The Besov spaces By, (R), where a > 0 and 1 < p,q < oo, are the natu-
ral function spaces associated with the CW'T, namely, their norms quantify
time-scale concentration of functions or distributions. They consist of func-
tions in LP(R) with “smoothness a,” with the parameter ¢ allowing for a finer
graduation of the quantification of smoothness. There are many equivalent
definitions of the Besov spaces, and we refer to Triebel [122] for more infor-
mation. An important fact is that equivalent norms for the Besov spaces can
be formulated in terms of the discrete wavelet transform (see Meyer [102]) or
the continuous wavelet transform (see Perrier and Basdevant [106]).

For practical purposes, however, discrete wavelet systems are needed,
i.e., wavelet systems {o(a, b))} (4,5)c, Where A does not equal A, but instead
is just a sequence in A. We remark that although A will always denote a
countable sequence of points in A and not merely a subset, for simplicity
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we will write A C A. In particular, this means that we allow repetitions of
points. Further recall that the disjoint union S = |J]_, S; of a finite col-

lection of sequences Si,...,S, contained in some set is the sequence S =
{811, -1 81n, S215-- - S2n, ... }, where each S; is indexed as S; = {sg; }ren,
i.e., S is the sequence obtained by amalgamating S1,...,S,.

Definition 2.3. (a) Given an analyzing wavelet ¢ € L*(R), a sequence of
time-scale indices A C A, and a weight function w : A — R, the weighted
(irregular) wavelet system generated by ¢, A, and w is defined by
W(Wh, 4,w) = {w(a,b)* o(a,0)¢}anyen
= {w(a,b)2 DaTo b} (apyen
1 X
= {w(a,b)} Lo(Z ~D}amer.

Nl

If w =1 we omit writing it.
(b) Let 4, ...,¢p € L2(R), and let Ay, ..., A C A with associated weight

functions wy : Ag — RY for £ =1,...,L be given. Then the weighted (irregu-
lar) wavelet system generated by {(v¢, Ag,we)}E_, is the disjoint union

L
U Wwoe, Ae, we).
(=1

This definition of weighted wavelet systems includes as special cases the
classical affine systems, the quasi-affine systems, and the co-affine systems
(defined below). In particular, it is important to allow the case of nonconstant
weights in order to obtain the quasi-affine systems.

The most often employed and studied wavelet systems are the classical
affine systems

Wi, {(a’,bk)}; kez),

where ¢ € L?(R) and @ > 1, b > 0. Since these systems lack the property
of being shift-invariant, i.e., of being invariant under integer translations, the
so-called quasi-affine systems

W, {(a’,bk)}j<0kez U {(a?,a™7bk)} j>0 kez, w),
where

w(a?,bk) = 1, j<0,kezZ,
w(a?,a k) = a7, j>0,keZ,

were developed for a € Z, b > 0 by Ron and Shen [109] and for a € Q by
Bownik [11]. Further contributions werde made by Chui, Shi, and Stockler
[35], Gressman, Labate, Weiss, and Wilson [61], and Johnson [88]. In [61]
Gressman, Labate, Weiss, and Wilson also studied classical affine systems for
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b = 1 with interchanged ordering of dilation and translation, i.e., wavelet
systems of the form

{TDaiv}jrez = {DaiTa-irt}jrez,

where a > 1. This amounts, in the terminology of this book and letting b > 0
be arbitrary, to taking

W, {(a’,a™7bk)}; rez)-

These are the so-called co-affine systems. We also refer to Johnson [90].

Recently a general notion of oversampled affine systems was introduced
by Hernéndez, Labate, Weiss, and Wilson [78] and extended by Johnson
[89], which includes not only the classical affine, but also the quasi-affine
and co-affine systems as special cases.

Definition 2.4. Given ¢ € L*(R), a > 1, b > 0, and {r;}jez € R*, an
oversampled affine system is a weighted wavelet system of the form W(y, A, w)
with

A= {(aj,%)

W likez  amd wl(@, )=

T
Example 2.5. The following are special cases of oversampled affine systems.

(i) The classical affine systems are obtained by setting r; = 1.

(ii) The quasi-affine systems of Ron and Shen [109] are obtained when a is an

integer, b = 1, and
1, j<0,
Ty = . .
al, 5 >0.

(iii) The quasi-affine systems of Bownik [11] are obtained when a = £ is ratio-

nal, b =1, and
_ a7, j <0,
Ty = J .
P, =0

(iv) The co-affine systems of Gressman, Labate, Weiss, and Wilson [61] are
obtained by setting r; = a’ and b= 1.

2.3 Time-Frequency Analysis

As in the section before, we will state the basic definitions, notations, and
results from time-frequency analysis as far as we will need them later. We
mention the books by Daubechies [41], Feichtinger and Strohmer [56, 57], and
Grochenig [63] as references for further details.
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In time-frequency analysis, time-frequency shifts play the role that time-
scale shifts play in the wavelet setting. The time-frequency plane is actually
the Heisenberg group H = R? x R? x T endowed with the multiplication

(a, b, C) (a/7 b/, c/) = (a + a/’ b+ b/7 Ccle—27ri<a,b/>).

The toral component will later be ignored. This group is equipped with the
so-called Schrodinger representation, which is the irreducible unitary repre-
sentation of H on L?(R?) defined by

(p(a,b,c)g)(z) = ce>™ O g(x — a) = eMyT,g(x),

where M,, denotes the modulation operator M, f(x) = €270 f(z).
The analogue of the continuous wavelet transform is the Short-Time
Fourier transform (STFT) of f € L*>(R%) with respect to g € L?(R?) given by

ng(aa b) = <f7 p(av bv 1)9) = <f7 MbTag> = /_ f(il') eizﬂ—i(b’mg(x - a) dx

for (a,b) € R? x R = R??, We have
Vaf(@,0) < [Ifll;llgll, for all (a,b) € R*

and V, f € C(R??). Unlike the wavelet case, all vectors in L?(R) are admissible,
because the Haar measure on the Heisenberg group is unimodular. The STFT
V, maps L*(R%) into L*(R??) for all g € L*(R?). Given g1, 92 € L*(R?) and
f1, f2 € L2(R?), the orthogonality relations for the STFT are

<V91f17 ngf2> = Cy, g, (1, f2) , (2.4)

where Cy, 4, = [ fooo m ga2(z) dz. There is a great deal of symmetry between
g and f in the STFT; more precisely, V¢g(a,b) = e~ 2mila.b) Vg f(—a,—b), hence,
in particular, ||V, f|l, = [[Vrgll,-

The modulation spaces are the natural function spaces associated with the
STFT, namely, their norms quantify time-frequency concentration of functions
or distributions in the same way that the Besov space norms quantify time-
scale concentration. In particular, the modulation space M*'(R?) consists of
all functions f € L'(R?) for which the following norm is finite:

190 = Vol s = [ [ Wafta 0] dbda,
Rd JR4

where ¢ is any nonzero Schwartz-class function (each choice of g yields the
same space under an equivalent norm). This modulation space was first defined
by Feichtinger in [47] and is therefore also called the Feichtinger algebra (and
is sometimes denoted by Sp); it is an algebra under both pointwise multiplica-
tion and convolution, and has many other remarkable properties. Notice that
MY (R?) C L2(R%). Moreover, we have the following well-known result on the
relation between integrable STFTs and generators being in M (R?).
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Proposition 2.6. The following conditions are equivalent.
(i) f € MI(RY),
(ii) Vy f € LY(R?).

For more details on modulation spaces we refer the reader to Grochenig [63].

As in wavelet theory discrete versions of the continuous Gabor systems are
of considerable interest. Notice that also in this case, although A will always
denote a sequence of points in R% and not merely a subset, for simplicity we
will write A4 C R%. Recall the definition of a disjoint union of sequences from
Section 2.2.

Definition 2.7. (a) Given a generator g € L?*(R), a sequence of time-
frequency indices A C R??, and a weight function w : A — RT, the weighted
(irregular) Gabor system generated by g, A, and w is defined by

Glg, A, w) = {w(a7b)% p(a,b,1)g} (a.p)ea
= {w(a, b)% MyTag}(apyea

= {w(a,b)7 2 ") g (g — a)}(apyea-
If w =1 we omit writing it.

(b) Let g1,...,91 € L*(R?), and let Ay,..., A C R?? with associated
weight functions wy : Ay — RY for £ =1,...,L be given. Then the weighted
(irregular) Gabor system generated by {(ge, Ae,we)}r_, is the disjoint union

L
U G(ge, A, wi).
=1

This definition of weighted Gabor systems includes as special cases the so-
called regular Gabor systems, which are Gabor systems of the form G(g, aZ? x
bZ%), where a,b > 0.

One tool for studying irregular nonweighted Gabor systems is the notion
of Beurling density. For h > 0 and = = (z1,...,24) € R?, we let Qp,(z) denote
the cube centered at x with side length h, i.e., Qp(z) = H;l:1 [j — &,z + 5).
Then the upper Beurling density of a sequence A in R? is defined by

A
D (A) = limsup sup w,
h—oo xeRd h
and its lower Beurling density is
#(ANQn(z))

D) = i inf, HEG
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If D=(A) = D*(A), then we say that A has uniform Beurling density and
denote this density by D(A). For example, the lattice A = aZ x bZ C R2
a,b > 0 has the uniform Beurling density D(A) = .

It was shown by H. Landau [97, Lem. 4], that these densities do not depend
on the particular choice of sets Qp,(x), h > 0, x € R?, in the sense that we
can substitute these sets by sets 2 4+ hU, where U C R? is a compact set with
|U| =1, i.e., of Lebesgue measure 1, whose boundary has measure zero, yet
still obtain the same notion.

For more details on Beurling density and its connections to Gabor frames
we refer the reader to the papers authored by Balan, Casazza, Heil, and Z. Lan-
dau [7] and by Christensen, Deng, and Heil [22]. New characterizations and
an extension of the notion of Beurling density to weighted sequences can be
found in Kutyniok [93]. This paper also contains a fundamental relationship
between this density, the frame bounds, and the norm of the generator for
weighted Gabor frames.

2.4 Amalgam Spaces

An amalgam space combines a local criterion for membership with a global
criterion. The first amalgam spaces were introduced by Wiener in his study of
generalized harmonic analysis [125, 126]. A comprehensive general theory
of amalgam spaces on locally compact groups was introduced and extensively
studied by Feichtinger and Grochenig, e.g., [48, 52, 53, 50]. For an exposi-
tory introduction to Wiener amalgams on R with extensive references to the
original literature, we refer to Heil [71]. In the following we will give a brief
survey of amalgam spaces of the type Wg (L, LP) and Wg(C, LP), where
1 <p < oo and G is a locally compact group. For the theory of locally com-
pact groups we refer the reader to Folland [58] and Hewitt and Ross [80, 81].

Let G be a locally compact group and let pg denote a left-invariant Haar
measure on G. Then the Wiener amalgam spaces Wg (L, LP) and W (C, LP)
are defined as follows.

Definition 2.8. Given 1 < p < oo, the amalgam space W (L™, LP) on the
locally compact group G consists of all functions f: G — C such that

1/p
1l (110 = ( /G eSSSupaeclf(a)sb(m1@))|pduc(w‘)> < o,

where ¢ is a fived continuous function with compact support satisfying 0 <
o(x) <1 for all x € G, and ¢(x) = 1 on some compact neighborhood of the
identity. The amalgam space Wq(C, LP) is the closed subspace of W (L™, LP)
consisting of the continuous functions in Weg (L, LP).

We (L, LP) is a Banach space, and its definition is independent of the
choice of ¢, in the sense that each choice of ¢ yields the same space under an
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equivalent norm. For proofs and more details, see Feichtinger and Grochenig
[52, 53].

The space W (L™, LP) can be equipped with an equivalent discrete-type
norm. For this, we first require some notation. Given some neighborhood U of
the identity in G, a sequence {x;};cr in G is called U-dense, if J;.; 2:U = G.
It is called V-separated, if for some relatively compact neighborhood V of
the identity the sets {z;V };cs are pairwise disjoint. The sequence is called
relatively separated, if it is the finite union of V-separated sequences.

Definition 2.9. A sequence of continuous functions {¢;}icr on G is called a
bounded partition of unity, or BUPU, if

(i) 0 < ¢pi(x) <1 foralliel and xz € G.

(ii) Zie] ¢ =1

(iii) There exists a compact neighborhood U of the identity in G with nonempty
interior and a U-dense, relatively separated sequence {x;}icr such that
supp(¢i) C x;U for alli € 1.

Then we have the following result from Feichtinger [49] (compare also
Feichtinger and Grochenig [52]).

Theorem 2.10. If {¢; }ics is a BUPU, then

=

Hf”Wc(LOO,LP) = <Z||f¢z'|§o> )

i€l

where < denotes the equivalence of norms.





