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Commuting Reduction and Semidirect
Product Theory

In this chapter we develop two of the basic results on reduction by stages,
namely the case of commuting reduction and semidirect product reduction.
While one could view these as special cases of more general theorems to
follow in the next chapter, it is worthwhile to see them on their own as
more structured preludes to more general cases. In addition, these cases
are important in applications as well as for the historical development of
the subject.

4.1 Commuting Reduction

Theorems on reduction by stages have been given in various special
instances by a number of authors, starting with time-honored observations
in mechanics such as the following: When you want to reduce the dynam-
ics of a rigid body moving in space, first you can pass to center of mass
coordinates (that is, reduce by translations) and second you can pass to
body coordinates (that is, reduce by the rotation group). For other prob-
lems, such as a rigid body in a fluid (see Leonard and Marsden [1997])
this process is not so simple; one does not simply pass to center of mass
coordinates to get rid of translations. This shows that the general prob-
lem of reducing by the Euclidean group is a bit more subtle than one may
think at first when one is considering say, particle mechanics. In any case,
such procedures correspond to a reduction by stages result for semidirect
products .
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But we are getting ahead of ourselves; we need to step back and look first
at an even simpler case in some detail, namely the case of a direct product.
For instance, for a symmetric heavy top, the symmetry group is S1 × S1,
with the first S1 being the symmetry of rotations about the vertical axis
of gravity and the second S1 being rotations about the symmetry axis of
the body. These two group actions commute.

The version of commuting reduction given in Marsden and Weinstein
[1974], p. 127 states that for two commuting group actions, one could reduce
by them in succession and in either order and the result is the same as
reducing by the direct product group. One version of this result, which we
will go through rather carefully in a way that facilitates its generalization,
is given in the following development.

The set up is as follows: Let P be a symplectic manifold, K be a Lie group
(with Lie algebra k) acting symplectically on P and having an equivariant
momentum map JK : P → k∗. Let G be another group (with Lie algebra
g) acting on P with an equivariant momentum map JG : P → g∗. The first
main assumption is

C1. The actions of G and K on P commute.

It follows that there is a well-defined action of G × K on P given by
(g, k) · z = g · (k · z) = k · (g · z). Next, we claim that

JG×K := JG × JK : P → (g× k)∗ = g∗ × k∗

is a momentum map for the action of G ×K on P . Indeed, for ξ ∈ g and
η ∈ k, we have

(ξ, η)P (z) = ξP (z) + ηP (z),

as follows by noting that exp(t(ξ, η)) = (exp(tξ), exp(tη)). Note that

J(ξ,η)
G×K = JξG + JηK .

Therefore,

i(ξ,η)P
Ω = iξP

Ω + iηP
Ω = dJξG + dJηK = dJ(ξ,η)

G×K ,

This proves the claim.
To ensure that JG×K is an equivariant momentum map, we make an

additional hypothesis.

C2. JG is K-invariant and JK is G-invariant.

There are some remarks to be made about this condition. First of all, if
P = T ∗Q and the actions are lifted from commuting actions on Q, then
we assert that the condition C2 automatically holds. This is because, in
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the cotangent case, we can use the explicit formula for the equivariant
momentum maps JG and JK . Let k ∈ K, αq ∈ T ∗

qQ, and ξ ∈ g. Then

〈JG(k · αq), ξ〉 = 〈k · αq, ξQ(k · q)〉
= 〈k · αq, k · ξQ(q)〉
= 〈αq, ξQ(q)〉
= 〈JG(αq), ξ〉 .

There is a similar argument for JK . This proves our assertion.
The second remark we wish to make is that in a sense, one needs to only

assume that “half” of C2 holds. Namely, we claim that if JK is G-invariant
and K is connected, then JG is K-invariant. Indeed, d 〈JK , η〉 · ξP = 0 for
all ξ ∈ g and η ∈ k and hence

d 〈JG, ξ〉 · ηP = d 〈JG, ξ〉 ·X〈JK ,η〉 = {〈JG, ξ〉 , 〈JK , η〉}
= −d 〈JK , η〉 ·X〈JG,ξ〉 = −d 〈JK , η〉 · ξP = 0,

from which we conclude K-invariance of JG by connectedness of K, which
proves the claim.

Now we have the ingredients needed to get an equivariant momentum
map.

4.1.1 Proposition. Under hypotheses C1 and C2, JG×K is an equivari-
ant momentum map for the action of G×K on P .

Proof. For all z ∈ P and (g, k) ∈ G×K we have

(JG × JK) ((g, k) · z) = (JG(g · k · z), JK(g · k · z))
= (g · JG(z), k · JK(z))
= (g, k) · (JG × JK) (z),

where we have used equivariance of each of JG and JK , the fact that the
actions commute (condition C1), and condition C2, the invariance of JG
and JK . �

We need one more assumption.

C3. The action of G×K on P is free and proper.

Let (µ, ν) ∈ g∗×k∗ be given. Since we have a simple product, the isotropy
group is (G×K)(µ,ν) = Gµ ×Kν . Our goal is to show that the “one-shot”
reduced space

P(µ,ν) = (JG × JK)−1(µ, ν)/(Gµ ×Kν)

is symplectically diffeomorphic to the space obtained by first reducing by
K at ν to form the first reduced space Pν = J−1

K (ν)/Kν and then reducing
this space by the G action. Note that the actions of K and G on P are free
and proper as a consequence of C3.
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Warning. If each of the actions of G and K are free, this need not
imply, conversely, that the action of G ×K is free. For example, Let G =
K = S1 act on R

2 minus the origin by standard rotations. The actions
obviously commute, each one is free, but the product action is not free
since (eiθ, e−iθ)z = z for any θ and any nonzero z ∈ R

2.
Another example where this occurs is in the Lagrange top, that is, a rigid

body with an axis of symmetry, rotating about a fixed point on that axis,
and moving in a gravitational field. There are two commuting S1 symmetry
groups acting on the phase space T ∗SO(3). These two actions are given by
(the cotangent lift of) left translation corresponding to rotations about
the axis of gravity and the other by right translation about the axis of
symmetry; these two actions clearly commute. The corresponding integrals
of motion lead to the complete integrability of the problem. One can reduce
by the action of these groups either together or one following the other
with the same final reduced space. In this problem, one should omit the
“vertical” state of rotation of the body in order for the action of S1×S1 to
be free, even though each action separately is free; see, for instance, Lewis,
Ratiu, Simo, and Marsden [1992].

To carry out the second stage reduction, we need the following.

4.1.2 Lemma. The group G induces a free and proper symplectic action
on Pν , and the map Jν : Pν → g∗ naturally induced by JG is an equivariant
momentum map for this action.

Proof. Let the action of g ∈ G on P be denoted by Ψg : P → P.
Since these maps commute with the action of K and leave the momentum
map JK invariant by hypothesis C2, there are well-defined induced maps
Ψν
g : J−1

K (ν) → J−1
K (ν) and Ψg,ν : Pν → Pν , which then define smooth

actions of G on J−1
K (ν) and on Pν .

Let πν : J−1
K (ν)→ Pν denote the natural projection and iν : J−1

K (ν)→ P
be the inclusion. We have by construction, Ψg,ν ◦πν = πν ◦Ψν

g and Ψg ◦iν =
iν ◦Ψν

g .
Recall from Theorem 1.1.3 that the symplectic form Ων on the reduced

space Pν is characterized by i∗νΩ = π∗
νΩν . Therefore,

π∗
νΨ∗

g,νΩν = (Ψν
g)∗π∗

νΩν = (Ψν
g)∗i∗νΩ = i∗νΨ∗

gΩ = i∗νΩ = π∗
νΩν .

Since πν is a surjective submersion, we conclude that

Ψ∗
g,νΩν = Ων .

Thus, we have a symplectic action of G on Pν .
Since JG is invariant under K and hence under Kν , there is an induced

map Jν : Pν → g∗ satisfying Jν ◦ πν = JG ◦ iν . We now check that this is
the momentum map for the action of G on Pν . To do this, first note that
for all ξ ∈ g, the vector fields ξP and ξPν

are πν-related. We have

π∗
ν

(
iξPν

Ων
)

= iξP
i∗νΩ = i∗ν (iξP

Ω) = i∗ν (d 〈JG, ξ〉) = π∗
ν (d 〈Jν , ξ〉) .
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Again, since πν is a surjective submersion, we conclude that

iξPν
Ων = d 〈Jν , ξ〉

and hence Jν is the momentum map for the G action on Pν . Equivariance
of Jν follows from that for JG, by a diagram chasing argument as above,
using the relation Jν ◦ πν = JG ◦ iν and the relations between the actions
of G on P , J−1

K (ν), and on Pν .
We next prove that the action of G on Pν is free and proper. First note

that the action of G on J−1
K (ν) is free and proper. For z ∈ J−1

K (ν), let its
class be denoted [z]ν := πν(z). The G action in this notation is simply
g[z]ν = [gz]ν . To check freeness, assume that [gz]ν = [z]ν . Thus, there is
a k ∈ Kν such that kgz = z. But kgz = (g, k)z and hence freeness of the
action of G×K (condition C3) implies that g = e, k = e. Thus, the action
of G on Pν is free.

To prove properness, let [zn]ν → [z]ν and [gnzn]ν → [z′]ν . Since the
action of Kν on J−1

K (ν) is free and proper, by the definition of the quotient
topology, and the fact that proper actions have slices (see the discussions in,
for example, [MTA] and Duistermaat and Kolk [1999]), there are sequences
kn, k

′
n ∈ Kν such that knzn → z and kngnzn = gnknzn → z′ (since the

actions commute). By properness of the original action, this implies that a
subsequence of gn converges. �

With the above ingredients, we can now form the second reduced space,
namely (Pν)µ = J−1

ν (µ)/Gµ.

4.1.3 Theorem (Commuting Reduction Theorem). Under the hypothe-
ses C1, C2, C3, P(µ,ν) and (Pν)µ are symplectically diffeomorphic.

Proof. Composing the inclusion map

j : (JG × JK)−1(µ, ν)→ J−1
K (ν)

with πν gives the map

πν ◦ j : (JG × JK)−1(µ, ν)→ Pν .

This map takes values in J−1
ν (µ) because of the relation Jν ◦ πν = JG ◦ iν .

Thus, we get a map

κν : (JG × JK)−1(µ, ν)→ J−1
ν (µ).

such that (iν)µ ◦ κν = πν ◦ j, where we use the notation (iν)µ for the
inclusion J−1

ν (µ) ↪→ Pν . The map κν is equivariant with respect to the
action of Gµ ×Kν on the domain and Gµ on the range. Thus, it induces a
map

[κν ] : P(µ,ν) → (Pν)µ.



118 4 Commuting Reduction and Semidirect Product Theory

To show that this map is symplectic, it is enough to show that

π∗
(µ,ν) ([κν ]∗(Ων)µ) = π∗

(µ,ν)Ω(µ,ν), (4.1.1)

where we use self-explanatory notation; Ω(µ,ν) is the symplectic form on
P(µ,ν), π(µ,ν) : (JG × JK)−1(µ, ν) → P(µ,ν) is the projection, (πν)µ :
J−1
ν (µ) → (Pν)µ is the projection, and (Ων)µ is the reduced symplectic

form on (Pν)µ. It is enough to establish equation (4.1.1) since π(µ,ν) is a
surjective submersion. The right hand side of (4.1.1) is given by

i∗(µ,ν)Ω

by the unique characterization of the reduced symplectic form Ω(µ,ν). The
left side is

π∗
(µ,ν) ([κν ]∗(Ων)µ) = κ∗ν(πν)∗µ(Ων)µ = κ∗ν(iν)∗µΩν

because of the relation [κν ]◦π(µ,ν) = (πν)µ◦κν and the unique characteriza-
tion of the reduced symplectic form (Ων)µ. However, since (iν)µ◦κν = πν◦j,
we get

κ∗ν(iν)∗µΩν = j∗π∗
νΩν = j∗i∗νΩ,

by the unique characterization of the reduced symplectic form Ων . Since
iν ◦ j = i(µ,ν) we get the desired equality. Thus, [κν ] : P(µ,ν) → (Pν)µ is a
symplectic map.

We will show that this map is a diffeomorphism by constructing an
inverse. We begin by defining a map

φ : J−1
ν (µ)→ P(µ,ν),

as follows. Choose an equivalence class [z]ν ∈ J−1
ν (µ) ⊂ Pν for z ∈ J−1

K (ν).
The equivalence relation is that associated with the map πν ; that is, with
the action of Kν . For each such point, we have z ∈ (JG×JK)−1(µ, ν) since
by construction z ∈ J−1

K (ν) and also

JG(z) = (JG ◦ iν)(z) = Jν([z]ν) = µ.

Hence, it makes sense to consider the class [z](µ,ν) ∈ P(µ,ν). The result
is independent of the representative, since any other representative of the
same class has the form k · z where k ∈ Kν . This produces the same class
in P(µ,ν) since for this latter space, the quotient is by Gµ ×Kν . The map
φ is therefore well-defined.

This map φ is Gµ–invariant, and so it defines a quotient map

[φ] : (Pν)µ → P(µ,ν).

Chasing the definitions shows that this map is the inverse of the map
[κν ]. Thus, both are bijections. Since [κν ] is smooth and symplectic, it is
an immersion. A dimension count shows that (Pν)µ and P(µ,ν) have the
same dimension. Thus, [κν ] is a bijective local diffeomorphism, so it is a
diffeomorphism. �
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The above theorem on commuting reduction may be viewed in the general
context discussed in §3.1 by taking M = G×K with the normal subgroup
N being chosen to be either G or K, so that the quotient group of M is
the other group.

It is instructive to build up to the general reduction by stages theorem by
giving direct proofs of some simpler special cases, such as the one at hand
and the case of semidirect products treated in §4.2; these special cases not
only point the way to the general case, but contain interesting constructions
that are relevant to these more specific cases. The general case has some
subtleties not shared by these simpler cases which will be spelled out as we
proceed.

4.2 Semidirect Products

Background and Literature. In some applications one has two sym-
metry groups that do not commute and thus the commuting reduction by
stages theorem does not apply. In this more general situation, it matters
in what order one performs the reduction.

The main result covering the case of semidirect products is due to Mars-
den, Ratiu and Weinstein [1984a,b], with important previous versions (more
or less in chronological order) due to Sudarshan and Mukunda [1974], Vino-
gradov and Kupershmidt [1977], Ratiu [1980b], Guillemin and Sternberg
[1980], Ratiu [1981, 1982], Marsden [1982], Marsden, Weinstein, Ratiu,
Schmid, and Spencer [1982], Holm and Kupershmidt [1983a] and Guillemin
and Sternberg [1984].

The general theory of semidirect products was motivated by several
examples of physical interest, such as the Poisson structure for compress-
ible fluids and magnetohydrodynamics. These examples are discussed in
the original papers cited and references therein. Another, and very useful,
concrete application of this theory is to underwater vehicle dynamics; see
Leonard and Marsden [1997].

Generalities on Semidirect Products. We begin by recalling some
definitions and properties of semidirect products. Let V be a vector space
and assume that the Lie group G (with Lie algebra g) acts (on the left) by
linear maps on V , and hence G also acts (also on the left) on its dual space
V ∗, the action by an element g on V ∗ being the transpose of the action
of g−1 on V . As sets, the semidirect product S = G�V is the Cartesian
product S = G× V and group multiplication is given by

(g1, v1)(g2, v2) = (g1g2, v1 + g1v2),

where the action of g ∈ G on v ∈ V is denoted simply as gv. The identity
element is (e, 0) and the inverse of (g, v) is given by (g, v)−1 = (g−1,−g−1v).
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The Lie algebra of S is the semidirect product Lie algebra s = g�V . The
bracket is given by

[(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], ξ1v2 − ξ2v1) ,

where we denote the induced action of g on V by concatenation, as in ξ1v2.
Perhaps the most basic example of a semidirect product is the Euclidean

group SE(3) of R
3, which is studied in, for example, [MandS] and which

will be treated in some detail in §4.4.
We will need the formulas for the adjoint action and the coadjoint action

for semidirect products. Denoting these and other actions by simple con-
catenation, they are given by

(g, v)(ξ, u) = (gξ, gu− ρv(gξ)) (4.2.1)

and
(g, v)(µ, a) = (gµ+ ρ∗v(ga), ga), (4.2.2)

where (g, v) ∈ S = G × V , (ξ, u) ∈ s = g × V , (µ, a) ∈ s∗ = g∗ × V ∗, and
where ρv : g → V is defined by ρv(ξ) = ξv, the infinitesimal action of ξ
on v. The map ρ∗v : V ∗ → g∗ is the dual of the map ρv. The symbol ga
denotes the (left) dual action of G on V ∗, that is, the inverse of the dual
isomorphism induced by g ∈ G on V . The corresponding (left) action on
the dual space is denoted by ξa for a ∈ V ∗, that is,

〈ξa, v〉 := −〈a, ξv〉 .
Lie-Poisson Brackets and Hamiltonian Vector Fields. Recall from
[MandS] that the Lie-Poisson bracket on the dual of a Lie algebra g∗ comes
with two signs and is given on two functions F,K of µ ∈ g∗ by

{F,K}±(µ) = ±
〈
µ,

[
δF

δµ
,
δK

δµ

]〉
(4.2.3)

Recall also that this bracket is obtained naturally from the canonical bracket
on T ∗G by taking quotients—this is the Lie-Poisson reduction theorem that
is found in [MandS], Chapter 13. The minus sign corresponds to reduction
by the left action and the plus sign to reduction by the right action.

Next, we give the formula for the ± Lie-Poisson bracket on a semidirect
product; namely, for F,K : s∗ → R, their semidirect product bracket is
given by:

{F,K}±(µ, a) = ±
〈
µ,

[
δF

δµ
,
δK

δµ

]〉
±
〈
a,
δF

δµ
· δK
δa
− δK

δµ
· δF
δa

〉
, (4.2.4)

where δF/δµ ∈ g, δF/δa ∈ V are the functional derivatives. Also, one
verifies that the Hamiltonian vector field of a smooth function H : s∗ → R

is given by

XH(µ, a) = ∓
(

ad∗
δH/δµ µ− ρ∗δH/δaa,

δH

δµ
· a
)
. (4.2.5)
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Semidirect Product Reduction Theorem—Statement. We next
state the “classical” semidirect product reduction theorem and following
this, we give a more general theorem concerning actions by semidirect prod-
ucts on symplectic manifolds. The strategy will be to obtain the classical
result as a special case of the more general result, which we shall prove in
detail.

The semidirect product reduction theorem states, roughly speaking, that
for a semidirect product S = G�V , one can first reduce T ∗S by V and
then by G and one gets the same result as reducing by S. The precise state-
ment of the classical semidirect product reduction theorem is as follows.

4.2.1 Theorem (Semidirect Product Reduction Theorem). As above, let
S = G�V , choose σ = (µ, a) ∈ g∗ × V ∗ and reduce T ∗S by the action
of S at σ, which, by Corollary 1.1.4 gives the coadjoint orbit Oσ through
σ ∈ s∗. Then, there is a symplectic diffeomorphism between Oσ and the
reduced space obtained by reducing T ∗G by the subgroup Ga (the isotropy
of G for its action on V ∗ at the point a ∈ V ∗) at the point µ|ga, where ga
is the Lie algebra of Ga.

Remark. Note that in the semidirect product reduction theorem, only
a ∈ V and µ|ga ∈ g∗a are used in the equivalent description of the coadjoint
orbit. Thus, one gets, as a corollary, the interesting fact that the semidi-
rect product coadjoint orbits through σ1 = (µ1, a1) and σ2 = (µ2, a2) are
symplectically diffeomorphic whenever a1 = a2 = a and µ1|ga = µ2|ga.
We shall see a similar phenomenon in more general situations of group
extensions later.

The preceding result will next be shown to be a special case of a theorem
we shall prove on reduction by stages for semidirect products acting on a
symplectic manifold

Semidirect Product Actions. We now set the stage for the state-
ment of the more general reduction by stages result for semidirect product
actions. Start with a free and proper symplectic action of a semidirect prod-
uct S = G�V on a symplectic manifold P and assume that this action has
an equivariant momentum map JS : P → s∗. Since V is a (closed, normal)
subgroup of S, it also acts on P and has a momentum map JV : P → V ∗

given by
JV = i∗V ◦ JS ,

where iV : V → s, given by v �→ (0, v), is the inclusion where and i∗V : s∗ →
V ∗ is its dual.

We carry out the reduction of P by S at a value σ = (µ, a) of the
momentum map JS for S (it is a regular value because of the freeness
assumption) in two stages using the following procedure.

• First, reduce P by V at the value a (it follows from the freeness
assumption that this too is a regular value) to get the first reduced
space Pa = J−1

V (a)/V .
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• Form the isotropy subgroup Ga consisting of elements of G that leave
the point a fixed, using the action of G on V ∗.

We shall show shortly that Ga acts freely and properly on Pa and has an
induced equivariant momentum map Ja : Pa → g∗a, where ga is the Lie
algebra of Ga.

• Second, reduce Pa at the point µa := µ|ga to get the second reduced
space (Pa)µa

= J−1
a (µa)/(Ga)µa

.

4.2.2 Theorem (Reduction by Stages for Semidirect Product Actions).
The two-stage reduced space (Pa)µa

is symplectically diffeomorphic to the
“all-at-once” reduced space Pσ obtained by reducing P by the whole group
S at the point σ = (µ, a).

We have made the free and proper assumption on the action of S in
this case that is the analog of the hypothesis SRFree in the symplec-
tic reduction Theorem 1.1.3. One can also make hypotheses analogous to
SRRegular, but these assumptions would need to be imposed at each of
the stages. We have used the free and proper assumption since, as we shall
see, it is automatically inherited in each of the two stages.

Special Cases. We recover the classical semidirect product reduction
Theorem 4.2.1 by choosing P = T ∗S and using the fact that the first
reduced space, namely reduction by V , is just T ∗G with its canonical sym-
plectic structure. We shall go through this in detail in §4.3.

The commuting reduction theorem for the case in which K is a vector
space results from semidirect product reduction when we take the action of
G on K to be trivial. The fact that the full commuting reduction theorem
is not literally as special case suggests that there is a generalization of the
semidirect product reduction theorem to the case in which V is replaced by
a general Lie group. We give, in fact, more general results in this direction
later. Note that in the commuting reduction theorem, what we called ν is
called a in the semidirect product reduction theorem.

The original papers of Marsden, Ratiu and Weinstein [1984a,b] give a
direct proof of Theorem 4.2.1 along lines somewhat different than we shall
present here. The proofs we give in this book have the advantage that they
work for more general reduction by stages theorems.

Classifying Orbits. Combined with the cotangent bundle reduction the-
orem (as mentioned in the introductory chapter, the reader may consult
either [FofM] or [LonM] for an exposition), the semidirect product reduc-
tion theorem is a very useful tool. For example, using these techniques, one
sees readily that the generic coadjoint orbits for the Euclidean group are
cotangent bundles of spheres with the associated coadjoint orbit symplectic
structure given by the canonical structure plus a magnetic term. We shall
discuss this problem in detail starting with the Euclidean group in §4.4.
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Reducing Dynamics. There is a method for reducing dynamics that is
associated with the geometry of the semidirect product reduction theorem.
One can start with a Hamiltonian on either of the phase spaces (Pa)µa

or
Pσ and induce one (and hence its associated dynamics) on the other space
in a natural way.

Another view of reducing dynamics that is useful in many applications is
as follows: one starts with a Hamiltonian Ha on T ∗G that depends paramet-
rically on a variable a ∈ V ∗; this parametric dependence identifies the space
V ∗, and hence V . The Hamiltonian, regarded as a map H : T ∗G×V ∗ → R

should be invariant on T ∗G under the action of G on T ∗G × V ∗. This
condition is equivalent to the invariance of the corresponding function on
T ∗S = T ∗G×V ×V ∗ extended to be constant in the variable V , under the
action of the semidirect product. This observation allows one to identify
the reduced dynamics of Ha on T ∗Q reduced by Ga with a Hamiltonian
system on s∗ or, if one prefers, on the coadjoint orbits of s∗. For example,
this observation is extremely useful in underwater vehicle dynamics (again,
see Leonard and Marsden [1997]).

The Momentum Map for the V -action. We now work towards a
proof of reduction by stages for semidirect product actions, Theorem 4.2.2.
We first elaborate on the constructions in the statement of the theorem.

Thus, we start by considering a given symplectic action of S on a symplec-
tic manifold P and assume that this action has an equivariant momentum
map JS : P → s∗. Since V is a (normal) subgroup of S, it also acts on P
and has a momentum map JV : P → V ∗ given by

JV = i∗V ◦ JS ,

where iV : V → s is the inclusion v �→ (0, v) and i∗V : s∗ → V ∗ is its dual.
We think of this merely as saying that JV is the second component of JS .

We can also regard G as a subgroup of S by g �→ (g, 0). Thus, G also has
an equivariant momentum map JG : P → g∗ that is the first component of
JS but this will play a secondary role in what follows.

Equivariance of JS under G implies the following relation for JV :

JV (gz) = gJV (z), (4.2.6)

where z ∈ P and we denote the appropriate action of g ∈ G on an element
by concatenation, as before. To prove equation (4.2.6), one uses the fact
that for the coadjoint action of S on s∗ the second component of that
action is just the dual of the given action of G on V , which is evident from
equation (4.2.2).

The Reduction by Stages Construction. We now elaborate on the
reduction by stages construction given in Theorem 4.2.2. An important
step will be to show that the construction is, in fact, well-defined.
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The “one-shot” reduction step is, in principle, straightforward: one car-
ries out reduction of P by S at a regular value σ = (µ, a) of the momentum
map JS for S.

On the other hand, in reduction by stages, one carries out the reduction
in the following two stages (see Figure 4.2.1).

• First, reduce P by V at the value a ∈ V ∗. Since the action of S was
assumed to be free and proper, so is the action by V and hence a is
a regular value. Thus, we get the reduced manifold Pa = J−1

V (a)/V .
Since the reduction is by an Abelian group, the quotient is taken
using the whole of V . We will denote the projection to the reduced
space by

πa : J−1
V (a)→ Pa.

• Second, form the group Ga consisting of elements of G that leave the
point a fixed using the induced action of G on V ∗. We will need to
show that the group Ga acts on Pa and has an induced equivariant
momentum map Ja : Pa → g∗a, where ga is the Lie algebra of Ga.

• Third, using this action of Ga, reduce Pa at the point µa := µ|ga to
get the reduced manifold (Pa)µa

= J−1
a (µa)/(Ga)µa

.

To prove the result, we will systematically check these claims and after
doing this, we will set up the symplectic isomorphism.

Inducing an Action. We first check that we get a free and proper sym-
plectic action of Ga on the V –reduced space Pa. We do this in the following
lemmas.

4.2.3 Lemma. The group Ga leaves the set J−1
V (a) invariant.

Proof. Suppose that JV (z) = a and that g ∈ G leaves a invariant. Then
by the equivariance relation (4.2.6) noted above, we have

JV (gz) = gJV (z) = ga = a.

Thus, Ga acts on the set J−1
V (a). �

4.2.4 Lemma. The action of Ga on J−1
V (a) constructed in the preceding

lemma, induces a free and proper action Ψa on the quotient space Pa =
J−1
V (a)/V .

Proof. If we let elements of the quotient space be denoted by [z]a,
regarded as equivalence classes (relative to the action of Ga), then we claim
that g[z]a = [gz]a defines the action. We first show that it is well-defined.
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P

Figure 4.2.1. A schematic of reduction by stages for semidirect products.

Indeed, for any v ∈ V we have [z]a = [vz]a, so that identifying v = (e, v)
and g = (g, 0) in the semidirect product, it follows that

[gvz]a = [(g, 0)(e, v)z]a = [(g, gv)z]a
= [(e, gv)(g, 0)z]a = [(gv)(gz)]a
= [gz]a.

Thus, the action

Ψa : (g, [z]a) ∈ Ga × Pa �→ [gz]a ∈ Pa
of Ga on the V –reduced space Pa is well-defined.

This action is free because if [gz]a = [z]a, then there is a v ∈ V such that
vgz = z. Since vg = (g, v), freeness of the S-action implies that g = e and
v = 0.

To show properness, assume [zn]a → [z]a and that [gnzn]a → [z′]a. We
must find a convergent subsequence gnp

∈ Ga. There are sequences vn ∈ V
and v′n ∈ V such that vnzn = (e, vn)zn → z and v′ngnzn = (gn, v′n)zn → z′.
Write

(gn, v′n)zn = (gn, v′n)(e, vn)−1(e, vn)zn
= (gn, v′n − vn)(e, vn)zn



126 4 Commuting Reduction and Semidirect Product Theory

Thus, (gn, v′n − vn) has a convergent subsequence, by properness of the S
action on P and hence the first components also form a convergent subse-
quence. Since Ga is closed and gn ∈ Ga, we get a convergent subsequence
in Ga. �

The Induced Action is Symplectic. Our next task is to show that
the induced action just obtained is symplectic.

4.2.5 Lemma. The action Ψa of Ga on the quotient space Pa = J−1
V (a)/V

constructed in the preceding lemma, is symplectic.

Proof. Let πa : J−1
V (a) → Pa denote the natural projection and let the

inclusion be denoted ia : J−1
V (a) → P . Denote by Ψg : P → P the action

of g ∈ G on P . The preceding lemma 4.2.4 shows that

(ia ◦Ψg)|J−1
V (a) = Ψg ◦ ia

for any g ∈ Ga. By construction, Ψa
g ◦ πa = (πa ◦ Ψg)|J−1

V (a). The unique
characterization i∗aΩ = π∗

aΩa of the reduced symplectic form Ωa on Pa
yields

π∗
a(Ψa

g)∗Ωa = Ψ∗
gπ

∗
aΩa = Ψ∗

gi
∗
aΩ = i∗aΨ∗

gΩ = i∗aΩ = π∗
aΩa.

Since πa is a surjective submersion, we conclude that

(Ψa
g)∗Ωa = Ωa.

Thus, the action of Ga on Pa is symplectic. �

An Induced Momentum Map. We next check that the symplectic
action obtained in the preceding lemma has an equivariant momentum map
that we shall call the induced momentum map. As we shall see later,
in more general cases, this turns out to be a critical step; in particular,
one needs to be cautious because for central extensions, for instance, the
momentum map induced at this step need not be equivariant—the fact that
one gets an equivariant momentum map in this case is a special feature of
semidirect products, about which we shall have more to say later.

4.2.6 Lemma. The symplectic action Ψa on the quotient space Pa =
J−1
V (a)/V has an equivariant momentum map.

Proof. We first show that the composition of the restriction JS |J−1
V (a)

with the projection to g∗a induces a well-defined map Ja : Pa → g∗a. To
check this, note that for z ∈ J−1

V (a), and ξ ∈ ga, equivariance gives

〈JS(vz), ξ〉 = 〈vJS(z), ξ〉 = 〈(e, v)JS(z), ξ〉 =
〈
JS(z), (e, v)−1(ξ, 0)

〉
.

In this equation, the symbol (e, v)−1(ξ, 0) means the adjoint action of the
group element (e, v)−1 = (e,−v) on the Lie algebra element (ξ, 0). Thus,
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(e, v)−1(ξ, 0) = (ξ, ξv), and so, continuing the above calculation, and using
the fact that JV (z) = a, we get

〈JS(vz), ξ〉 = 〈JS(z), (ξ, ξv)〉 = 〈JG(z), ξ〉+ 〈JV (z), ξv〉
= 〈JG(z), ξ〉 − 〈ξa, v〉 = 〈JG(z), ξ〉 .

In this calculation, the term 〈ξa, v〉 is zero since ξ ∈ ga. Thus, we have
shown that the expression

〈Ja([z]a), ξ〉 = 〈JG(z), ξ〉

for ξ ∈ ga is well-defined. Here, [z]a ∈ Pa denotes the V –orbit of z ∈ J−1
V (a).

This expression may be written as

Ja ◦ πa = ι∗a ◦ JG ◦ ia,

where ιa : ga → g is the inclusion map and ι∗a : g∗ → g∗a is its dual.
Next, we show that the map Ja is the momentum map of the Ga–action

on Pa. Since the vector fields ξP |(J−1
V (a)) and ξPa

are πa–related for all
ξ ∈ ga, we have

π∗
a

(
iξPa

Ωa
)

= iξP
i∗aΩ = i∗a (iξP

Ω) = i∗a (d 〈JG, ξ〉) = π∗
a (d 〈Ja, ξ〉) .

Again, since πa is a surjective submersion, it follows that

iξPa
Ωa = d 〈Ja, ξ〉

and hence Ja is the momentum map for the Ga action on Pa.
Equivariance of Ja follows from that for JG, by a diagram chasing argu-

ment as above, using the identity Ja ◦ πa = ι∗a ◦ JG ◦ ia and the relations
between the actions of G on J−1

V (a) and of Ga on Pa. �

Proof of Theorem4.2.2. Having established the preliminary facts in
the preceding lemmas, we are ready to prove the main reduction by stages
theorem for semidirect products.

Let σ = (µ, a). Start with the inclusion map

j : J−1
S (σ)→ J−1

V (a)

which makes sense since the second component of σ is a. Composing this
map with πa, we get the smooth map

πa ◦ j : J−1
S (σ)→ Pa.

This map takes values in J−1
a (µa) because of the relation Ja◦πa = ι∗a◦JG◦ia

and µa = ι∗a(µ). Thus, we can regard it as a map

πa ◦ j : J−1
S (σ)→ J−1

a (µa).
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We assert that projection onto the first factor defines a smooth Lie group
homomorphism ψ : Sσ → (Ga)µa

. In fact, the first component g of (g, v) ∈
Sσ lies in (Ga)µa

because

(µ, a) = (g, v)(µ, a) = (gµ+ ρ∗v(ga), ga)

implies, from the second component, that g ∈ Ga and from the first com-
ponent, the identity ι∗aρ

∗
va = 0, and the Ga–equivariance of the map ιa,

that g also leaves µa invariant. This proves the assertion.
The map πa ◦ j is equivariant with respect to the action of Sσ on the

domain and (Ga)µa
on the range via the homomorphism ψ. Thus, πa ◦ j

induces a smooth map

[πa ◦ j] : Pσ → (Pa)µa
.

Diagram chasing, as above, shows that this map is symplectic.
We will show that this map [πa ◦ j] is a diffeomorphism by constructing

an inverse. We will begin by showing how to define a map

φ : J−1
a (µa)→ Pσ.

Refer to Figure 4.2.2 for the spaces involved.

⊃

Figure 4.2.2. Maps that are used in the proof of the semidirect product reduction
theorem.

To do this, take an equivalence class [z]a ∈ J−1
a (µa) ⊂ Pa for z ∈ J−1

V (a),
that is, the V –orbit of z. For each such point, we will try to choose some
v ∈ V such that vz ∈ J−1

S (σ). For this to hold, we must have

(µ, a) = JS(vz).
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By equivariance, the right hand side equals

vJS(z) = (e, v)(JG(z),JV (z))
= (e, v)(JG(z), a)
= (JG(z) + ρ∗v(a), a).

Thus, we require that
µ = JG(z) + ρ∗v(a).

That this is possible follows from the next lemma.

4.2.7 Lemma (Annihilator Lemma). If go
a = {ν ∈ g∗ | ν|ga = 0} denotes

the annihilator of ga in g∗, then

go
a = {ρ∗va | v ∈ V }.

Proof. The identity we showed above, namely ι∗aρ
∗
va = 0, shows that

go
a ⊃ {ρ∗va | v ∈ V }.

Now we use the following elementary fact from linear algebra. Let E and F
be vector spaces, and F0 ⊂ F a subspace. Let T : E → F ∗ be a linear map
whose range lies in the annihilator F ◦

0 of F0 and such that every element
f ∈ F that annihilates the range of T is in F0. Then T maps onto F ◦

0 . 1

In our case, we choose E = V , F = g, F0 = ga, and we let T : V → g∗

be defined by T (v) = ρ∗v(a). To verify the hypothesis, note that we have
already shown that the range of T lies in the annihilator of ga. Let ξ ∈ g
annihilate the range of T . Thus, for all v ∈ V ,

0 = 〈ξ, ρ∗va〉 = 〈ρvξ, a〉 = 〈ξv, a〉 = −〈v, ξa〉 ,

and so ξ ∈ ga as required. Thus, the lemma is proved. �

We apply the lemma to the element ν = µ− JG(z), which is an element
in the annihilator of ga because [z]a ∈ J−1

a (µa) and hence ι∗a(JG(p)) = µa.
Thus, there is a v ∈ V such that µ− JG(z) = ρ∗va.

The above argument shows how to construct v so that vz ∈ J−1
S (σ). We

then claim that we can define the map

φ : [z]a ∈ J−1
a (µa) �→ [vz]σ ∈ Pσ,

where v ∈ V has been chosen as above and [vz]σ is the Sσ–equivalence
class in Pσ of vz.

1We are phrasing things this way so that the basic framework will also apply in the
infinite dimensional case, with the understanding that at this point one would invoke
arguments used in the Fredholm alternative theorem. In the finite dimensional case, the
result may be proved by a dimension count.
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To show that the map φ so constructed is well-defined, we replace z
by another representative uz of the same class [z]a; here u is an arbitrary
element of V . Following the above procedure, choose v1 so that JS(v1uz) =
σ. Now we must show that [vz]σ = [v1uz]σ. In other words, we must show
that there is a group element (g, w) ∈ Sσ such that

(g, w)(e, v)z = (e, v1)(e, u)z.

This will hold if we can show that (g, w) := (e, v1)(e, u)(e, v)−1 ∈ Sσ.
However, by construction, JS(vz) = σ = JS(v1uz); in other words, we
have

σ = (µ, a) = (e, v)JS(z) = (e, v1)(e, u)JS(z).
Thus, by isolating JS(z), we get (e, v)−1σ = (e, u)−1(e, v1)−1σ and so the
element (g, w) = (e, v1)(e, u)(e, v)−1 belongs to Sσ. Thus, the map φ is
well-defined.

The strategy for proving smoothness of φ is to choose a local trivialization
of the V bundle J−1

V (a) → J−1
a (µa) and define a local section which takes

values in the image of J−1
S (σ) under the embedding j. Smoothness of the

local section follows by using a complement to the kernel of the linear
map v �→ ρ∗v(a) that defines the solution v of the equation ρ∗v(a) = µ −
JG(z). Using such a complement depending smoothly on the data creates
a uniquely defined smooth selection of a solution.

Next, we show that the map φ is (Ga)µa
–invariant. To see this, let [z]a ∈

J−1
a (µa) and g0 ∈ (Ga)µa

. Choose v ∈ V so that vz ∈ J−1
S (σ) and let u ∈ V

be chosen so that ug0z ∈ J−1
S (σ). We must show that [vz]σ = [ug0z]σ. Thus,

we must find an element (g, w) ∈ Sσ such that

(g, w)(e, v)z = (e, u)(g0, 0)z.

This will hold if we can show that (g, w) := (e, u)(g0, 0)(e, v)−1 ∈ Sσ. Since
σ = JS(vz) = JS(ug0z), by equivariance of JS we get,

σ = (e, v)JS(z) = (e, u)(g0, 0)JS(z).

Isolating JS(z), this implies that

(e, v)−1σ = (g0, 0)−1(e, u)−1σ,

which means that indeed (g, w) = (e, u)(g0, 0)(e, v)−1 ∈ Sσ. Hence φ is
(Ga)µa

–invariant, and so induces a well-defined map

[φ] : (Pa)µa
→ Pσ.

Chasing the definitions shows that [φ] is the inverse of the map [πa ◦ j].
Smoothness of [φ] follows from smoothness of φ since the quotient by the

group action, πa is a smooth surjective submersion. Thus, both [πa ◦ j] and
φ are symplectic diffeomorphisms. �

In this framework, one can also, of course, reduce the dynamics of a
given invariant Hamiltonian as was done for the case of reduction by T ∗S
by stages.
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Remarks.

1. Choose P = T ∗S in the preceding theorem, with the cotangent action
of S on T ∗S induced by left translations of S on itself. Reducing T ∗S
by the action of V gives a space naturally diffeomorphic to T ∗G—this
may be checked directly, but we will detail the real reason this is so
in the next section. Thus, the reduction by stages theorem gives as a
corollary, the semidirect product reduction Theorem 4.2.1.

2. The original proof of Theorem 4.2.1 in Marsden, Ratiu and Weinstein
[1984a,b] essentially used the map [φ] constructed above to obtain
the required symplectic diffeomorphism. However, the generalization
presented here to obtain reduction by stages for semidirect product
actions, required an essential modification of the original method.

3. In the following section we shall give some details concerning reduc-
tion by stages for SE(3), the special Euclidean group of R

3. This
illustrates some important aspects and applications of the classical
semidirect product reduction Theorem 4.2.1.

4. We briefly describe two examples that require the more general result
of Theorem 4.2.2.

(a) First, consider a pseudo-rigid body in a fluid; that is, a body
which can undergo linear deformations and moving in potential
flow, as was the case for rigid bodies in potential flow in Leonard
and Marsden [1997]. Here the phase space is P = T ∗ GE(3)
(where GE(3) is the semidirect product GL(3) � R

3) and the
symmetry group we want to reduce by is SE(3); it acts on GE(3)
on the left by composition and hence on T ∗ GE(3) by cotangent
lift. According to the general theory, we can reduce by the action
of R

3 first and then by SO(3). This example has the interesting
feature that the center of mass need not move uniformly along a
straight line, so the first reduction by translations is not trivial.
The same thing happens for a rigid body moving in a fluid.

(b) A second, more sophisticated example is a fully elastic body, in
which case, P is the cotangent bundle of the space of all embed-
dings of a reference configuration into R

3 (as in Marsden and
Hughes [1983]) and we take the group again to be SE(3) acting
by composition on the left. Again, one can perform reduction in
two stages.

As we have mentioned before, the reduction by stages philosophy is
quite helpful in understanding the dynamics and stability of under-
water vehicle dynamics, as in Leonard and Marsden [1997].
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4.3 Cotangent Bundle Reduction
and Semidirect Products

The purpose of this section is to couple the semidirect product reduction
theorem with cotangent bundle reduction to obtain a more detailed struc-
ture of the reduced spaces for the right cotangent lifted action of G�V on
T ∗ (G�V ). Of course, by Theorem 1.2.3 on reduction to coadjoint orbits,
these reduced spaces are the coadjoint orbits of the group G�V .

To carry out this program, we first construct a mechanical connection
on the bundle G�V → G and prove that this connection is flat. This
will allow us to identify (equivariantly) the first (V -reduced) space with
(T ∗G,Ωcan). We will then be in a position to apply cotangent bundle reduc-
tion again to complete the orbit classification.

Notation. As in the preceding section, let S = G�V be the semidirect
product of a Lie group G and a vector space V on which G acts, with
multiplication

(g, v)(h,w) = (gh, v + gw), (4.3.1)

where g, h ∈ G and v, w ∈ V . The identity element is (e, 0) and inversion
is given by (g, v)−1 = (g−1,−g−1v). Recall that the Lie algebra of S is the
semidirect product s = g�V with the commutator

[(ξ, v), (η,w)] = ([ξ, η], ξw − ηv) , (4.3.2)

where ξ, η ∈ g and v, w ∈ V .
In what follows it is convenient to explicitly introduce the homomorphism

φ : G → Aut(V ) defining the given G-representation on V and to recall
that we identify V with {e} × V , a closed normal Lie subgroup of G�V .

The adjoint representation of S on s given in equation (4.2.1) restricts
to the S-representation on V given by Ad(g,v) u = gu for any g ∈ G and
u, v ∈ V . Its derivative with respect to the group variable (g, v) in the
direction (ξ, w) ∈ s is ad(ξ,w) u = ξu.

The Mechanical Connection. Let 〈〈·, ·〉〉g and 〈〈·, ·〉〉V be two positive
definite inner products on the Lie algebra g and on the vector space V ,
respectively. Then

〈〈(ξ, v), (η,w)〉〉s = 〈〈ξ, η〉〉g + 〈〈v, w〉〉V , (4.3.3)

for any (ξ, v), (η,w) ∈ s, defines a positive definite inner product on s.
Since the spaces g×{0} and {0}×V are orthogonal, the orthogonal 〈〈 , 〉〉s-
projection PV : s = g�V → V is simply the projection on the second
factor.
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Extend the inner product (4.3.3) on s to a right-invariant Riemannian
metric on S by setting

〈〈(Xg, u), (Yg, w)〉〉(g,v)
=
〈〈
T(g,v)R(g,v)−1(Xg, u), T(g,v)R(g,v)−1(Yg, w)

〉〉
s
, (4.3.4)

where (g, v) ∈ S, (Xg, u), (Yg, w) ∈ T(g,v)S, and R(g,v) is right translation2

on S. The derivative of R(h,w) is readily computed from (4.3.1) to be

T(g,v)R(h,w)(Xg, u) = (Xg · h, u+ Tgφ
w(Xg)), (4.3.5)

where (Xg, w) ∈ T(g,v)S, Xg · h := TgRh(Xg), Rh is the right translation
on G, and φw : G→ V is given by φw(g) := gw. In particular

T(g,v)R(g,v)−1(Xg, u) =
(
Xg · g−1, u− (Xg · g−1)v

)
, (4.3.6)

a formula that is useful in the subsequent computations.
The hypotheses of Theorem 2.1.15 hold for the bundle G�V → V

and hence the mechanical connection AV ∈ Ω(G�V ;V ) associated to
the Riemannian metric 〈〈 , 〉〉s is given by formula (2.1.15) which in this
case becomes

AV (g, v) (Xg, u) = Ad(g,v)−1

(
PV T(g,v)R(g,v)−1(Xg, u)

)

= Ad(g−1,−g−1v)

(
PV

(
Xg · g−1, u− (X · g−1)v

))

= g−1
(
u− (Xg · g−1)v

)
, (4.3.7)

where (g, v) ∈ S and (Xg, u) ∈ T(g,v)S.
Notice that the connection AV is not S-invariant. In contrast, the same

construction for central extensions yields an invariant but nonflat mechan-
ical connection. As we shall see later, invariance in this case will follow
from the equivariance equation (2.1.16).

The Flatness Calculation. The “reason” why the first reduced space is
so simple is that the mechanical connectionAV is flat—that is, its curvature
is zero. This is a direct consequence of Theorem 2.1.16 as will be shown
below. Let (Xg, ū), (Yg, w̄) ∈ T(g,v)S and let

(ξ, u) = T(g,v)R(g,v)−1(Xg, ū)

(η,w) = T(g,v)R(g,v)−1(Yg, v̄),

each of which is an element of s. We compute the curvature of the mechan-
ical connection AV with the assistance of the equation ad(ξ,w) u = ξu,

2Our choice of right translations is motivated by infinite dimensional applications to
diffeomorphism groups. Of course, there is a left invariant analogue of the constructions
given here.
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using the formula (2.1.17), which in this case becomes

curvAV ((Xg, ū), (Yg, w̄))

= Ad(g,v)−1

(
− ad(ξ,u) PV (η,w) + ad(η,w) PV (ξ, u) + PV [(ξ, u), (η,w)] + 0

)

= Ad(g,v)−1 (−ξw + ηu+ ξw − ηu) = 0.

We summarize this discussion in the following theorem.

4.3.1 Theorem. The mechanical connection AV defined on the right
principal V -bundle S → G by formula (4.3.7) is flat.

Remarks. If one’s goal is simply to pick a connection on the the principal
V -bundle S → G in order to realize the first reduced space as T ∗G with the
canonical structure, then one may use the trivial connection associated with
the product structure S = G× V , so that the connection 1-form is simply
projection to V . This connection has the needed equivariance properties to
realize the reduced space as T ∗G and identifies the resulting action of Ga
as the right action on T ∗G. On the other hand, in more general situations
in which the bundles may not be trivial, it is the mechanical connection
which is used in the construction and so it is of interest to use it here as
well. In particular, in the second stage reduction, one needs a connection
on the (generally) nontrivial bundle G → G/Ga and such a connection is
naturally induced by the mechanical connection.

Cotangent Bundle Structure of the Orbits. We are now ready to
establish the extent to which coadjoint orbits of G�V are cotangent bun-
dles (possibly with magnetic terms). We will illustrate the methods with
SE(3) in §4.4. As we have mentioned, the strategy is to combine the reduc-
tion by stages theorem with the cotangent bundle reduction theorem. In
the course of doing this, we recover a result of Ratiu [1980a, 1981, 1982]
regarding the embedding of the semidirect product coadjoint orbits into
cotangent bundles with magnetic terms, but will provide a different proof
here based on connections. We consider here the cotangent lift of right
translation of S on T ∗S (see Theorem 4.2.1) and all connections are the
mechanical connections associated to the right invariant metrics induced
on S and G by the inner products 〈〈 , 〉〉s and 〈〈 , 〉〉g, respectively..

4.3.2 Theorem. Let S = G�V and JV : T ∗S → V ∗, JV (αg, a) = g−1a,
be the momentum map of the cotangent lift of right translation of V on
S, where

〈
g−1a, u

〉
:= 〈a, gu〉 for any u ∈ V , a ∈ V ∗, and g ∈ G. Let

a ∈ JV (T ∗S) ⊂ V ∗ and reduce T ∗S at a. There is a right Ga-equivariant
symplectic diffeomorphism

(T ∗S)a := J−1
V (a)/V � (T ∗G,Ωa) , (4.3.8)

where Ωa = Ωcan is the canonical symplectic form. Furthermore, let σ =
(µ, a) ∈ s∗×V ∗ and reduce T ∗S by the cotangent lift of right translation of
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S on itself at σ obtaining the coadjoint orbit Oσ through σ endowed with
the plus orbit symplectic form. Let Ja : T ∗G → g∗a be the momentum map
of the cotangent lift of right translation of the isotropy subgroup Ga = {g ∈
G | ga = g} on G, ga = {ξ ∈ g | ξa = 0} the Lie algebra of Ga, and
µa = µ|ga

. Then there is a symplectic diffeomorphism

Oσ � (T ∗G)µa
:= J−1

a (µa)/ (Ga)µa
(4.3.9)

and a symplectic embedding

(T ∗G)µa
↪→

(
T ∗

(
G/ (Ga)µa

)
,Ωµa

)
,

where Ωµa
= Ωcan−π∗Bµa

with Bµa
a closed two-form on G/ (Ga)µa

calcu-
lated in Theorem 4.3.3. The image of this embedding is a vector subbundle
of T ∗

(
G/ (Ga)µa

)
. If Ga is Abelian, in which case (Ga)µa

= Ga, this
embedding is a diffeomorphism onto T ∗(G/Ga).

Proof. The fact that the spaces in (4.3.8) are symplectomorphic is a con-
sequence of the standard cotangent bundle reduction theorem for Abelian
symmetry groups in §2.2 combined with Theorem 4.3.1. As we have seen
in §2.2, the symplectomorphism is induced by the shift map (which, recall,
is also the projection to the horizontal part):

shifta : J−1
V (a)→ J−1

V (0), shifta(p(g,v)) = p(g,v) −
〈
a,AV (g, v)

〉
.

To show the equivariance it only suffices to check that

shifta
(
p(g,v) · (h, 0)

)
=
(
shifta(p(g,v))

)
· (h, 0), (4.3.10)

for any p(g,v) ∈ T ∗
(g,v)S and h ∈ Ga. However, if (X,u) ∈ T(gh,v)S, formulas

(4.3.7), (4.3.5), and ha = a imply
〈
a,AV ((g, v)(h, 0))(X,u)

〉
=
〈
a, (gh)−1

(
u− (X · (gh)−1)v

)〉

=
〈
ha, g−1

(
u− (X · (gh)−1)v

)〉

=
〈
a, g−1

(
u− ((X · h−1) · g−1)v

)〉

=
〈
a,AV (g, v)(X · h−1, u)

〉

=
〈
a,AV (g, v)

(
(X,u) · (h, 0)−1

)〉
,

which proves (4.3.10).
The fact that the map in (4.3.9) is a symplectomorphism follows from

Theorem 4.2.1 and the Ga-equivariance in (4.3.8).
The rest of the statement is a direct consequence of the Cotangent Bun-

dle Reduction Theorem 2.2.1: the magnetic term of the cotangent bundle
T ∗

(
G/ (Ga)µa

)
is the µa-component Bµa

:= 〈µa,B〉 of the curvature B of

the mechanical connection AGa on the right principal bundle G → G/Ga
associated to the inner product 〈〈 , 〉〉g (see Proposition 2.2.5). �



136 4 Commuting Reduction and Semidirect Product Theory

Calculation of AGa and dAGa . As promised in the preceding theorem,
we now derive formulas for the mechanical connection and its curvature on
the right principal Ga-bundle G→ G/Ga.

4.3.3 Theorem. The mechanical connection on the right principal bundle
G→ G/Ga associated to the inner product 〈〈 , 〉〉g is given by

AGa(g)(Xg) = Pa(TgLg−1Xg)

+
((

Pa ◦AdTg ◦Adg
) ∣∣
∣
ga

)−1(
Pa ◦AdTg ◦Adg

) (
P
⊥
a (TgLg−1Xg)

)
, (4.3.11)

where Pa : g→ ga and P
⊥
a : g→ g⊥a are the orthogonal projections relative

to the inner product 〈〈 , 〉〉g. Let AGa
µa

:=
〈
µa,AGa

〉
∈ Ω1(G) be the µa-

component of AGa . The two-form Bµa
∈ Ω2(G) is obtained by dropping

dAGa
µa

to the quotient G/ (Ga)µa
.

If AdTg ◦Adg leaves ga invariant, where AdTg : g → g is the transpose
(adjoint) of Adg relative to 〈〈 , 〉〉g (this holds, in particular, when 〈〈 , 〉〉g is
Ad-invariant, which can always be achieved if G is compact), the formulas
for the connection and its differential simplify to

AGa = Pa ◦ θL (4.3.12)

and

dAGa(g)(Xg, Yg) = −Pa

(
[TgLg−1Xg, TgLg−1Yg]

)
, (4.3.13)

where θL, defined by θL(Xg) = TgLg−1Xg, is the left-invariant Maurer-
Cartan form on G (see Theorem 2.1.14).

Proof. We first compute the locked inertia tensor for the right action
of Ga on G. Let 〈〈 , 〉〉g denote the right invariant extension of the inner
product 〈〈 , 〉〉g to an inner product on TgG, so that 〈〈 , 〉〉e = 〈〈 , 〉〉g and let
ξ, η ∈ ga. By definition, the locked inertia tensor is given by

〈I(g)(ξ), η〉 = 〈〈ξG(g), ηG(g)〉〉g = 〈〈TeLgξ, TeLgη〉〉g = 〈〈Adg ξ,Adg η〉〉e
=
〈〈

AdTg ◦Adg ξ, η
〉〉

e
=
〈〈

(Pa ◦AdTg ◦Adg)(ξ), η
〉〉

e
.

Thus,

I(g)(ξ) =
〈〈

(Pa ◦AdTg ◦Adg)(ξ), ·
〉〉

e
∈ g∗a. (4.3.14)

Since the action is free, I(g) is invertible for every g ∈ G and hence we
conclude that

(
Pa ◦AdTg ◦Adg

) ∣∣
∣
ga

: ga → ga is an isomorphism.
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Next, we compute the value J
(
〈〈Xg, ·〉〉g

)
∈ g∗a of the Ga-momentum

map J : T ∗G→ g∗a. For ξ ∈ ga we have
〈
J
(
〈〈Xg, ·〉〉g

)
, ξ
〉

= 〈〈Xg, ξG(g)〉〉 = 〈〈Xg, TeLgξ〉〉g
=
〈〈
TgRg−1Xg,Adg ξ

〉〉
e

=
〈〈

AdTg (TgRg−1Xg), ξ
〉〉

e

=
〈〈
〈(Pa ◦AdTg ◦Adg)(TgLg−1Xg), ξ

〉〉

e
.

We conclude that

J
(
〈〈Xg, ·〉〉g

)
=
〈〈

(Pa ◦AdTg ◦Adg)(TgLg−1Xg), ·
〉〉

e

=
〈〈

(Pa ◦AdTg ◦Adg)(PaTgLg−1Xg), ·
〉〉

e

+
〈〈

(Pa ◦AdTg ◦Adg)(P⊥
a TgLg−1Xg), ·

〉〉

e
. (4.3.15)

Using (4.3.14) and (4.3.15) in the definition (2.1.4) of he mechanical con-
nection yields (4.3.11).

Now assume that AdTg ◦Adg leaves ga invariant; since this linear opera-
tor is symmetric, it also leaves its orthogonal complement invariant. This
implies that the second summand in (4.3.15) vanishes and hence

J
(
〈〈Xg, ·〉〉g

)
=
〈〈(

Pa ◦AdTg ◦Adg
) (

Pa(g−1 ·Xg)
)
, ·
〉〉

e
. (4.3.16)

Combining (4.3.14) and (4.3.16), we get

AGa(g)(Xg) =
(
I(g)−1 ◦ J

) (
〈〈Xg, ·〉〉g

)
= (Pa ◦ θL)(Xg).

To compute dAGa(g)(Xg, Yg), extend Xg, Yg to left invariant vector fields
X̄, Ȳ . Then,

dAGa(g)(Xg, Yg) = X̄[AGa(Ȳ )](g)− Ȳ [AGa(X̄)](g)−AGa(g)([X̄, Ȳ ](g))

= −Pa([TgL−1
g ·Xg, TgL

−1
g · Yg]), (4.3.17)

where we have used the fact that AGa(Ȳ ), for example, is constant from
the preceding expression for AGa and left invariance, and so the first two
terms vanish. �

4.4 Example: The Euclidean Group

This section uses the results of the preceding section to classify the coad-
joint orbits of the Euclidean group SE(3). We will also make use of mechan-
ical connections and their curvatures to compute the the coadjoint orbit
symplectic forms.
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A Right Invariant Metric on SE(3). Identify

se(3) � so(3)⊕ R
3

and define the natural inner product at the identity (see (4.3.3))

〈〈(X, a), (Y, b)〉〉(I,0) = −1
2

tr(XY ) + 〈〈a, b〉〉 ,

where, on the right hand side, 〈〈·, ·〉〉 denotes the Euclidean inner product.
Requiring right invariance of the metric and use of the equation (4.3.6)
gives

〈〈(XA, aA), (YA, bA)〉〉(A,α)

=
〈〈

(XA ·A−1, aA − (XA ·A−1)α), (YA ·A−1, bA − (YA ·A−1)α)
〉〉

(I,0)

= −1
2

tr(XA ·A−1 · YA ·A−1) +
〈〈

(XA ·A−1)α, (YA ·A−1)α
〉〉

−
〈〈

(XA ·A−1)α, bA
〉〉
−
〈〈

(YA ·A−1)α, aA
〉〉

+ 〈〈aA, bA〉〉 . (4.4.1)

The mechanical connection for the principal R
3-bundle SE(3)→ SO(3),

is given by (4.3.7):

AR
3
(A,α)(XA, aA) = A−1

(
aA − (XA ·A−1)α

)

and from Theorem 4.3.1, we see that curvAR
3

= dAR
3

= 0.

First Reduction. We first reduce by the R
3-cotangent lifted action.

Let a ∈ R
3∗ = R

3. By Theorem 4.3.2, the cotangent bundle reduction
theorem for semidirect products, we know that the first reduced space
(T ∗ SE(3))a = J−1

R3 (a)/R3 is symplectically diffeomorphic to the cotangent
bundle (T ∗ SO(3),Ωcan).

Second Reduction. We first take the easy case in which a = 0. Then
Ga = SO(3). Reduction by the SO(3)-action therefore gives coadjoint orbits
of SO(3). Thus O(a=0,µ) = S2

µ, the two-sphere passing through µ ∈ R
3.

Next, assume a �= 0. Then the group SE(3)a/R3
a � SO(3)a � S1 acts (on

the right) on the first reduced space, (T ∗ SO(3),Ωcan). Note that the map
[A] ∈ SO(3)/SO(3)a �→ Aa ∈ S2

a, the two-sphere passing through a ∈ R
3,

is a diffeomorphism. Depending on whether µ = 0 or µ �= 0, we have to
consider two further subcases.

Suppose that µ = 0. Reducing by the SO(3)a = S1-action at µa = 0
gives, by another application of the cotangent bundle reduction theorem
for Abelian groups, the symplectic manifold (T ∗S2

a,Ωcan) (see also Theorem
4.3.2).

Finally, consider the subcase µ �= 0. The group Ga = SO(3)a = S1

acts by cotangent lift of right translation on T ∗ SO(3). The S1-principal
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bundle SO(3)→ SO(3)/SO(3)a � S2
a naturally inherits a metric from the

principal R
3-bundle SE(3)→ SO(3), which is SO(3)-invariant.

Let us compute the curvature of the mechanical connection on the bundle
SO(3)→ S2

a. It is convenient to use the Lie algebra isomorphism x ∈ R
3 �→

x̂ ∈ so(3) defined by the cross product, namely, x̂u = x × u. The inner
product on so(3)

〈〈x̂, ŷ〉〉I := 〈〈x, y〉〉 = −1
2

tr(x̂ ŷ),

where x, y ∈ R
3, induces the right invariant Riemannian metric 〈〈·, ·〉〉 on

SO(3) given on the tangent space at A by

〈〈XA, YA〉〉A = −1
2

tr(XA ·A−1 · YA ·A−1),

where XA, YA ∈ TA SO(3). The Lie algebra of SO(3)a � S1 is span{a} ∼= R,
so the infinitesimal generator of u ∈ R is

uSO(3)(A) =
d

dt

∣
∣
∣
∣
t=0

A exp(tuâ) = uAâ. (4.4.2)

By right invariance of the metric and the identity AâA−1 = Âa, we get for
any u, v ∈ R,

〈〈I(A)uâ, vâ〉〉 = uv 〈〈Aâ,Aâ〉〉A = uv
〈〈
AâA−1, AâA−1

〉〉
I

= uv
〈〈
Âa, Âa

〉〉

I
= uv 〈〈Aa,Aa〉〉 = 〈〈ua, va〉〉 . (4.4.3)

To identify from this formula the locked inertia tensor I(A) : span{â} →
span{a}∗ as a linear map from span{â} to R

3 and to determine its one-
dimensional range, we will make use of the isomorphism µ̄ ∈ so(3)∗ �→ µ ∈
R

3 given by 〈µ̄, x̂〉 = 〈〈µ, x〉〉 for any x ∈ R
3.

The projection R
3 → span{a} is given by x �→ 〈〈x,a〉〉

‖a‖2 a and composing
it with the isomorphism x̂ ∈ so(3) �→ x ∈ R

3 gives the projection x̂ ∈
so(3) �→ 〈〈x,a〉〉

‖a‖2 a ∈ span{a}. The dual span{a}∗ → so(3)∗ of this map
composed with the isomorphism µ̄ ∈ so(3)∗ �→ µ ∈ R

3 gives the embedding

κ : ϕ ∈ span{a}∗ �→ 〈ϕ,̂a〉
‖a‖2 a ∈ span{a} ⊂ R

3. This isomorphism κ which
identifies span{a}∗ with span{a} is thus characterized by

〈〈κ(ϕ), a〉〉 = 〈ϕ, â〉 . (4.4.4)

Thus, by (4.4.3), we get

〈〈κ (I(A)uâ) , a〉〉 = 〈〈I(A)uâ, â〉〉 = 〈〈ua, a〉〉 .

Therefore, identifying via κ the spaces span{a}∗ and span{a}, formula
(4.4.3) shows that I(A) : span{â} → span{a} is given by

I(A)â = a. (4.4.5)
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Taking u ∈ R, the SO(3)a-momentum map J : T ∗ SO(3) → span{a}∗ is
given by

〈J (〈〈XA, ·〉〉A) , uâ〉 =
〈〈
XA, uSO(3)(A)

〉〉
A

= u 〈〈XA, Aâ〉〉A
= u

〈〈
XA ·A−1, AâA−1

〉〉
I

= u
〈〈

AdA−1(XA ·A−1), â
〉〉
I

= u
〈〈
A−1 ·XA, â

〉〉
I

=
(

1
‖a‖2

〈〈
A−1 ·XA, â

〉〉
I
a, ua

)
,

so that, identifying span{a}∗ with span{a} via the map κ, equation (4.4.4)
gives

J (〈〈XA, ·〉〉A) =
1
‖a‖2

〈〈
A−1 ·XA, â

〉〉
I
a ∈ span{a}. (4.4.6)

Therefore, by (4.4.5) and (4.4.6), the mechanical span{â}-valued connec-
tion one-form has the expression

ASO(3)a(A)(XA) : =
(
I(A)−1 ◦ J

)
(〈〈XA, ·〉〉A)

=
1
‖a‖2

〈〈
A−1 ·XA, â

〉〉
I
â. (4.4.7)

If µ ∈ R
3, then µ̄|span{a} ∈ span{a}∗ and hence κ

(
µ̄|span{a}

)
= 〈〈µ,a〉〉

‖a‖2 a ∈
span{a}, which says that if we identify span{a}∗ with span{a} via κ then
µa = 〈〈µ,a〉〉

‖a‖2 a ∈ span{a}.
From (4.4.7) we see that if µ ∈ R

3, the µa-component ASO(3)a
µa of ASO(3)a

is given by

ASO(3)a
µa

(A)(XA) =
〈
µ̄|

span{â},A
SO(3)a(A)(XA)

〉

=

〈

µ̄,
1
‖a‖2

〈〈
A−1 ·XA, â

〉〉
I
â

〉

=
〈〈µ, a〉〉
‖a‖2

〈〈
A−1 ·XA, â

〉〉
I
. (4.4.8)

To find the magnetic term we need to compute dASO(3)a
µa (A)(XA, YA) for

A ∈ SO(3) and XA, YA ∈ TA SO(3). Let XA = x̂ ·A, YA = ŷ ·A ∈ TA SO(3).
Denote by X̄, Ȳ the right invariant vector fields whose values at I are x̂ and
ŷ respectively. Then (4.4.7) and the identities A−1x̂A = Â−1x, 〈〈x̂, ŷ〉〉I =
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〈〈x, y〉〉, imply

YA

[
ASO(3)a
µa

(X̄)
]

=
d

dt

∣
∣
∣
∣
t=0

ASO(3)a
µa

(X̄)((exp tŷ)A)

=
d

dt

∣
∣
∣
∣
t=0

ASO(3)a
µa

((exp tŷ)A)(x̂ · (exp tŷ)A)

=
d

dt

∣
∣
∣
∣
t=0

〈〈µ, a〉〉
‖a‖2

〈〈
A−1 exp(−tŷ)x̂(exp tŷ)A, â

〉〉
I

=
d

dt

∣
∣
∣
∣
t=0

〈〈µ, a〉〉
‖a‖2

〈〈
A−1 exp(−tŷ)x, a

〉〉

=
〈〈µ, a〉〉
‖a‖2

〈〈
A−1(x× y), a

〉〉
. (4.4.9)

Similarly

XA

[
ASO(3)a
µa

(Ȳ )
]

= −〈〈µ, a〉〉
‖a‖2

〈〈
A−1(x× y), a

〉〉
. (4.4.10)

Finally, since [X̄, Ȳ ])(A) = −[x̂, ŷ] · A (because X̄, Ȳ are right invariant
vector fields), formula (4.4.7) yields

ASO(3)a
µa

([
X̄, Ȳ

])
(A) = ASO(3)a

µa
(A)(−[x̂, ŷ] ·A)

= −〈〈µ, a〉〉
‖a‖2

〈〈
A−1[x̂, ŷ]A, â

〉〉
I

= −〈〈µ, a〉〉
‖a‖2

〈〈
A−1(x× y), a

〉〉
. (4.4.11)

Formulas (4.4.9), (4.4.10), and (4.4.11) therefore give

dASO(3)a
µa

(A)(XA, YA)

= XA

[
ASO(3)a
µa

(Ȳ )
]
− YA

[
ASO(3)a
µa

(X̄)
]
−ASO(3)a

µa

([
X̄, Ȳ

])
(A)

= −〈〈µ, a〉〉
‖a‖2

〈〈
A−1(x× y), a

〉〉
, (4.4.12)

where XA = x̂ · A, YA = ŷ · A ∈ TA SO(3). Note that this equation agrees
with the result of Theorem 4.3.3.

This two-form on SO(3) clearly induces a two-form Bµa
, the magnetic

term, on the sphere S2
a by

Bµa
(Aa)(x×Aa, y ×Aa) = −〈〈µ, a〉〉

‖a‖2
〈〈x× y,Aa〉〉 . (4.4.13)

Invoking the cotangent bundle reduction theorem we classify the orbits
of SE(3) as follows.
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4.4.1 Theorem. The coadjoint orbits of SE(3) are of the following types.

• O(a=0,µ) � (S2
µ, ωµ)

• O(a�=0,µ=0) � (T ∗S2
a,Ωcan)

• O(a�=0,µ�=0) � (T ∗S2
a,Ωcan − π∗Bµa

)

where ωµ is the orbit symplectic form on the sphere S2
µ of radius ‖µ‖,

µa = 〈〈µ,a〉〉
‖a‖2 a ∈ span{a} is the orthogonal projection of µ to span{a},

π : T ∗S2
a → S2

a is the cotangent bundle projection, Ωcan is the canoni-
cal symplectic structure on T ∗S2

a, and the two-form Bµa
on the sphere S2

a

of radius ‖a‖ is given by formula (4.4.13).




