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Existence of the Integrated Density of States

Intuitively, the integrated density of states (IDS) measures how many electron
energy levels can be found below a given energy per unit volume of a solid. An
alternative name for this quantity is spectral distribution function. It can be
used to calculate the free energy and hence all basic thermodynamic quantities
of the corresponding non-interacting many-particle system.

To define the IDS mathematically one uses an exhaustion procedure. More
precisely, one takes an increasing sequence Λl of open subsets of Rd such that
each Λl has finite volume and

⋃
l Λl = Rd. Then the operator H l

ω, which is
the restriction of Hω to Λl with Dirichlet boundary conditions, is selfadjoint,
bounded below and its spectrum consists of discrete eigenvalues λ1(H l

ω) ≤
λ2(H l

ω) ≤ · · · ≤ λn(H l
ω) → ∞. Here λn = λn+1 means that the eigenvalue is

degenerate and we take this into account in the enumeration.
The normalised eigenvalue counting function or finite volume integrated

density of states N l
ω is defined as

N l
ω(E) :=

#{n|λn(H l
ω) < E}

|Λl| (2.1)

The numerator can equally well be expressed using the trace of the spectral
projection P l

ω(I) associated to the operator H l
ω and an energy interval I,

namely
#{n|λn(H l

ω) < E} = Tr
[
P l

ω

(
]−∞, E[

)]
Note that N l

ω : R → [0,∞[ is a distribution function of a point measure for
all l ∈ N, i.e. N l

ω(E) = νl
ω(]−∞, E[). Here νl

ω is the finite volume density of
states measure defined by

νl
ω(I) := |Λl|−1 #{n|λn(H l

ω) ∈ I}
By definition, a distribution function is non-negative, left-continuous and
non-decreasing. In particular, it has at most countably many points of
discontinuity.
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Under specific additional conditions on the random operator and the
exhaustion sequence Λl, l ∈ N one can prove that

(i) For almost all ω ∈ Ω the sequence N l
ω converges to a distribution func-

tion Nω as l goes to infinity. This means that we have N l
ω(E)→ Nω(E)

for all continuity points E of the limit distribution Nω.
(ii) For almost all ω ∈ Ω the distribution functions Nω coincide, i.e. there is

an ω-independent distribution function N such that N = Nω for almost
all ω. This function N is called the integrated density of states. Note
that its independence of ω is not due to an explicit integration over the
probability space Ω, but only to the exhaustion procedure. This is the
reason why the IDS is called self-averaging.

(iii) In most cases there is a formula for the IDS as an expectation value of a
trace per unit volume of a spectral projection. For Zd-ergodic operators
it reads

N(E) := E

{
Tr
[
χΛPω(]−∞, E[)

]}
(2.2)

Here Λ denotes the unit box ]0, 1[d, which is the periodicity cell of the
lattice Zd. Actually, one could choose certain other functions instead of
χΛ, yielding all the same result, cf. Formula (2.15). The equality (2.2)
holds for Rd-ergodic operators, too. It is sometimes called Pastur-Shubin
trace formula.

In the following we prove the properties of the IDS just mentioned by
two methods. In Sects. 2.2–2.6 a detailed proof is given using the Laplace
transforms of the distribution functions N l

ω, while Sect. 2.7 is devoted to an
alternative method of proof. It uses Dirichlet-Neumann bracketing estimates
for Schrödinger operators, which carry over to the corresponding eigenvalue
counting functions. These are thus super- or subadditive stochastic processes
to which an ergodic theorem can be applied.

Actually the proof using Laplace transforms will apply to more general
situations than discussed so far, namely to more general geometries than the
Euclidean one. To be precise, we will consider random Schrödinger operators
on Riemannian covering manifolds, where both the potential and the met-
ric may depend on the randomness. This includes random Laplace-Beltrami
operators.

We follow the presentation and proofs in [392, 327]. The general strategy
we use was developed by Pastur and Shubin in [384] and [431] for random
and almost-periodic operators in Euclidean space. A particular idea of this
approach is to prove the convergence of the Laplace transforms Ll

ω of the
normalised finite volume eigenvalue counting functions N l

ω instead of proving
the convergence of N l

ω directly. This is actually the main difference to the
second approach we outline in Sect. 2.7, which is taken from [254]. The Pastur-
Shubin strategy seems to be better suited for geometries with an underlying
group structure which is non-abelian.

Indeed, one of the differences between random operators on manifolds
and those on Rd is that the operator is equivariant with respect to a group
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which does not need to be commutative. This means that one has to use
a non-abelian ergodic theorem to derive the convergence of the distribution
functions N l

ω or, alternatively, of their Laplace transforms Ll
ω. This imposes

some restriction on the strategy of the proof since ergodic theorems which
apply to non-abelian groups need more restrictive assumptions than their
counterparts for commutative groups, cf. also Remark 2.6.2. For processes
which are not additive, but only super- or subadditive, there is a non-abelian
maximal ergodic theorem at disposal (cf. 6.4.1 Theorem in [313]) but so far
no pointwise theorem. This is also the reason why the Dirichlet-Neumann
bracketing approach of Sect. 2.7 does not seem applicable to random operators
living on a covering manifold with non-abelian deck-transformation group
(covering transformation group).

2.1 Schrödinger Operators on Manifolds: Motivation

In this chapter we study the IDS of random Schrödinger operators on mani-
folds. Let us first explain the physical motivation for this task.

Consider a particle or a system of particles which are constrained to a
sub-manifold of the ambient (configuration) space. The classical and quantum
Hamiltonians for such systems have been studied e.g. in [367, 173] (see also the
references therein). To arrive at an effective Hamiltonian describing the con-
strained motion on the sub-manifold, a limiting procedure is used: a (sequence
of) confining high-barrier potential(s) is added to the Hamiltonian defined on
the ambient space to restrict the particle (system) to the sub-manifold. In
[367, 173] one can find a discussion of the similarities and differences between
the obtained effective quantum Hamiltonian and its classical analogue.

A important feature of the effective quantum Hamiltonian is the appear-
ance of a so-called extra-potential depending on the extrinsic curvature of
the sub-manifold and the curvature of the ambient space. This means that
even if we disregard external electric forces the relevant quantum mechanical
Hamiltonian of the constrained system is not the pure Laplacian but con-
tains (in general) a potential energy term. This fact explains the existence
of curvature-induced bound states in quantum waveguides and layers, see
[157, 138, 343, 139] and the references therein.

As is mentioned in [367], the study of effective Hamiltonians of constrained
systems is motivated by specific physical applications. They include stiff mole-
cular bonds in (clusters of) rigid molecules and molecular systems evolving
along reaction paths. From the point of view of the present work quantum
wires, wave guides and layers are particularly interesting physical examples.
Indeed, for these models (in contrast to quantum dots) at least one dimension
of the constraint sub-manifold is of macroscopic size. Moreover, it is natural
to assume that the resulting Hamiltonian exhibits some form of translation
invariance in the macroscopic direction. E.g. it may be periodic, quasi-periodic
or — in the case of a random model — stationary.
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For random quantum waveguides and layers the existence of dense point
spectrum is expected, cf. the discussion of localisation in Sect. 1.3. Indeed, for
a specific type of random waveguide embedded in the Euclidean plane this has
been rigorously proven in [274, 275]. The question of spectral localisation due
to random geometries has been raised already in [109]. There the behaviour
of Laplace-Beltrami operators under non-smooth perturbations of the metric
is studied.

While the motivations presented above stem from solid state physics a
further stimulus to study the IDS comes from within mathematics itself:
For various geometries with a group action it makes sense to define trans-
lation invariant or periodic operators. This applies to covering manifolds,
Cayley graphs and more generally quasi-transitive graphs, as well as for
CW-complexes. These carry naturally defined Laplace operators on func-
tions and more generally on p-forms. Related objects are magnetic Laplacians
and Schrödinger operators, for which it is also makes sense to formulate an
equivariance condition.

Here, by the term periodic we mean the property that there is a subgroup
of the automorphism group of the geometric space such that the operator is
invariant under conjugation with unitary transformations which are associated
to elements of the subgroup.

Due to the wealth of possibilities of the geometric structure, here even
Laplacians without any random perturbation may exhibit intriguing spectral
properties, part of which is captured by the IDS, respectively the spectral dis-
tribution functions of Laplacians on forms. Instances of such features are L2-
Betti numbers, Novikov-Shubin invariants and other geometric L2-invariants,
the jumps of the IDS, and the gap structure of the spectrum.

Geometric L2-invariants describe the behaviour of the spectral distribution
function at energies near the spectral bottom. For instance, the pth L2-Betti
number is the size of the jump at zero energy of the distribution function
of the Laplacian on p-forms, see for instance [30, 118, 126]. Novikov-Shubin
invariants correspond to characteristic exponents of the asymptotic behaviour
of the IDS near zero, cf. e.g. [381, 380, 144, 208, 344, 160, 433, 347, 382, 25, 24].
L2-torsion is a generalisation of ordinary torsion and has an analytic as well as
a combinatorial variant. These invariants have been introduced in [348, 344,
356, 77] and studied in [349, 75, 76, 103, 71, 321, 272, 62].

Another interesting feature of some periodic Laplace-Beltrami operators
is the existence of L2-eigenfunctions, a phenomenon which cannot happen in
Euclidean space. Since the IDS is a spectral measure of the periodic operator,
the set of discontinuities of this function is precisely the set of eigenvalues of
the operator. These issues have been studied for instance in [126, 461, 292,
462, 325]. For more details see the discussion in Remark 3.1.3.

The analysis of the gap structure of the spectrum of periodic operators
of Schrödinger type is a further topic which has attracted attention. More
precisely, one is interested whether the spectrum in interrupted by spectral
gaps, i.e. intervals on the real line which belong to the resolvent set. In case
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there are gaps: can one establish upper and lower bounds for the width and
number of gaps and the spectral bands separating them? For different types of
periodic or gauge-invariant elliptic differential operators on manifolds spectral
gaps have been analysed in [463, 70, 69, 238, 393, 394]. See Example 2.2.5 for
a particular case. Even for periodic Schrödinger operators in Euclidean space
it is not trivial to characterise the gap structure. This is illustrated by works
devoted to the Bethe-Sommerfeld conjecture, e.g. [451, 446, 447, 448, 211]. For
almost periodic operators the situation is even more difficult and additional
questions arise like the gap labelling problem, see [37, 477, 240, 39, 42, 237, 38]
and the references therein. Although the gap structure of the spectrum is a
mathematically intriguing question for its own sake, it is also important from
the physical point of view. The features of gaps in the energy spectrum are
relevant for the conductance properties of the physical system cf. e.g.[339].

The periodic operators on manifolds discussed so far are generalised by
their random analogues studied in this chapter.

2.2 Random Schrödinger Operators on Manifolds:
Definitions

Let us explain the geometric setting in which we are working precisely: let X
be a complete d-dimensional Riemannian manifold with metric g0. We denote
the volume form of g0 by vol0. Let Γ be a discrete, finitely generated subgroup
of the isometries of (X, g0) which acts freely and properly discontinuously on
X such that the quotient M := X/Γ is a compact (d-dimensional) Riemannian
manifold. Let (Ω,BΩ, P) be a probability space on which Γ acts by measure
preserving transformations. Assume moreover that the action of Γ on Ω is
ergodic. Now we are in the position to define what we mean by a random
metric and consequently a random Laplace-Beltrami operator.

Definition 2.2.1. Let {gω}ω∈Ω be a family of Riemannian metrics on X.
Denote the corresponding volume forms by volω. We call the family {gω}ω∈Ω

a random metric on (X, g0) if the following five properties are satisfied:

(2.3) The map Ω× TX → R, (ω, v) �→ gω(v, v) is jointly measurable.
(2.4) There is a Cg ∈ ]0,∞[ such that

C−1
g g0(v, v) ≤ gω(v, v) ≤ Cg g0(v, v) for all v ∈ TX.

(2.5) There is a Cρ ∈ ]0,∞[ such that

|∇0 ρω(x)|0 ≤ Cρ for all x ∈ X,

where ∇0 denotes the gradient with respect to g0, ρω is the unique
smooth density of vol0 with respect to volω, and |v|20 = g0(v, v).

(2.6) There is a uniform lower bound (d− 1)K ∈ R for the Ricci curvatures
of all Riemannian manifolds (X, gω). Explicitly, Ric(gω) ≥ (d− 1)Kgω

for all ω ∈ Ω and on the whole of X.
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(2.7) The metrics are compatible in the sense that the deck transformations

γ : (X, gω)→ (X, gγω), γ : x �→ γx

are isometries.

Property (2.7) implies in particular that the induced maps

U(ω,γ) : L2(X, volγ−1ω)→ L2(X, volω), (U(ω,γ)f)(x) = f(γ−1x)

are unitary operators. The density ρω appearing in (2.5) satisfies by definition∫
X

f(x) dvol0(x) =
∫

X

f(x)ρω(x) dvolω(x).

It is a smooth function and can be written as

ρω(x) =
(
det g0(ei

ω, ej
ω)
)1/2

=
(
det gω(ei

0, e
j
0)
)−1/2

Here e1
0, . . . , e

d
0 denotes any basis of TxX which is orthonormal with respect

to the scalar product g0(x), and e1
ω, . . . , ed

ω ∈ TxX is any basis orthonormal
with respect to gω(x). It follows from (2.4) that

C−d/2
g ≤ ρω(x) ≤ Cd/2

g for all x ∈ X, ω ∈ Ω (2.8)

which in turn, together with property (2.5) and the chain rule, implies

|∇0 ρ± 1/2
ω (x)|0 ≤ C3d/4

g |∇0 ρω(x)|0 for all x ∈ X, ω ∈ Ω (2.9)

Moreover, for any measurable Λ ⊂ X by (2.8) we have the volume estimate

C−d/2
g vol0(Λ) ≤ volω(Λ) ≤ Cd/2

g vol0(Λ) (2.10)

We denote the Laplace-Beltrami operator with respect to the metric gω by ∆ω.
Associated to the random metric just described we define a random family

of operators.

Definition 2.2.2. Let {gω} be a random metric on (X, g0). Let V : Ω ×
X → R be a jointly measurable mapping such that for all ω ∈ Ω the po-
tential Vω := V (ω, ·) ≥ 0 is in L1

loc(X). For each ω ∈ Ω let Hω = −∆ω + Vω

be a Schrödinger operator defined on a dense subspace Dω of the Hilbert space
L2(X, volω). The family {Hω}ω∈Ω is called a random Schrödinger operator if
it satisfies for all γ ∈ Γ and ω ∈ Ω the following equivariance condition

Hω = U(ω,γ)Hγ−1ωU∗
(ω,γ) (2.11)
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Remark 2.2.3 (Restrictions, quadratic forms and selfadjointness). Some re-
marks are in order why the sum of the Laplace-Beltrami operator and the
potential is selfadjoint. We consider the two cases of an operator on the whole
manifold X and on a proper open subset of X simultaneously. The set of all
smooth functions with compact support in an open set Λ ⊂ X is denoted by
C∞

c (Λ). For each ω ∈ Ω we define the quadratic form

Q̃(HΛ
ω ) : C∞

c (Λ)× C∞
c (Λ)→ R, (2.12)

(f, h) �→
∫

Λ

gω(x)
(
∇f(x),∇h(x)

)
dvolω(x) +

∫
Λ

f(x)Vω(x)h(x) dvolω(x)

We infer from Theorem 1.8.1 in [108] that this quadratic from is closable
and its closure Q(HΛ

ω ) gives rise to a densely defined, non-negative selfadjoint
operator HΛ

ω . Actually, Q(HΛ
ω ) is the form sum of the quadratic forms of

the negative Laplacian and the potential. By the very definition, C∞
c (Λ) is

dense in the domain of Q(HΛ
ω ) for all ω. The result in [108] is stated for

the Euclidean case X = Rd but the proof works equally well for general
Riemannian manifolds.

The unique selfadjoint operator associated to the above quadratic form
is called Schrödinger operator with Dirichlet boundary conditions. It is the
Friedrichs extension of the restriction HΛ

ω |C∞
c (Λ). If the potential term is

absent we call it negative Dirichlet Laplacian.

There are special subsets of the manifold which will play a prominent role
later:

Definition 2.2.4. For an x ∈ X the set O(x) := {y ∈ X| ∃γ ∈ Γ : y = γx}
is called the Γ -orbit of x. The relation x ∼ y ⇐⇒ O(x) ∩O(y) �= ∅ partitions
X into equivalence classes. A subset F ⊂ X is called Γ -fundamental domain
if it contains exactly one element of each equivalence class.

In [2, Sect. 3] it is explained how to obtain a connected, polyhedral
Γ -fundamental domain F ⊂ X by lifting simplices of a triangularisation of M
in a suitable manner. F consists of finitely many smooth images of simplices
which can overlap only at their boundaries. In particular, it has piecewise
smooth boundary.

To illustrate the above definitions we will look at some examples. Firstly,
we consider covering manifolds with abelian deck-transformation group.

Example 2.2.5 (Abelian covering manifolds). Consider a covering manifold
(X, g0) with a finitely generated, abelian subgroup Γ of the isometries of
X. If the number of generators of the group Γ equals r, it is isomorphic
to Zr0 × Zr0

p1
× . . . Zrn

pn
. Here

∑
ri = r and Zp is the cyclic group of order

p. Assume as above that the quotient X/Γ is compact. Periodic Laplace-
Beltrami and Schrödinger operators on such spaces have been analysed e.g. in
[462, 393, 394].
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In the following we will discus some examples studied by Post in [393, 394].
The aim of these papers was to construct covering manifolds, such that the
corresponding Laplace operator has open spectral gaps. More precisely, for any
given natural number N , manifolds are constructed with at least N spectral
gaps. For technical reasons the study is restricted to abelian coverings. In
this case the Floquet decomposition of the periodic operator can be used
effectively. Post studies two classes of examples with spectral gaps. In the
first case a conformal perturbation of a given covering manifold is used to
open up gaps in the energy spectrum of the Laplacian. The second type of
examples in [394] is of more interest to us. There, one starts with infinitely
many translated copies of a compact manifold and joins them by cylinders to
form a periodic network of ‘pipes’. By shrinking the radius of the connecting
cylinders, more and more gaps emerge in the spectrum. Such manifolds have
a non-trivial fundamental group and are thus topologically not equivalent
to Rd. On the other hand their deck-transformation group is rather easy to
understand, since it is abelian. In particular, it is amenable (cf. Definition
2.3.4), which is a crucial condition in the study conducted later in this chapter.
Some of the examples in [393, 394] are manifolds which can be embedded in
R3 as surfaces. They can be thought of as periodic quantum waveguides and
networks. See [393] for some very illustrative figures.

Furthermore, in [394] perturbations techniques for Laplace operators on
covering manifolds have been developed, respectively carried over from earlier
versions suited for compact manifolds, cf. [85, 22, 177]. They include con-
formal perturbations and local geometric deformations. Floquet decomposi-
tion is used to reduce the problem to an operator on a fundamental domain
with quasi-periodic boundary conditions and discrete spectrum. Thereafter
the min-max principle is applied to geometric perturbations of the Laplacian.

Related random perturbations of Laplacians are studied in [326, 325]
(cf. also Example 2.2.7). In particular a Wegner estimate for such operators
is derived.

Now we give an instance of a covering manifold X with non-abelian deck-
transformation group Γ .

Example 2.2.6 (Heisenberg group). The Heisenberg group H3 is the manifold
of 3× 3-matrices given by

H3 =

⎧⎨⎩
⎛⎝ 1 x y

0 1 z
0 0 1

⎞⎠ | x, y, z ∈ R

⎫⎬⎭ (2.13)

equipped with a left-invariant metric. The Lie-group H3 is diffeomorphic to
R3. Its group structure is not abelian, but nilpotent.

The subset Γ = H3 ∩M(3, Z) forms a discrete subgroup. It acts from the
left on H3 by isometries and the quotient manifold H3/Γ is compact.
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Next we give examples of a random potential and a random metric which
give rise to a random Schrödinger operator as in Definition 2.2.2. Both have an
underlying structure which resembles alloy-type models (in Euclidean space).

Example 2.2.7. (a) Consider the case where the metric is fixed, i.e. gω = g0 for
all ω ∈ Ω, and only the potential depends on the randomness in the following
way:

Vω(x) :=
∑
γ∈Γ

qγ(ω)u(γ−1x), (2.14)

Here u : X → R is a bounded, compactly supported measurable function
and qγ : Ω → R is a sequence of independent, identically distributed random
variables. By considerations as in Remark 1.2.2 the random operator Hω :=
−∆ + Vω, ω ∈ Ω is seen to satisfy the equivariance condition.

(b) Consider the situation where the metric has an alloy like structure. Let
(g0, X) be a Riemannian covering manifold and let a family of metrics {gω}ω
be given by

gω(x) =
(∑

γ∈Γ

rγ(ω)u(γ−1x)
)

g0(x)

where u ∈ C∞
c (X) and the rγ : Ω→ ]0,∞[, γ ∈ Γ are a collection of indepen-

dent, identically distributed random variables. Similarly as in the previous
example one sees that the operators ∆ω are equivariant.

Operators of the above type are discussed in [325].

2.3 Non-Randomness of Spectra and Existence
of the IDS

Here we state the main theorems on the non-randomness of the spectral com-
ponents and the existence and the non-randomness of the IDS. They refer to
random Schrödinger operators as defined in 2.2.2.

Theorem 2.3.1. There exists a subset Ω′ of full measure in (Ω,BΩ, P) and
subsets of the real line Σ and Σ•, where • ∈ {disc, ess, ac, sc, pp} such that
for all ω ∈ Ω′

σ(Hω) = Σ and σ•(Hω) = Σ•

for any • = disc, ess, ac, sc, pp. If Γ is infinite, Σdisc = ∅.
The theorem is proven in [328], see Theorem 5.1. The arguments go to a

large part along the lines of [388, 319, 255]. Compare also the literature on
almost-periodic Schrödinger operators, for instance [431, 32].

For the proof of the theorem one has to find random variables which encode
the spectrum of {Hω}ω and which are invariant under the action of Γ . By
ergodicity they will be constant almost surely. The natural random variables



22 2 Existence of the Integrated Density of States

to use are spectral projections, more precisely, their traces. However, since R is
uncountable and one has to deal also with the different spectral components,
some care is needed.

Random operators introduced in Definition 2.2.2 are naturally affiliated
to a von Neumann algebra of operators which we specify in

Definition 2.3.2. A family {Bω}ω∈Ω of bounded operators Bω: L2(X, volω)→
L2(X, volω) is called a bounded random operator if it satisfies:

(i) ω �→ 〈gω, Bωfω〉 is measurable for arbitrary f, g ∈ L2(Ω×X, P ◦ vol).
(ii) There exists a ω-uniform bound on the norms ‖Bω‖ for almost all ω ∈ Ω.
(iii) For all ω ∈ Ω, γ ∈ Γ the equivariance condition

Bω = U(ω,γ)Bγ−1ωU∗
(ω,γ)

holds.

By the results of Sect. 2.4, {F (Hω)}ω is a bounded random operator for any
measurable, bounded function F .

It turns out that (equivalence classes of) bounded random operators form
a von Neumann algebra. More precisely, consider two bounded random op-
erators {Aω}ω and {Bω}ω as equivalent if they differ only on a subset of Ω
of measure zero. Each equivalence class gives rise to a bounded operator on
L2(Ω×X, P ◦ vol) by (Bf)(ω, x) := Bωfω(x), see Appendix A in [328]. This
set of operators is a von Neumann algebra N by Theorem 3.1 in [328]. On N
a trace τ of type II∞ is given by

τ(B) := E [Tr(χF B•)]

Here Tr := Trω denotes the trace on the Hilbert space L2(X, volω). Actually,
for any choice of u : Ω×X → R+ with

∑
γ∈Γ uγ−1ω(γ−1x) ≡ 1 for all (ω, x) ∈

Ω×X we have
τ(B) = E [Tr(u• B•)] (2.15)

In analogy with the case of operators which are Γ -invariant [30] we call τ the
Γ -trace. The spectral projections {Pω

(
]−∞, λ[

)}ω of {Hω}ω onto the interval
]−∞, λ[ form a bounded random operator. Thus, it corresponds to an element
of N which we denote by P (]−∞, λ[). Consider the normalised Γ -trace of P

NH(λ) :=
τ(P
(
]−∞, λ[

)
E [vol•(F)]

(2.16)

The following is Theorem 3 in [327], see also [328].

Theorem 2.3.3. P (] −∞, λ[) is the spectral projection of the direct integral
operator

H :=
∫

Ω

⊕
Hω dP(ω)
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and NH is the distribution function of its spectral measure. In particular, the
almost sure spectrum Σ of {Hω}ω coincides with the points of increase

{λ ∈ R|NH(λ + ε) > NH(λ− ε) for all ε > 0}
of NH .

That the IDS can be expressed in terms of a trace on a von Neumann Algebra
was known long ago. In [430] and [431] Shubin establishes this relation for
almost-periodic elliptic differential operators in Euclidean space.

We want to describe the self-averaging IDS by an exhaustion of the whole
manifold X along a sequence Λl ↗ X, l ∈ N of subsets of X. To ensure the
existence of a sequence of subsets which is appropriate for the exhaustion
procedure, we have to impose additional conditions on the group Γ , which
will be discussed next.

Definition 2.3.4. A group Γ is called amenable if it has a left invariant mean
mL.

Amenability enters as a key notion in Definition 2.3.6 and Theorem 2.3.8.
For readers acquainted only with Euclidean geometry, its role is motivated in
Remark 2.3.10.

Under some conditions on the group, amenability can be expressed in other
ways. A locally compact group Γ is amenable if for any ε > 0 and compact
K ⊂ Γ there is a compact G ⊂ Γ such that

mL(G∆KG) < εmL(G)

where mL denotes the left invariant Haar measure, cf. Theorem 4.13 in [390].
This is a geometric description of amenability of Γ . If Γ is a discrete, finitely
generated group we chose mL to be the counting measure and write instead
| · |. In this case Γ is amenable if and only if a Følner sequence exists:

Definition 2.3.5. Let Γ be a discrete, finitely generated group.

(i) A sequence {Il}l of finite, non-empty subsets of Γ is called a Følner
sequence if for any finite K ⊂ Γ and ε > 0

|Il�KIl| ≤ ε |Il|
for all l large enough.

(ii)We say that a sequence Il ⊂ Γ, l ∈ N of finite sets has the Tempelman or
doubling property if it obeys

sup
l∈N

|IlI
−1
l |
|Il| <∞

(iii)We say that a sequence Il ⊂ Γ, l ∈ N of finite sets has the Shulman
property if it obeys

sup
l∈N

|IlI
−1
l−1|
|Il| <∞
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(iv) A Følner sequence {Il}l is called a tempered Følner sequence if it has
the Shulman property.

In our setting Γ is discrete and finitely generated. (Actually, K := {γ ∈ Γ |
γF ∩F �= ∅} is a finite generator set for Γ . This follows from the fact that the
quotient manifold X/Γ is compact, cf. Sect. 3 in [2].) Under this circumstances
a Følner sequence exists if and only if there is a sequence of finite, non-empty
sets Jl ⊂ Γ, l ∈ N such that liml→∞

|Jl
γJl|
|Jl| = 0 for all γ ∈ Γ . Moreover, for

discrete, finitely generated, amenable groups there exists a Følner sequence
which is increasing and exhausts Γ , cf. Theorem 4 in [1].

Both properties (ii) and (iii) control the growth of the group Γ . Linden-
strauss observed in [342] that each Følner sequence has a tempered subse-
quence. Note that this implies that every amenable group contains a tempered
Følner sequence. One of the deep results of Lindenstrauss’ paper is, that this
condition is actually sufficient for a pointwise ergodic theorem, cf. Theorem
2.6.1. Earlier it was known that such theorems can be established under the
more restrictive Tempelman property [470, 313, 471]. Shulman [434] first re-
alised the usefulness of the relaxed condition (iii).

In the class of countably generated, discrete groups there are several prop-
erties which ensure amenability. Abelian groups are amenable. More generally,
all solvable groups and groups of subexponential growth, in particular nilpo-
tent groups, are amenable. This includes the (discrete) Heisenberg group con-
sidered in Example 2.2.6. Subgroups and quotient groups of amenable groups
are amenable. On the other hand, the free group with two generators is not
amenable.

For the discussion of combinatorial properties of Følner sequences in dis-
crete amenable groups see [1].

Any finite subset I ⊂ Γ defines a corresponding set

φ(I) := int
( ⋃

γ∈I

γF
)
⊂ X

where int(·) stands for the open interior of a set.
In the following we will need some notation for the thickened boundary.

Denote by d0 the distance function on X associated to the Riemannian metric
g0. For h > 0, let ∂hΛ := {x ∈ X| d0(x, ∂Λ) ≤ h} be the boundary tube of
width h and Λh be the interior of the set Λ \ ∂hΛ.

Definition 2.3.6. (a) A sequence {Λl}l of subsets of X is called admissible
exhaustion if there exists an increasing, tempered Følner sequence {Il}l with⋃

l Il = Γ such that Λl = φ(I−1
l ), l ∈ N.

(b) A sequence Λl, l ∈ N of subsets of (X, g0) is said to satisfy the van
Hove property [478] if

lim
l→∞

vol0(∂hΛl)
vol0(Λl)

= 0 for all h > 0 (2.17)
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In our setting amenability of Γ ensures that an admissible exhaustion al-
ways exists. It is easy to see (cf. e.g. Lemma 2.4 in [392]) that every admissible
exhaustion satisfies the van Hove property. Inequality (2.10) implies that for
a sequence with the van Hove property

lim
l→∞

volω(∂hΛl)
volω(Λl)

= 0 for all h > 0

holds for all ω ∈ Ω. Let us remark that one could require for the sets Λl in
the exhaustion sequence to have smooth boundary, cf. Definition 2.1 in [392].
Such sequences exist for any X with amenable deck-transformation group
Γ , as well. This may be of interest, if one wants to study Laplacians with
Neumann boundary conditions.

For groups of polynomial growth it is possible to construct analoga of
admissible exhaustions by taking metric open balls Brl

(o) around a fixed
point o ∈ X with increasing radii r1, . . . , rn, · · · → ∞, cf. Theorem 1.5 in
[392].

Remark 2.3.7. In our setting it is always possible to chose the sequences {Il}l
and {Λl}l in such a way that they exhaust the group, respectively the mani-
fold. However, this is not necessary for our results.

A simple instance where ∪lΛl �= X can be given in one space dimension.
Let X = R, Γ = Z, Il = {1− l, . . . , 0}, F = [0, 1[ and consequently Λl =]0, l[.
One can use this sequence of sets to define the IDS of random Schrödinger
operators although ∪lΛl = [0,∞[. A non-trivial example where the sets Λl

do not exhaust X can be found in [464, 466]. There Sznitman considers ran-
dom Schrödinger operators in hyperbolic spaces. In that setting the approach
presented here does not work due to lack of amenability. Sznitman constructs
the IDS by choosing a sequence of balls Λl which converges to a horoball of
the hyperbolic space. The resulting IDS corresponds to the restriction of the
random operator to the horoball and not to the one on the whole space.

We denote by H l
ω the Dirichlet restriction of Hω to Λl, cf. Remark 2.2.3,

and define the finite volume IDS by the formula

N l
ω(λ) := volω(Λl)−1#{n | λn(H l

ω) < λ}

Now we are able to state the result of [327] on the existence of a self-
averaging IDS.

Theorem 2.3.8. Let {Hω}ω be a random Schrödinger operator and Γ an
amenable group. For any admissible exhaustion {Λl}l there exists a set Ω′ ⊂ Ω
of full measure such that

lim
l→∞

N l
ω(λ) = NH(λ), (2.18)

for every ω ∈ Ω′ and every continuity point λ ∈ R of NH .
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Definition 2.3.9. The distribution function defined by the limit in (2.18) is
called integrated density of states.

Thus all properties (i)–(iii) on page 14 can be established for the model un-
der study. In particular, formula (2.18) is a variant of the Pastur-Shubin trace
formula in the context of manifolds. Theorem 2.3.8 is proven in Sects. 2.4–2.6.
It recovers in particular the result of Adachi and Sunada [2] on the existence
of the IDS of periodic Schrödinger operators on manifolds.

Remark 2.3.10. Let us motivate, for readers acquainted only with Euclidean
space, why it is natural that the amenability requirement enters the theorem.
In the theory of random operators and in statistical mechanics one often
considers a sequence of sets Λl, l ∈ N which tends to the whole space. Even in
Euclidean geometry it is known that the exhaustion sequence Λl, l ∈ N needs
to tend to Rd in an appropriate way, e.g. in the sense of van Hove or Fisher
[417]. Convergence in the sense of van Hove [478] means that

lim
l→∞

|∂εΛl|
|Λl| = 0 (2.19)

for all positive ε.
If one chooses the sequence Λl, l ∈ N badly, one cannot expect the conver-

gence of the finite volume IDS’ N l
ω to a limit as l → ∞. In a non-amenable

geometry, any exhaustion sequence is bad, since (2.19) cannot be satisfied,
cf. Proposition 1.1 in [2].

Remark 2.3.11. We have assumed the potentials Vω to be non-negative and
some of our proofs will rely on this fact.

However, the statements of Theorem 2.3.1 on the non-randomness of the
spectrum and Theorem 2.3.8 on the existence of the IDS carry over to Vω

which are uniformly bounded below by a constant C not depending on ω ∈ Ω.
Indeed, in this case our results directly apply to the shifted operator family
{Hω −C}ω∈Ω. This implies immediately the same statements for the original
operators, since the spectral properties we are considering transform trivially
if a constant is added to the operator.

Remark 2.3.12 (Uniform convergence of the IDS). For many types of random
Hamiltonians on discrete geometric structures the convergence (2.18) of the
IDS is actually uniform in the spectral parameter almost surely, cf. [323, 330,
147, 148, 324, 329]. Note that this statement is non-trivial, since the IDS may
have discontinuities, as discussed in Remark 3.1.3.

Uniform convergence of the IDS has also been established for certain types
of random Schrödinger operators on metric graphs, cf. [209].

2.4 Measurability

Since we want to study the operators HΛ
ω as random variables we need a

notion of measurability. To this aim, we extend the definition introduced by



2.4 Measurability 27

Kirsch and Martinelli [255] for random operators on a fixed Hilbert space to
families of operators where the spaces and domains of definition vary with
ω ∈ Ω.

To distinguish between the scalar products of the different L2-spaces we
denote by 〈·, ·〉0 the scalar product on L2(Λ, vol0) and by ‖ · ‖0 the corre-
sponding norm. Similarly, 〈·, ·〉ω and ‖ · ‖ω are the scaler product and the
norm, respectively, of L2(Λ, volω).

Definition 2.4.1. Consider a family of selfadjoint operators {Hω}ω, where
the domain of Hω is a dense subspace Dω of L2(Λ, volω). The family {Hω}ω
is called a measurable family of operators if

ω �→ 〈fω, F (Hω)fω〉ω (2.20)

is measurable for all measurable and bounded F : R → C and all measurable
functions f : Ω× Λ→ R with f(ω, ·) = fω ∈ L2(Λ, volω) for every ω ∈ Ω.

Theorem 2.4.2. A random Schrödinger operator {Hω}ω∈Ω as in Definition
2.2.2 is a measurable family of operators. The same applies to the Dirichlet
restrictions {HΛ

ω }ω∈Ω to any open subset Λ of X.

For the proof of this theorem we need some preliminary considerations.
As the next lemma will show, assumption (2.4) in our setting implies that

it is sufficient to establish the weak measurability (2.20) for functions f which
are constant in ω. To formulate the precise statement, we first note that the
Hilbert spaces L2(Λ, vol0) and L2(Λ, volω) coincide as sets for all ω ∈ Ω,
though not in their scalar products. Thus it makes sense to speak about a
function fω ≡ f as an element of L2(Λ, volω) ”=” L2(Λ, vol0).

Lemma 2.4.3. A random Schrödinger operator {Hω}ω is measurable if and
only if

ω �→ 〈f, F (Hω)f〉ω is measurable (2.21)

for all measurable and bounded F : R→ C and all f ∈ L2(Λ, vol0).

Proof. To see this, note that (2.21) implies the same statement if we replace
f(x) by h(ω, x) = g(ω)f(x) where g ∈ L2(Ω) and f ∈ L2(Λ, vol0). Such
functions form a total set in L2(Ω× Λ, P ◦ vol).

Now, consider a measurable h : Ω × Λ → R such that h(ω, ·) ∈
L2(Λ, volω) for every ω ∈ Ω. Then hn(ω, x) := χh,n(ω)h(ω, x) is in
L2(Ω× Λ, P ◦ vol) where χh,n denotes the characteristic function of the set
{ω ∈ Ω| ‖h(ω)‖L2(Λ,volω) ≤ n}. Since χh,n → 1 pointwise on Ω for n→∞ we
obtain

〈hn(ω), F (Hω)hn(ω)〉ω → 〈h(ω), F (Hω)h(ω)〉ω
which shows that {Hω}ω is a measurable family of operators. ��
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To prove Theorem 2.4.2 we will pull all operators HΛ
ω onto the same Hilbert

space using the unitary transformation Sω induced by the density ρω

Sω : L2(Λ, vol0)→ L2(Λ, volω), (Sωf)(x) = ρ1/2
ω (x)f(x)

The transformed operators are

Aω := −S−1
ω ∆Λ

ω Sω (2.22)

Aω : S−1
ω D(∆Λ

ω) ⊂ L2(Λ, vol0) −→ L2(Λ, vol0)

The domain of definition S−1
ω D(∆Λ

ω) is dense in L2(Λ, vol0) and contains all
smooth functions of compact support in Λ.

The first fact we infer for the operators Aω, ω ∈ Ω is that they are uni-
formly bounded with respect to each other, at least in the sense of quadratic
forms. This is the content of Proposition 3.4 in [327] which we quote without
proof.

Denote the quadratic forms associated to the operators −∆Λ
0 , respectively

Aω, by Q0 and Qω, and the corresponding quadratic form domains by D(Q0)
and D(Qω).

Proposition 2.4.4. Let D ⊂ L2(Λ, vol0) be the closure of C∞
c (Λ) with respect

to the norm
(
Q0(f, f) + ‖f‖20

)1/2. Then

D = D(Q0) = D(Qω)

and there exists a constant CA such that

C−1
A

(
Q0(f, f) + ‖f‖20

) ≤ Qω(f, f) + ‖f‖20 ≤ CA

(
Q0(f, f) + ‖f‖20

)
(2.23)

for all f ∈ D and ω ∈ Ω.

In the proof of this proposition the bound (2.5) — more precisely (2.9) — on
the gradient of the density ρω is needed. It seems to be a technical assumption
and in fact dispensable by using a trick from [109], at least if Λ is precompact
or of finite volume.

Since we are now dealing with a family of operators on a fixed Hilbert
space, we are in the position to apply the theory developed in [255]. The
following result is an extension of Proposition 3 there. It suits our purposes
and shows that our notion of measurability is compatible with the one in [255].

Let H be a Hilbert space, D ⊂ H a (fixed) dense subset and Bω : D → H,
ω ∈ Ω non-negative operators. Denote by Σ̃ =

⋃
ω σ(Bω) the closure of the

union of all spectra, and by Σ̃c its complement. To establish the measurability
of the family {Bω}ω one can use one of the following classes of test functions:

• F1 = {χ]−∞,λ[|λ ≥ 0},
• F2 = {x �→ eitx| t ∈ R},
• F3 = {x �→ e−tx| t ≥ 0},
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• F4 = {x �→ (z − x)−1| z ∈ C \ Σ̃},
• F5 = F4(z0) = {x �→ (z0 − x)−1} for a fixed z0 ∈ C \ Σ̃,
• F6 = Cb = {f : R→ C| f bounded, continuous},
• F7 = {f : R→ C| f bounded, measurable}.

The following proposition says, that it does not matter which of the above
sets of functions one chooses for testing the measurability of {Bω}ω.

Proposition 2.4.5. For i = 1, . . . , 7 the following statements are equivalent:

(Fi) ω �→ 〈f, F (Bω)h〉H is measurable for all f, h ∈ H and F ∈ Fi

Proof. It is obvious that (F4) ⇒ (F5), (F7) ⇒ (F6), and (F6) ⇒ (F3). The
equivalence of (F1), (F2) and (F4) can be found in [255].

To show (F5) ⇒ (F4), consider the set

Z := {z ∈ Σ̃c|ω �→ (z −Hω)−1 is weakly measurable}

in the topological space Σ̃c. It is closed, since zn → z implies the convergence
of the resolvents, see e.g. [410, Theorem VI.5]. A similar argument using the
resolvent equation and a Neumann series expansion shows that z ∈ Z implies
Bδ(z) ⊂ Z where δ := d(z, Σ̃). Since Σ̃c is connected, Z = Σ̃c follows.

(F3)⇒ (F1): By the Stone-Weierstrass Theorem, see e.g. [410, Thm. IV.9],
applied to C([0,∞]) it follows that F3 is dense in the set of functions
{f ∈ C([0,∞]) | f(∞) = 0} = C∞([0,∞[ ). We may approximate any χ]−∞,λ[

pointwise by a monotone increasing sequence 0 ≤ fn, n ∈ N in C∞(R). Po-
larisation, the spectral theorem, and the monotone convergence theorem for
integrals imply that χ]−∞,λ[(Hω) is weakly measurable. An analogous argu-
ment shows (F1)⇒ (F7), since any non-negative f ∈ F7 can be approximated
monotonously pointwise by non-negative step functions fn, n ∈ N. ��

We use the following proposition taken from [458] (Prop. 1.2.6.) to show
that {Aω}ω is a measurable family of operators.

Proposition 2.4.6. Let Bω, ω ∈ Ω and B0 be non-negative operators on a
Hilbert space H. Let Qω, ω ∈ Ω and Q0 be the associated closed quadratic
forms with the following properties:

(2.25) Qω, ω ∈ Ω and Q0 are defined on the same dense subset D ⊂ H.
(2.26) There is a constant C > 0 such that

C−1
(
Q0(f, f) + ‖f‖20

) ≤ Qω(f, f) + ‖f‖20 ≤ C
(
Q0(f, f) + ‖f‖20

)
for all ω ∈ Ω and f ∈ D.

(2.27) For every f ∈ D the map ω �→ Qω(f, f) is measurable.

Then the family {Bω}ω of operators satisfies the equivalent properties of
Proposition 2.4.5.
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By property (F7) and Lemma 2.4.3, {Bω}ω as in Proposition 2.4.6 is a mea-
surable family of operators.

We apply the proposition to Bω = Aω, where {Aω}ω is defined in (2.22).
To do so, we check that the properties (2.25)–(2.27) are satisfied: Properties
(2.25) and (2.26) follow from Proposition 2.4.4. Property (2.27) is obvious for
f ∈ C∞

c (Λ) and follows by approximation for all f ∈ D, since C∞
c (Λ) is dense,

again by Proposition 2.4.4.

Proof (of Theorem 2.4.2). We already know that the transformed ‘kinetic’
part Aω, ω ∈ Ω of the Hamiltonian is measurable. To deal with the singular
potential we introduce the cut off

Vω,n(x) := min{n, Vω(x)} for n ∈ N and ω ∈ Ω

The auxiliary potential Vω,n is bounded and in particular its domain of defi-
nition is the whole Hilbert space L2(Λ, vol0). Thus the operator sum

Aω,n := Aω + Vω,n, ω ∈ Ω

is well defined and [255, Prop. 4] implies that it forms a measurable family of
operators. To recover the unbounded potential Vω, we consider the semigroups
ω �→ exp(−tAω,n), t > 0 which are weakly measurable.

The quadratic forms of Aω,n converge monotonously to the form of
A∞

ω := Aω + Vω. Now Theorems VIII.3.13a and IX.2.16 in [239] imply that
the semigroups of Aω,n converge weakly towards the one of A∞

ω for n → ∞.
Thus exp(−tA∞

ω ) is weakly measurable, which implies the measurability of
the family A∞

ω .
Finally, since Sω is multiplication with the measurable function (x, ω) �→

ρω(x), this implies the measurability of the family Hω = SωA∞
ω S−1

ω , ω ∈ Ω.
��

For later use let us note that the trace of measurable operators is mea-
surable. More precisely we will need the fact that for Λ of finite volume the
mappings

ω �→ Tr(χΛe−tHω ) and ω �→ Tr(e−tHΛ
ω ) (2.28)

are measurable. Note that one can chose an orthonormal basis for L2(Λ, volω)
which depends in a measurable way on ω, cf. for instance Lemma II.2.1 in
[117]. Thus (2.28) follows immediately from the Definition 2.4.1 of measurable
operators.

2.5 Bounds on the Heat Kernels Uniform in ω

This paragraph is devoted to heat kernel estimates of the Schrödinger oper-
ators Hω. It consists of four parts. Firstly we discuss existence of L2-kernels
of e−tHω , t > 0 and derive rough upper bounds relying on results in [108].
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Secondly, we infer Gaussian off-diagonal decay estimates of the kernels using
estimates derived in [332]. We then present an idea of H. Weyl to derive the
principle of not feeling the boundary, and finally we state a proposition which
summarises the information on the heat kernel needed in the next section.

We have to control the dependence on the metric and potential of all
these estimates since both the metric and the potential vary with the random
parameter ω ∈ Ω.

As Hω is non-negative, the semigroup e−tHω , t > 0 consists of contractions.
Moreover, the semigroup satisfies some nice properties formulated in the fol-
lowing definition which enable us to derive estimates on the corresponding
heat kernel.

Definition 2.5.1. Let Λ ⊂ X be open and µ a σ-finite Borel measure on
Λ. Let A be a real, non-negative, selfadjoint operator on the Hilbert space
L2(Λ, µ). The semigroup e−tA, t > 0 is called positivity preserving if e−tAf ≥
0 for any 0 ≤ f ∈ L2(Λ, µ) and t > 0. Furthermore, e−tA, t > 0 is called
a Markov semigroup, if it is well defined on L∞(Λ, µ) and the two following
properties hold

e−tA : L2(Λ, µ) −→ L2(Λ, µ) is positivity preserving for every t > 0
(2.29)

e−tA : L∞(Λ, µ)→ L∞(Λ, µ) is a contraction for every t > 0 (2.30)

In this case A is called a Dirichlet form.
A Markov semigroup e−tA is called ultracontractive if

e−tA : L2(Λ, µ)→ L∞(Λ, µ) is bounded for all t > 0 (2.31)

The above (2.29) and (2.30) are called Beurling-Deny conditions [44, 45].
We infer from [108] the following facts: A Markov semigroup is a con-

traction on Lp(Λ, µ) for all 1 ≤ p ≤ ∞ (and all t > 0). For all ω ∈ Ω the
Schrödinger operator HΛ

ω on L2(Λ, volω) is a Dirichlet form, [108, Thm. 1.3.5].
There the proof is given for X = Rd, but it applies to manifolds, too. By
Sobolev embedding estimates and the spectral theorem et∆Λ

ω is ultracontrac-
tive. Thus by Lemma 2.1.2 in [108] each et∆Λ

ω has a kernel, which we denote
by kΛ

ω (t, ·, ·), such that for almost all x, y ∈ Λ

0 ≤ kΛ
ω (t, x, y) ≤ ‖et∆Λ

ω‖1,∞ =: CΛ
ω (t) (2.32)

Here ‖B‖1,∞ denotes the norm of B : L1 → L∞. For Λ = X we use the
abbreviation kω = kX

ω .
To derive an analogous estimate to (2.32) for the full Schrödinger operator

with potential we make use of the Feynman-Kac formula. Using the symbol
Ex for the expectation with respect to the Brownian motion bt starting in
x ∈ X the formula reads

(e−tHωf)(x) = Ex

(
e−
∫ t
0 Vω(bs) ds f(bt)

)
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For a stochastically complete manifold X and bounded, continuous Vω the
formula is proven, for instance, in Theorem IX.7A in [150]. It extends to
general non-negative potentials which are in L1

loc using semigroup and integral
convergence theorems similarly as in the proof of Theorem X.68 in [407].
Since we consider (geodesically) complete manifolds whose Ricci curvature is
bounded below, they are all stochastically complete, cf. for instance [206] or
Theorem 4.2.4 in [217].

Since the potential is non-negative, the Feynman-Kac formula implies for
non-negative f ∈ L1(Λ, volω)

0 ≤ (e−tHΛ
ω f
)
(x) ≤ (et∆Λ

ωf
)
(x) ≤ CΛ

ω (t) ‖f‖L1

for almost every x ∈ Λ. Thus e−tHΛ
ω : L1(Λ, volω)→ L∞(Λ, volω) has the same

bound CΛ
ω (t) as the semigroup where the potential is absent. This yields the

pointwise estimate on the kernel kΛ
Hω

(t, ·, ·) of e−tHΛ
ω :

0 ≤ kΛ
Hω

(t, x, y) ≤ CΛ
ω (t) for almost every x, y ∈ X. (2.33)

In the following we derive sharper upper bounds on the kernels which im-
ply their decay in the distance between the two space arguments x and y. Such
estimates have been proven by Li and Yau [332] for fundamental solutions of
the heat equation. One would naturally expect that the fundamental solution
and the L2-heat kernel of the semigroup coincide under some regularity as-
sumptions. This is actually the case as has been proven for instance in [119]
for vanishing, and in [327] for smooth, non-negative potentials. The proof in
the last cited source uses that Hω is a Dirichlet form.

To formulate the results of Li and Yau [332] which we will be using, we
denote by dω : X ×X → [0,∞[ the Riemannian distance function on X with
respect to gω. Note that the following proposition concerns the heat kernel of
the pure Laplacian.

Proposition 2.5.2. For every t > 0 there exist constants C(t) > 0, αt > 0
such that

kω(t, x, y) ≤ C(t) exp
(− αt d2

0(x, y)
)

(2.34)

for all ω ∈ Ω and x, y ∈ X.

Proof. For a fixed Schrödinger operator the estimate (with d0 replaced by
dω) is contained in Corollary 3.1 in [332]. There the upper bound is given
explicitly in terms of the geometric bounds on the manifold. This enables one
to show that properties (2.4), (2.8) and

C−1
g d0(x, y) ≤ dω(x, y) ≤ Cgd0(x, y)

ensure that the constants C(t) and αt in (2.34) may be chosen uniformly in
ω. Moreover, for measuring the distance between the points x and y we may
always replace dω by d0 by increasing αt. ��
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Let us collect various consequences of Proposition 2.5.2 which will be useful
later on.

(i) The pointwise kernel bound on the left hand side of (2.33) can be chosen
uniformly in ω ∈ Ω.

(ii) We stated Proposition 2.5.2 for the pure Laplacian, although Li and Yau
treat the case of a Schrödinger operator with potential. The reason for
this is that we want to avoid the regularity assumptions on the potential
imposed in [332].
To recover from (2.34) the case where a (non-negative) potential is
present we use again the Feynman-Kac formula. We need now a local
version of the argument leading to (2.33). More precisely, we consider
e−tHω as an operator from L1(Bε(y)) to L∞(Bε(x)) for small ε > 0.
Thus, we obtain

0 ≤ kHω
(t, x, y) ≤ C(t) exp

(− αt d2
0(x, y)

)
(iii) The estimates derived so far immediately carry over to the case where

the entire manifold is replaced by an open subset Λ ⊂ X.

0 ≤ kΛ
Hω

(t, x, y) ≤ kHω
(t, x, y)

This is due to domain monotonicity, see for example [108, Thm. 2.1.6]
where this fact is proven using functional analytic tools. Another way to
see that this estimate is true, is to use the probabilistic representation
of the heat semigroup, cf. [35, 435].

(iv) The Bishop volume comparison theorem controls the growth of the vol-
ume of balls with radius r, see for instance [51], [84, Thm. III.6] or [72].
It tells us that the lower bound (2.6) on the Ricci curvature is sufficient
to bound the growth of the volume of balls as r increases. The volume
of the ball can be estimated by the volume of a ball with the same ra-
dius in a space with constant curvature K. The latter volume grows at
most exponentially in the radius. For our purposes it is necessary to have
an ω-uniform version of the volume growth estimate. Using Properties
(2.4), (2.6) and (2.8) we obtain the uniform bound

volω
({y| dω(x, y) < r}) ≤ C1 eC2r for all x ∈ X

where C1, C2 do not depend on x and ω. This implies that for all expo-
nents p > 0, there exists a Mp(t) <∞ such that the moment estimate∫

Λ

[kΛ
Hω

(t, x, y)]p dvolω(y) ≤Mp(t)

holds uniformly in Λ ⊂ X open, in x ∈ Λ and ω ∈ Ω. We set M(t) :=
M1(t).
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(v) The heat kernel estimates imply a uniform bound on the traces of the
semigroup localised in space. Let Λ ⊂ X be a (fixed) open set of finite
volume. There exists a constant CTr = CTr(Λ, t) > 0 such that for all
ω ∈ Ω

Tr
(
χΛ e−tHω

) ≤ CTr

Intuitively this is the same as saying that
∫
Λ

kHω
(t, x, x) dvolω(x) is uni-

formly bounded. However, since the diagonal {(x, x)|x ∈ Λ} is a set
of measure zero, the integral does not make sense as long as we con-
sider kHω

as an L2-function. We do not want here to address the ques-
tion of continuity of the kernel. Instead we use the semigroup property
e−2tHω = e−tHωe−tHω , t > 0 and selfadjointness to express the trace as

Tr
(
χΛ e−tHω

)
=
∫

Λ

∫
Λ

[kHω
(t/2, x, y)]2 dvolω(x) dvolω(y) ≤M2(t/2) volω(Λ)

(2.35)

By (2.10) this is bounded uniformly in ω ∈ Ω. Applying domain
monotonicity once more, we obtain

Tr
(
e−tHΛ

ω
) ≤M2(t/2) volω(Λ) ≤M2(t/2)Cd/2

g vol0(Λ) (2.36)

The following lemma is a maximum principle for Schrödinger operators
with non-negative potentials. Combined with the off-diagonal decay estimates
in Proposition 2.5.2 it will give us a proof of the principle of not feeling the
boundary.

Lemma 2.5.3 (Maximum principle for heat equation with non-neg-
ative potential). Let Λ ⊂ X be open with compact closure, V be a non-
negative function, and u ∈ C([0, T [×Λ) ∩ C2(]0, T [×Λ) be a solution of the
heat equation ∂

∂tu+(−∆+V )u = 0 on ]0, T [×Λ with non-negative supremum
s = sup{u(t, x) | (t, x) ∈ [0, T [×Λ}. Then,

s = max

{
max
x∈Λ

u(0, x), sup
[0,T [×∂Λ

u(t, x)

}

Note that regularity of V is not assumed explicitly, but implicitly by the
requirements on u. They are e.g. satisfied if V is smooth. Indeed, in that
case the heat kernel is smooth, as can be seen following the proof of [108,
Thm. 5.2.1].

Now we are in the position to state the second, refined estimate on the
heat kernels, the principle of not feeling the boundary. It is a formulation of
the fact that the heat kernel of the Dirichlet-Laplacian on a (large) open set
Λ does not differ much from the heat kernel associated to the Laplacian on
the whole manifold, as long as one stays well inside Λ. As before, we derive
this estimate first for the pure Laplacian and then show that it carries over
to Schrödinger operators with non-negative potential.
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Proposition 2.5.4. For any fixed t, ε > 0, there exists an h = h(t, ε) > 0
such that for every open set Λ ⊂ X and all ω ∈ Ω

0 ≤ kω(t, x, y)− kΛ
ω (t, x, y) ≤ ε

for all x ∈ Λ, y ∈ Λh.

Proof. The first inequality is a consequence of domain monotonicity. So we
just have to prove the second one.

Fix ω ∈ Ω and t, ε > 0. Choose h > 0 such that

C(t) exp
(
− αt

(
h/2
)2) ≤ ε

Note that the choice is independent of ω. For any y ∈ Λh and 0 < δ < h/2
denote by Bδ(y) the open d0-ball around y with radius δ. Let fδ ∈ C∞

0 (Bδ(y))
be a non-negative approximation of the δ-distribution at y.

We consider now the time evolution of the initial value f under the two
semigroups generated by ∆ω and ∆Λ

ω , respectively.

u1(t, x) :=
∫

X

kω(t, x, z)fδ(z)dvolω(z) =
∫

Λ

kω(t, x, z)fδ(z)dvolω(z).

u2(t, x) :=
∫

Λ

kΛ
ω (t, x, z)fδ(z)dvolω(z).

The difference u1(t, x) − u2(t, x) solves the heat equation ∂
∂tu = ∆ωu and

satisfies the initial condition u1(0, x) − u2(0, x) = fδ(x) − fδ(x) = 0 for all
x ∈ Λ. Now, by domain monotonicity we know kω(t, x, z) − kΛ

ω (t, x, z) ≥ 0,
thus

u1(t, x)− u2(t, x) =
∫

Λ

[
kω(t, x, z)− kΛ

ω (t, x, z)
]
fδ(z) dvolω(z) ≥ 0

for all t > 0 and x ∈ Λ. The application of the maximum principle yields

u1(t, x)− u2(t, x) ≤ max
]0,t]×∂Λ

{u1(s, w)− u2(s, w)} . (2.37)

The right hand side can be further estimated by:

u1(s, w)− u2(s, w) ≤
∫

Λ

kω(s, w, z)fδ(z) dvolω(z)

=
∫

Λh/2

kω(s, w, z)fδ(z) dvolω(z).

Since w ∈ ∂Λ and z ∈ Λh/2, we conclude using Proposition 2.5.2:∫
Λh/2

kω(s, w, z)fδ(z)dvolω(z) ≤ C(t) exp
(− αt(h/2)2

) ≤ ε

Since the bound is independent of δ we may take the limit δ → 0 which
concludes the proof. ��
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One can prove the principle of not feeling the boundary by other means too, see
for instance [349, 122, 392]. This alternative approach uses information on the
behaviour of solutions of the wave equation. Unlike the solutions of the heat
equation, they do not have the unphysical property that their support spreads
instantaneously to infinity. Actually, the solutions of the wave equation have
finite propagation speed [468]. Fourier transforms and the spectral theorem
turn this information into estimates on the difference of the solutions of the
free and restricted heat equation. Sobolev estimates lead then to the principle
of not feeling the boundary. See also Sect. 7 in [406].

Remark 2.5.5. Similarly as in Lemma 2.5.3, one can prove the proposition, if a
potential is present. More precisely, Proposition 2.5.4 is valid for Schrödinger
operators with potentials V such that for continuous initial and bound-
ary values the solution of the heat equation ∂

∂tu = −(−∆ω + V )u is in
C([0, T [×Λ) ∩ C2(]0, T [×Λ). However, Proposition 2.5.4 implies an analo-
gous estimate for the case where a non-negative potential is present, similarly
as in (ii) on page 33. This will be explained next.

Consider e−tHω−e−tHΛ
ω as an operator from L1(Λh) to L∞(Λ), and denote

by τΛ
x the first exit time from Λ for a Brownian motion starting in x. By the

Feynman-Kac formula, we have for 0 ≤ f ∈ L1(Λh)

[(e−tHω − e−tHΛ
ω )f ](x) = Ex

(
e−
∫ t
0 dsV (bs)f(bt)χ{b| τΛ

x ≤t}
)

≤ Ex

(
f(bs)χ{b| τΛ

x ≤t}
)

=
∫

[kω(t, x, y)− kΛ
ω (t, x, y)]f(y) dvolω

≤ ε

∫
f(y) dvolω

if we chose h as in Proposition 2.5.4. Thus for almost all x ∈ Λ, y ∈ Λh

kHω
(t, x, y)− kΛ

Hω
(t, x, y) ≤ ‖e−tHω − e−tHω‖L1(Λh)→L∞(Λ) ≤ ε (2.38)

The upper bounds on the heat kernel and the principle of not feeling
the boundary enable us to prove a result on the traces of localised heat-
semigroups: In the macroscopic limit, as Λ tends (in a nice way) to the whole
of X, the two quantities

Tr(χΛe−tHω ) and Tr(e−tHΛ
ω )

are approximately the same. The precise statement is contained in the
following

Proposition 2.5.6. Let {Λl}l∈N, be a sequence of subsets of X which satisfies
the van Hove property 2.17 and let {Hω}ω be a random Schrödinger operator.
Then

lim
l→∞

sup
ω∈Ω

1
volω(Λl)

∣∣∣Tr(χΛl
e−tHω )− Tr(e−tHl

ω )
∣∣∣ = 0
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Proof. We consider first a fixed l ∈ N and abbreviate Λ = Λl. For the operator
e−tHΛ

ω we may write the trace in the same way as in (2.35) to obtain

Tr(e−tHΛ
ω ) =

∫
Λ

∫
Λ

[kΛ
Hω

(t/2, x, y)]2dvolω(x)dvolω(y) (2.39)

We express the difference of (2.35) and (2.39) using

(kHω
)2 − (kΛ

Hω
)2 = (kHω

− kΛ
Hω

)(kHω
+ kΛ

Hω
)

Next we chose h = h(t/2, ε) > 0 as in Proposition 2.5.4 and decompose the
integration domain according to

Λ× Λ = (Λ× Λh) ∪ (Λ× ∂hΛ)

The difference of the traces can be now estimated as

0 ≤ Tr(χΛ e−tHω )− Tr(e−tHΛ
ω )

=
∫

Λ

∫
Λh

[
kHω

(
t
2 , x, y

)−kΛ
Hω

(
t
2 , x, y

)] [
kHω

(
t
2 , x, y

)
+kΛ

Hω

(
t
2 , x, y

)]
dvolω(x, y)

+
∫

Λ

∫
∂hΛ

[
kHω

(
t
2 , x, y

)−kΛ
Hω

(
t
2 , x, y

)] [
kHω

(
t
2 , x, y

)
+kΛ

Hω

(
t
2 , x, y

)]
dvolω(x, y)

(2.40)

The first term is bounded by 2M(t/2) ε volω(Λ) and the second by

2M(t/2)C(t/2) volω(∂hΛ)

It follows that

1
volω(Λ)

(
Tr(χΛ e−tHω )−Tr(e−tHΛ

ω )
)
≤ 2M(t/2)ε+2M(t/2)C(t/2)

volω(∂hΛ)
volω(Λ)

Now, we let l go to infinity. Since the sequence Λl satisfies the van Hove
property (2.17) and since our bounds are uniform in ω, the proposition is
proven. ��

2.6 Laplace Transform and Ergodic Theorem

This section completes the proof of Theorem 2.3.8. It relies, apart from the re-
sults established in Sects. 2.4–2.5, on a general ergodic theorem and a criterion
for the convergence of distribution functions.

Lindenstrauss proved in [342, 341] an ergodic theorem which applies to
locally compact, second countable amenable groups. It includes as a special
case the following statement for discrete groups.
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Theorem 2.6.1. Let Γ be an amenable discrete group and (Ω,BΩ, P) be a
probability space. Assume that Γ acts ergodically on Ω by measure preserving
transformations. Let {Il}l be a tempered Følner sequence in Γ . Then for every
f ∈ L1(Ω)

lim
j→∞

1
|Il|
∑
γ∈Il

f(γω) = E (f) (2.41)

for almost all ω ∈ Ω.

In the application we have in mind f ∈ L∞, so the convergence holds in the
L1-topology, too.

Remark 2.6.2. Some background on previous results can be found for instance
in Sect. 6.6 of Krengel’ s book [313], in Tempelman’s works [469, 470, 471] or
some other sources [152, 204, 26, 151, 383]. The book [471] gives in Sect. 5.6 a
survey of Shulman’s results [434]. Mean ergodic theorems hold in more general
circumstances, see for instance [313, Sect. 6.4] or [471, Ch. 6].

We will apply the ergodic theorem above not to the normalised eigenvalue
counting functions N l

ω, but to their Laplace transforms Ll
ω. The reason is, that

the Ll
ω are bounded, while the original N l

ω are not. The following criterion
of Pastur and Shubin [384, 431] says that it is actually sufficient to test the
convergence of the Laplace transforms.

Lemma 2.6.3 (Pastur-Shubin convergence criterion). Let Nn be a se-
quence of distribution functions such that

(i) there exists a λ0 ∈ R such that Nl(λ) = 0 for all λ ≤ λ0 and l ∈ N,
(ii) there exists a function C : R+ → R such that Ll(t) :=

∫
e−λtdNl(λ) ≤

C(t) for all l ∈ N and t > 0,
(iii) liml→∞ Ll(t) =: L(t) exists for all t > 0.

Then L is the Laplace transform of a distribution function N and for all
continuity points λ of N we have

N(λ) := lim
l→∞

Nl(λ)

Finally, we present the proof of Theorem 2.3.8 on the existence of a self-
averaging IDS:

Proof (of Theorem 2.3.8). We have to check the conditions in the previous
lemma for the normalised eigenvalue counting functions N l

ω. The first one is
clearly satisfied for λ0 = 0, since all operators we are dealing with are non-
negative. To see (ii), express the Laplace transform by the trace of the heat
semigroup

Ll
ω(t) =

1
volω(Λ)

∑
n, λn∈σ

e−tλn =
1

volω(Λ)
Tr(e−tHl

ω )
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The sum extends over all eigenvalues λn of H l
ω, counting multiplicities. Now,

(2.36) implies condition (ii) of the Pastur-Shubin criterion.
To prove (iii) we will show for all t > 0 the convergence

lim
j→∞

Ll
ω(t) =

∫
R

e−tλdNH(λ)

in (L1 and) P-almost sure-sense. For technical reasons we will deal separately
with the convergence of the enumerator and denominator in

Ll
ω(t) = volω(Λl)−1 Tr(e−tHl

ω )

However, we need some normalisation, to avoid divergences. Consider first
the enumerator with an auxiliary normalisation

|Il|−1 Tr(e−tHl
ω ) (2.42)

Introduce for two sequences of random variables al(ω), bl(ω), l ∈ N the equiv-

alence relation al
j→∞∼ bl if they satisfy al − bl → 0 almost surely for l →∞.

By Proposition 2.5.6, the equivariance, and Lindenstrauss’ ergodic theorem
2.6.1

|Il|−1 Tr(e−tHl
ω )

j→∞∼ |Il|−1 Tr(χΛl
e−tHω ) = |Il|−1

∑
γ∈I−1

l

Tr(χγF e−tHω )

= |Il|−1
∑
γ∈Il

Tr(χF e−tHγω )
j→∞∼ E

{
Tr(χF e−tH•)

}
Similarly we infer for the normalised denominator

|Il|−1volω(Λl) = |Il|−1
∑

γ∈I−1
l

volω(γF) = |Il|−1
∑
γ∈Il

volγω(F)
j→∞∼ E {vol•(F)}

Note that by (2.10) all terms in the above line are bounded from above and
below uniformly in ω. By taking quotients we obtain

Ll
ω(t) =

|Il|−1 Tr(e−tHl
ω )

|Il|−1 volω(Λl)
j→∞∼ E

{
Tr(χFe−tH•)

}
E {vol•(F)}

Uniform boundedness implies that the convergence holds also in L1-sense. The
right hand side is the Laplace transform of NH , see the proof of Theorem 6.1
of [328] for a detailed calculation. ��

2.7 Approach Using Dirichlet-Neumann Bracketing

We outline an alternative proof of the existence of the IDS due to Kirsch
and Martinelli [254]. It applies to random Schrödinger operators on Rd. It
relies on an ergodic theorem for superadditive processes by Akcoglu and
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Krengel [17] and estimates on the number of bound states essentially implied
by the Weyl asymptotics.

Let us explain the notion of a superadditive process in our context. Denote
by Z the set of all multi-dimensional intervals or boxes Λ in Rd such that
Λ = {x| aj < xj < bj , for j = 1, . . . , d} for some a, b ∈ Zd with aj < bj for all
j = 1, . . . , d. The restriction of Hω to a Λ ∈ Z with Dirichlet boundary con-
ditions is denoted by HΛ

ω and with Neumann boundary conditions by HΛ,N
ω .

Consider a group {Tk}k∈Zd (or semigroup {Tk}k∈Nd
0
) of measure preserving

transformations on the probability space (Ω,BΩ, P).

Definition 2.7.1. A set function F : Z → L1(Ω) is called a (discrete) super-
additive process (with respect to {Tk}k) if the following conditions are satisfied

FΛ ◦ Tk = FΛ+k for all k ∈ Zd (or Nd
0),Λ ∈ Z (2.43)

if Λ1, . . . ,Λn ∈ Z such that Λ := int
( n⋃

k=1

Λk

)
∈ Z then, FΛ ≥

n∑
k=1

FΛk

(2.44)

γ := γ(F ) := sup
Λ∈Z
|Λ|−1 E {FΛ} <∞ (2.45)

F is called subadditive if −F is superadditive.

Similarly one can define superadditive processes with respect to an action of
Rd on Ω.

We formulate the main result of [17] in the way it suits our needs (see
Theorem 2.4 and the Remark on page 59 in [17] and Sect. 6.2 in [313]).

Theorem 2.7.2. Let F be a discrete superadditive process. For l ∈ N set
Λl :=]− l/2, l/2[d. Then the limit

lim
l→∞

l−d FΛl
exists for almost all ω ∈ Ω

If {Tk}k acts ergodically on (Ω, P) we have liml→∞ l−d FΛl
(ω) = γ(F ) almost

surely.

More generally, one can replace the cubes Λl, l ∈ N by a so-called regular
sequence, cf. [470, 17, 254] or Sect. 6.2 in [313].

To apply the superadditive ergodic theorem we consider for arbitrary, fixed
λ ∈ R the processes given by the eigenvalue counting functions of the Dirichlet
and Neumann Laplacian

FD
Λ := FD

Λ (λ, ω) := #{n|λn(HΛ
ω ) < λ}, Λ ∈ Z

FN
Λ := FN

Λ (λ, ω) := #{n|λn(HΛ,N
ω ) < λ}, Λ ∈ Z

where Hω is a random operator as in Definition 1.2.3. Obviously for Λ = Λl =
]− l/2, l/2[d we have FD

Λ (λ) = ldN l
ω(λ). We will show that FD

Λ ,Λ ∈ Z is a
superadditive process, which is also true for −FN

Λ ,Λ ∈ Z. Property (2.43)
follows from the equivariance of {Hω}ω, while (2.44) and (2.45) are implied
by the following
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Lemma 2.7.3. Let Hω be a random operator as in Definition 1.2.3 and λ a
fixed energy value.

(i) For two cubes Λ(1) ⊂ Λ(2) we have FD
Λ(2)
≥ FD

Λ(1)
and FN

Λ(1)
≥ FD

Λ(1)
.

(ii) If Λ(1),Λ(2) ∈ Z are disjoint such that Λ = Λ(1) ∪ Λ(2) ∪M ∈ Z where
M ⊂ Rd is a set of measure zero, then

FD
Λ ≥ FD

Λ(1)
+ FD

Λ(2)

FN
Λ ≤ FN

Λ(1)
+ FN

Λ(2)

(iii) There exists a Cλ ∈ R such that for all Λ ∈ Z and ω ∈ Ω we have
FD

Λ (ω) ≤ Cλ |Λ|.
Proof. The first two statements are known as Dirichlet-Neumann bracketing
and are stated e.g. in Proposition XIII.15.4 in [408]. See also Sect. I.5 in [84]
for analogous results on manifolds. Lemma A.3.1 in the Appendix and its
proof imply property (iii) with Cλ =

(
e

2πdλ
)d/2. ��

More background on bracketing techniques can be found in Sects. XIII.3, 15
and 16 in [408]. The Weyl type bounds are related to the Lieb-Thirring and
Cwikel-Lieb-Rozenblum estimates for bound states [416, 334, 333, 101].

Now we can state the main result of [254].

Theorem 2.7.4. There exists a set Ω′ ⊂ Ω of full measure such that

N(λ) := lim
l→∞

N l
ω(λ) (2.46)

exists for every ω ∈ Ω′ and every continuity point λ ∈ R of N .

Proof. For a fixed λ ∈ R one applies Theorem 2.7.2 to FD
Λ (λ, ω), Λ ∈ Z, and

denotes the corresponding γ(F ) by γ(λ). By definition FD
Λ (λ, ω) ≤ FD

Λ (λ̃, ω)
for all λ ≤ λ̃ and all ω ∈ Ω, Λ ∈ Z. Thus λ �→ γ(λ) is a non-decreasing
function. It has at most a countable set of discontinuity points. We denote
its complement by C and choose a dense countable set S ⊂ C. Hence γ is
continuous at each λ ∈ S.

Since our transformation group is ergodic, for each λ there is a set Ωλ of
measure one on which the convergence liml→∞ l−d FD

Λl
(ω) = γ(λ) holds. Since

S is countable, Ω′ = ∩λ∈SΩλ has full measure, and the convergence statement
of Theorem 2.7.2 holds for all λ ∈ S and ω ∈ Ω′. Define the distribution
function N(λ) := limS�λ̃↗λ γ(λ̃). Thus, γ and N coincide on C.

The monotonicity of λ �→ FD
Λl

(λ, ω) and the continuity of N on C imply
the statement of the theorem. To see this, choose a sequence λn ∈ S, λn ≥
λ ∈ C, limn→∞ λn = λ. Then we have

l−dFD
Λl

(λ, ω)−N(λ) ≤ l−dFD
Λl

(λn, ω)−N(λn) + N(λn)−N(λ).
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For ω ∈ Ω′ and ε > 0 we choose first n sufficiently large s.t. N(λn)−N(λ) ≤
ε/2 and then l sufficiently large s.t. l−dFD

Λl
(λn, ω) −N(λn) ≤ ε/2. Thus one

sees that
lim sup

l→∞
l−dFD

Λl
(λ, ω) ≤ N(λ).

Similarly one can choose a sequence λn ∈ S, λn ≤ λ ∈ C, limn→∞ λn = λ and
then show that lim infl→∞ l−dFD

Λl
(λ, ω) ≥ N(λ). ��

For models which satisfy both the conditions of the previous theorem and
of 2.3.8 the two definitions of the IDS coincide.

Under certain regularity assumptions the theorem remains true if Neumann
boundary conditions are used to define the IDS, cf. Theorem 3.3.(b) of [254].
In this case one works with the subadditive process FN

Λ (λ, ω), Λ ∈ Z. There
are versions of the above theorem for Rd-ergodic potentials, cf. for instance
[254, 224].

2.8 Independence of the Choice of Boundary Conditions

Consider again the more general setting of Schrödinger operators on a
Riemannian covering manifold X. If the open subset Λ ⊂ X of finite volume is
sufficiently regular, the Neumann Laplacian HΛ,N

ω on Λ has discrete spectrum.
One condition which ensures this is the extension property of the domain
Λ, see e.g. [108], which is in turn satisfied if the boundary ∂Λ is piecewise
smooth. Minimal conditions which ensure the extension property are discussed
in Sect. VI.3 of [454]. Thus it is possible to define the normalised eigenvalue
counting function

NΛ,N
ω (λ) :=

1
|Λ| #{n ∈ N|λn(HΛ,N

ω ) < λ}

Let Λl be an admissible exhaustion Λl ⊂ X, l ∈ N of sets which all have the
extension property. Consider the sequence of distribution functions N l,N

ω :=
NΛl,N

ω . It is natural to ask whether it converges almost surely, and, moreover,
whether its limit coincides with N as defined in Theorem 2.3.8. If this is
true, the IDS is independent of the choice of Dirichlet or Neumann boundary
conditions used for its construction. This indicates that boundary effects are
negligible in the macroscopic limit.

However, this turns out not to be true for all geometric situations.
Sznitman studied in [464, 466] the IDS of a random Schrödinger operator
on a horoball in hyperbolic space with potential generated by a Poissonian
field. He showed that the IDS does depend on the choice of boundary condi-
tion used for its construction. Actually, he computes the Lifshitz asymptotics
of the IDS at energies near the bottom of the spectrum and shows that it is
different for Dirichlet and Neumann boundary conditions.
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In contrast, in the case of Euclidean geometry X = Rd, the question of
boundary condition independence has been answered positively already some
decades ago [43, 254, 432, 137] for a large class of Zd or Rd-ergodic ran-
dom potentials. More recently, there has been interest in the same question
if a magnetic field is included in the Hamiltonian, see also Sect. 5.7. In this
case the coincidence of the IDS defined by the use of Dirichlet and Neumann
boundary conditions was established for bounded (electric) potentials in [375],
for non-negative potentials in [125], and for certain potentials assuming both
arbitrarily large positive and negative values in [224] and [222]. The last men-
tioned approach seems to be extensible to non-Euclidean geometries.


