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Optimal Orbit Reduction

As we already pointed out the main difference between the point and orbit
reduced spaces is the invariance properties of the submanifolds out of which
they are constructed. More specifically, if we mimic in the optimal context
the standard orbit reduction procedure, the optimal orbit reduced space
that we should study is G · J−1(ρ)/G = J−1(Oρ)/G, where Oρ := G · ρ ⊂
M/A′

G. The following pages constitute an in–depth study of this quotient
and its relation with new (pre)–symplectic manifolds that can be used to
reproduce the classical orbit reduction program and expressions.

14.1 The Space for Optimal Orbit
Reduction

The first question that we have to tackle is: is there a canonical smooth
structure for J−1(Oρ) and J−1(Oρ)/G that we can use to carry out the
orbit reduction scheme in this framework?

We will first show that there is an affirmative answer for the smooth
structure of J−1(Oρ). The main idea that we will prove in the follow-
ing paragraphs is that J−1(Oρ) can be naturally endowed with the unique
smooth structure that makes it into an initial submanifold of M . We start
with the following proposition.

14.1.1 Proposition. Let (M, {·, ·}) be a smooth Poisson manifold and G
be a Lie group acting canonically and properly on M . Let J : M →M/A′

G

be the optimal momentum map associated to this action. Then,
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(i). The generalized distribution D on M defined by D(m) := g · m +
A′
G(m), for all m ∈M , is integrable.

(ii). Let m ∈M be such that J (m) = ρ, then G0 · J−1(ρ) is the maximal
integral submanifold of D going through the point m. The symbol G0

denotes the connected component of G containing the identity.

Proof. (i). The distribution D can be written as the span of globally
defined vector fields on M , that is,

D = span{ξM , Xf | ξ ∈ g and f ∈ C∞(M)G}. (14.1.1)

By the Frobenius–Stefan–Sussman Theorem (see Stefan [1974a,b] and
Sussman [1973]), the integrability of D can be proved by showing that
this distribution is invariant by the flows of the vector fields in (14.1.1)
that we used to generate it. Let f, l ∈ C∞(M)G, ξ, η ∈ g, Ft be the flow
of Xl, and Ht be the flow of ηM . Recall that ηM is a complete vector field
such that Ht(m) = exp tη ·m, for all t ∈ R and m ∈ M . Now, the inte-
grability of A′

G guarantees that TmFt ·Xf (m) ∈ A′
G(Ft(m)) ⊂ D(Ft(m)).

Also, the G–equivariance of Ft and the invariance of the function f imply
that TmFt ·ξM (m) = ξM (Ft(m)) and TmHt ·Xf (m) = Xf (Ht(m)). Finally,

TmHt · ξM (m) =
d

ds

∣
∣
∣
∣
s=0

exp tη exp sξ ·m

=
d

ds

∣
∣
∣
∣
s=0

exp tη exp sξ exp−tη exp tη ·m = (Adexp tη ξ)M (exp tη ·m),

which proves that D is integrable.
(ii) As D is integrable and is generated by the vector fields (14.1.1), its
maximal integral submanifolds coincide with the orbits of the action of the
pseudogroup constructed by finite composition of flows of the vector fields
in (14.1.1), that is, for any m ∈ M , the integral leaf Lm of D that goes
through m is:

Lm = {Ft1 ◦ · · · ◦ Ftn(m) | with Fti the flow of a vector field in (14.1.1)}.

Given that [Xf , ξM ] = 0 for all f ∈ C∞(M)G and ξ ∈ g, the previous
expression can be rewritten as

Lm = {Ht1 ◦ · · · ◦Htj ◦Gs1 ◦ · · · ◦Gsk
(m)

| Gsi
flow of fi ∈ C∞(M)G, and Hti flow of ξiM , ξ

i ∈ g}.

Therefore, Lm = G0 · J−1(ρ), as required. �

As we already said, a general fact about integrable generalized distribu-
tions Dazord [1985] states that the smooth structure on a subset of M that



14.1 The Space for Optimal Orbit Reduction 439

makes it into a maximal integral manifold of a given distribution coincides
with the unique smooth structure that makes it into an initial submanifold
of M . Therefore, the previous proposition shows that the sets G0 · J−1(ρ)
are initial submanifolds of M .

14.1.2 Proposition. Suppose that we have the same setup as in Proposi-
tion 14.1.1. If either Gρ is closed in G or, more generally, Gρ acts properly
on J−1(ρ), then:

(i) The Gρ action on the product G × J−1(ρ) defined by h · (g, z) :=
(gh, h−1 · z) is free and proper and therefore, the corresponding orbit
space G×J−1(ρ)/Gρ =: G×Gρ

J−1(ρ) is a smooth regular quotient
manifold. We will denote by πGρ

: G× J−1(ρ)→ G×Gρ
J−1(ρ) the

canonical surjective submersion.

(ii) The mapping i : G ×Gρ
J−1(ρ) → M defined by i([g, z]) := g · z

is an injective immersion onto J−1(Oρ) such that, for any [g, z] ∈
G ×Gρ

J−1(ρ), T[g,z]i · T[g,z](G ×Gρ
J−1(ρ)) = D(g · z). On other

words i(G×Gρ
J−1(ρ)) = J−1(Oρ) is an integral submanifold of D.

Proof. (i). It is easy to check that Gρ is closed in G if and only if the
action of Gρ on G by right translations is proper. Additionally, if Gρ is
closed in G then the Gρ–action on J−1(ρ) is proper. In any case, if the
action of Gρ on either G, or on J−1(ρ), or on both, is proper, so is the
action on the product G×J−1(ρ) in the statement of the proposition. As
to the freeness, it is inherited from the freeness of the Gρ–action on G.
(ii). First of all, the map i is clearly well-defined and smooth since it is the
projection onto the orbit space G×Gρ

J−1(ρ) of the Gρ–invariant smooth
map G×J−1(ρ)→M given by (g, z) �−→ g · z. It is also injective because
if [g, z], [g′, z′] ∈ G ×Gρ

J−1(ρ) are such that i([g, z]) = i([g′, z′]), then
g · z = g′ · z′ or, analogously, g−1g′ · z′ = z, which implies that g−1g′ ∈ Gρ.
Consequently, [g, z] = [gg−1g′, (g′)−1g · z] = [g′, z′], as required.

Finally, we check that i is an immersion. Let [g, z] ∈ G ×Gρ
J−1(ρ)

arbitrary and ξ ∈ g, f ∈ C∞(M)G be such that

T[g,z]i · T(g,z)πGρ
· (TeLg(ξ),Xf (z)) = 0.

If we denote by Ft the flow of Xf we can rewrite this equality as

d

dt

∣
∣
∣
∣
t=0

g exp tξ · Ft(z) = 0 or equivalently, TzΦg(Xf (z) + ξM (z)) = 0.

Hence Xf (z) = −ξM (z) which by (13.1.7) implies that ξ ∈ gρ and there-
fore T(g,z)πGρ

· (TeLg(ξ),Xf (z)) = T(g,z)πGρ
· (TeLg(ξ),−ξM (z)) = 0, as

required.
Given that for any ξ ∈ g, f ∈ C∞(M)G, and [g, z] ∈ G ×Gρ

J−1(ρ) we
see that T[g,z]i ·T(g,z)πGρ

· (TeLg(ξ),Xf (z)) = (Adg ξ)M (g · z) +Xf (g · z), it
is clear that T[g,z]i · T[g,z](G×Gρ

J−1(ρ)) = D(g · z) and thereby i(G×Gρ

J−1(ρ)) = J−1(Oρ) is an integral submanifold of D. �
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By using the previous propositions we will now show that, in the presence
of the standard hypotheses for reduction, J−1(Oρ) is an initial submanifold
of M whose connected components are the also initial submanifolds gG0 ·
J−1(ρ), g ∈ G. We start with the following definition:

14.1.3 Definition. Let (M, {·, ·}) be a smooth Poisson manifold and G
be a Lie group acting canonically and properly on M . Let J : M →M/A′

G

be the optimal momentum map associated to this action and ρ ∈ M/A′
G.

Suppose that Gρ acts properly on J−1(ρ). In these circumstances, by
Proposition 14.1.2, the twist product G×Gρ

J−1(ρ) has a canonical smooth
structure. Consider in the set J−1(Oρ) the smooth structure that makes the
bijection G×Gρ

J−1(ρ)→ J−1(Oρ) given by (g, z)→ g ·z into a diffeomor-
phism. We will refer to this structure as the initial smooth structure of
J−1(Oρ).

The following theorem justifies the choice of terminology in the previous
definition and why we will be able to refer to the smooth structure there
introduced as THE initial smooth structure of J−1(Oρ).
14.1.4 Theorem. Suppose that we are in the same setup as in Definition
14.1.3. Then, the set J−1(Oρ) endowed with the initial smooth structure
is an actual initial submanifold of M that can be decomposed as a disjoint
union of connected components as

J−1(Oρ) =
⋃̇

[g]∈G/(G0Gρ)

gG0 · J−1(ρ). (14.1.2)

Each connected component of J−1(Oρ) is a maximal integral submani-
fold of the distribution D defined in Proposition 14.1.1. If, additionally,
the subgroup Gρ is closed in G, the topology on J−1(Oρ) induced by its
initial smooth structure coincides with the initial topology induced by the
map JJ−1(Oρ) : J−1(Oρ) → Oρ given by z �−→ J (z), where the orbit
Oρ is endowed with the smooth structure coming from the homogeneous
manifold G/Gρ. Finally, notice that (14.1.2) implies that J−1(Oρ) has as
many connected components as the cardinality of the homogeneous manifold
G/(G0Gρ).

Proof. First of all notice that the sets gG0 · J−1(ρ) are clearly max-
imal integral submanifolds of D by part (ii) in Proposition 14.1.1. As a
corollary of this, they are the connected components of J−1(Oρ) endowed
with the smooth structure in Definition 14.1.4. Indeed, let S be the con-
nected component of J−1(Oρ) that contains gG0 · J−1(ρ), that is, gG0 ·
J−1(ρ) ⊂ S ⊂ J−1(Oρ). As J−1(Oρ) is a manifold, it is locally con-
nected, and therefore its connected components are open and closed. In
particular, since S is an open connected subset of J−1(Oρ), part (ii) in
Proposition 14.1.2 shows that S is a connected integral submanifold of
D. By the maximality of gG0 · J−1(ρ) as an integral submanifold of D,
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gG0 ·J−1(ρ) = S, necessarily. The set gG0 ·J−1(ρ) is therefore a connected
component of J−1(Oρ). As it is a leaf of a smooth integrable distribution
on M , it is also an initial submanifold of M Dazord [1985] of dimension
d = dimJ−1(Oρ) = dimG+ dimJ−1(ρ)− dimGρ.

We now show that J−1(Oρ) with the smooth structure in Definition
14.1.4 is an initial submanifold of M . First of all part (ii) in Proposition
14.1.2 shows that J−1(Oρ) is an injectively immersed submanifold of M .
The initial character can be obtained as a consequence of the fact that its
connected components are initial together with the following elementary
lemma:

14.1.5 Lemma. Let N be an injectively immersed submanifold of the
smooth manifold M . Suppose that N can be written as the disjoint union
of a family {Sα}α∈I of open subsets of N such that each Sα is an initial
submanifold of M . Then, N is initial.

Proof. Let iN : N ↪→ M and iα : Sα ↪→ N be the injections. Let Z be
an arbitrary smooth manifold and f : Z →M be a smooth map such that
f(Z) ⊂ N . As the sets Sα are open and partition N , the manifold Z can
be written as a disjoint union of open sets Zα := f−1(Sα), that is

Z =
⋃̇

α∈I
f−1(Sα).

Given that for each index α the map fα : Zα →M obtained by restriction
of f to Zα is smooth, the corresponding map f̄α : Zα → Sα defined by
the identity iα ◦ f̄α = fα is also smooth by the initial character of Sα. Let
f̄ : Z → N be the map obtained by union of the mappings f̄α. This map
is smooth and satisfies that iN ◦ f̄ = f which proves that N is initial. �

We now prove Expression (14.1.2). First of all notice that as G0 is normal
in G, the set G0Gρ is a (possibly non-closed) subgroup of G. We obviously
have that

J−1(Oρ) =
⋃

g∈G
gG0J−1(ρ). (14.1.3)

Moreover, if g and g′ ∈ G are such that [g] = [g′] ∈ G/(G0Gρ) then
we can write that g′ = ghk with h ∈ G0 and k ∈ Gρ. Consequently,
g′G0J−1(ρ) = ghkG0J−1(ρ) = gh(G0k)J−1(ρ) = g(hG0)(kJ−1(ρ)) =
gG0J−1(ρ), which implies that (14.1.3) can be refined to

J−1(Oρ) =
⋃

[g]∈G/(G0Gρ)

gG0J−1(ρ). (14.1.4)

It only remains to be shown that this union is disjoint: let gh · z = lh′ · z′
with h, h′ ∈ G0 and z, z′ ∈ J−1(ρ). If we apply J to both sides of this
equality we obtain that gh · ρ = lh′ · ρ. Hence, (h′)−1l−1gh ∈ Gρ and
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l−1g ∈ h′Gρh
−1 ⊂ G0Gρ. This implies that [l] = [g] ∈ G/(G0Gρ) and

gG0J−1(ρ) = lG0J−1(ρ), as required.
We finally show that when Gρ is closed in G, the topology on J−1(Oρ)

induced by its initial smooth structure coincides with the initial topology
induced by the map JJ−1(Oρ) : J−1(Oρ) → Oρ on J−1(Oρ). Recall first
that this topology is characterized by the fact that for any topological space
Z and any map φ : Z → J−1(Oρ) the map φ : Z → J−1(Oρ) is continuous
if and only if JJ−1(Oρ) ◦ φ is continuous. Moreover, as the family

{J−1
J−1(Oρ)(U) | U open subset of Oρ}

is a subbase of this topology, the initial topology on J−1(Oρ) induced by
the map JJ−1(Oρ) is first countable. We prove that this topology coincides
with the topology induced by the initial smooth structure on J−1(Oρ) by
showing that the map

f : G×Gρ
J−1(ρ)→ J−1(Oρ), where f([g, z]) := g · z

is a homeomorphism when we consider J−1(Oρ) as a topological space with
the initial topology induced by JJ−1(Oρ). Indeed, f is continuous if and only
if the map G×Gρ

J−1(ρ)→ Oρ given by [g, z] �→ g · ρ is continuous, which
in turn is equivalent to the continuity of the map G × J−1(ρ) → G/Gρ
defined by (g, z) �−→ gGρ, which is true. We now show that the inverse

f−1 : J−1(Oρ)→ G×Gρ
J−1(ρ)

of f given by g · z �→ [g, z] is continuous. Since the initial topology on
J−1(Oρ) induced by JJ−1(Oρ) is first countable it suffices to show that for
any convergent sequence {zn} ⊂ J−1(Oρ)→ z ∈ J−1(Oρ), we have

lim
n→∞

f−1(zn) = f−1( lim
n→∞

zn) = f−1(z).

Indeed, as JJ−1(Oρ) is continuous, the sequence {J (zn) = gn · ρ} ⊂ Oρ
converges in Oρ to J (z) = g · ρ, for some g ∈ G. Let j : Oρ → G/Gρ
be the standard diffeomorphism and σ : UgGρ

⊂ G/Gρ → G be a local
smooth section of the submersion G → G/Gρ in a neighborhood UgGρ

of
gGρ ∈ G/Gρ. Let V := J−1

J−1(Oρ)(j
−1(UgGρ

)). V is an open neighborhood
of z in J−1(Oρ) because

j ◦ JJ−1(Oρ)(z) = j(g · ρ) = gGρ ∈ UgGρ
.

We now notice that for any m ∈ V we can write

f−1(m) = [σ ◦ j ◦ JJ−1(Oρ)(m), (σ ◦ j ◦ JJ−1(Oρ)(m))−1 ·m].

Consequently, since

lim
n→∞

f−1(zn) = lim
n→∞

[σ ◦ j ◦ JJ−1(Oρ)(zn), (σ ◦ j ◦ JJ−1(Oρ)(zn))−1 · zn]

= [σ ◦ j ◦ JJ−1(Oρ)(z), (σ ◦ j ◦ JJ−1(Oρ)(z))−1 · z] = f−1(z),

the continuity of f−1 is guaranteed. �
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14.2 The Symplectic Orbit Reduction
Quotient

We will know show that the quotient J−1(Oρ)/G can be endowed with a
smooth structure that makes it into a regular quotient manifold, that is,
the projection πOρ

: J−1(Oρ)→ J−1(Oρ)/G is a smooth submersion. We
will carry this out under the same hypotheses present in Definition 14.1.3,
that is, Gρ acts properly on J−1(ρ).

First of all notice that as J−1(Oρ) is an initial G–invariant submanifold
of M , the G–action on J−1(Oρ) is smooth. We will prove that J−1(Oρ)/G
is a regular quotient manifold by showing that this action is actually proper
and satisfies that all the isotropy subgroups are conjugate to a given one.
Indeed, recall that the initial manifold structure on J−1(Oρ) is the one that
makes it G–equivariantly diffeomorphic to the twist product G×Gρ

J−1(ρ)
when we take in this space the G–action given by the expression g · [h, z] :=
[gh, z], g ∈ G, [h, z] ∈ G×Gρ

J−1(ρ). Therefore, it suffices to show that this
G–action has the desired properties. First of all this action is proper since a
general property about twist products (see [HRed]) says that the G–action
on G×Gρ

J−1(ρ) is proper if and only if the Gρ–action on J−1(ρ) is proper,
which we supposed as a hypothesis. We now look at the isotropies of this
action: in Proposition 13.2.1 we saw that all the elements in J−1(ρ) have
the same G–isotropy, call it H. As H ⊂ Gρ, this is also their Gρ–isotropy.
Now, using a standard property of the isotropies of twist products (see
[HRed]), we have

G[g,z] = g(Gρ)zg−1 = gHg−1,

for any [g, z] ∈ G×Gρ
J−1(ρ), as required.

The quotient manifold J−1(Oρ)/G is naturally diffeomorphic to the sym-
plectic point reduced space. Indeed,

J−1(Oρ)/G � G×Gρ
J−1(ρ)/G � J−1(ρ)/Gρ.

This diffeomorphism can be explicitly implemented as follows. Let lρ :
J−1(ρ) → J−1(Oρ) be the inclusion. As the inclusion J−1(ρ) ↪→ M
is smooth and J−1(Oρ) is initial lρ is smooth. Also, since lρ is (Gρ, G)
equivariant it drops to a unique smooth map Lρ :J−1(ρ)/Gρ→J−1(Oρ)/G
that makes the following diagram

J−1(ρ)
lρ−−−−→ J−1(Oρ)

πρ

⏐
⏐
=

⏐
⏐
=πOρ

J−1(ρ)/Gρ
Lρ−−−−→ J−1(Oρ)/G.

commutative. Lρ is a smooth bijection. In order to show that its inverse
is also smooth we will think of J−1(Oρ) as G ×Gρ

J−1(ρ). First of all
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notice that the projection G × J−1(ρ) → J−1(ρ) is Gρ–(anti)equivariant
and therefore induces a smooth map G×Gρ

J−1(ρ)→ J−1(ρ)/Gρ given by
[g, z] �→ [z], [g, z] ∈ G×Gρ

J−1(ρ). This map is G–invariant and therefore
drops to another smooth mapping G ×Gρ

J−1(ρ)/G → J−1(ρ)/Gρ that
coincides with L−1

ρ , the inverse of Lρ, which is consequently a diffeomor-
phism.

The orbit reduced space J−1(Oρ)/G can be therefore trivially endowed
with a symplectic structure ωOρ

by defining ωOρ
:= (L−1

ρ )∗ωρ. We put
together all the facts that we just proved in the following theorem–
definition:

14.2.1 Theorem (Optimal Orbit Reduction by Poisson Actions).
Suppose that (M, {·, ·}) is a smooth Poisson manifold and G is a Lie group
acting canonically and properly on M . Let J : M →M/A′

G be the optimal
momentum map associated to this action and ρ ∈M/A′

G. Suppose that Gρ
acts properly on J−1(ρ). If we denote Oρ := G · ρ, then:

(i) There is a unique smooth structure on J−1(Oρ) that makes it into
an initial submanifold of M .

(ii) The G–action on J−1(Oρ) by restriction of the G–action on M is
smooth and proper and all its isotropy subgroups are conjugate to a
given compact isotropy subgroup of the G–action on M .

(iii) The quotient MOρ
:= J−1(Oρ)/G admits a unique smooth structure

that makes the projection πOρ
: J−1(Oρ)→ J−1(Oρ)/G a surjective

submersion.

(iv) The quotient MOρ
:= J−1(Oρ)/G admits a unique symplectic struc-

ture ωOρ
that makes it symplectomorphic to the point reduced space

Mρ. We will refer to the pair (MOρ
, ωOρ

) as the (optimal) orbit
reduced space of (M, {·, ·}) at Oρ.

In this setup we can easily formulate an analog of Theorem 13.5.3.

14.2.2 Theorem (Optimal orbit reduction of G–equivariant Poisson
dynamics). Let (M, {·, ·}) be a smooth Poisson manifold and G be a Lie
group acting canonically and properly on M . Let J : M → M/A′

G be the
optimal momentum map associated and ρ ∈ M/A′

G be such that Gρ acts
properly on J−1(ρ). Let h ∈ C∞(M)G be a G–invariant function on M
and Xh be the associated G–equivariant Hamiltonian vector field on M .
Then,

(i) The flow Ft of Xh leaves J−1(Oρ) invariant, commutes with the G–
action, and therefore induces a flow F

Oρ

t on MOρ
uniquely determined

by the relation
πOρ
◦ Ft ◦ iOρ

= F
Oρ

t ◦ πOρ
,

where iOρ
: J−1(Oρ) ↪→M is the inclusion.
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(ii) The flow F
Oρ

t in (MOρ
, ωOρ

) is Hamiltonian with the Hamiltonian
function hOρ

∈ C∞(MOρ
) given by the equality hOρ

◦ πOρ
= h ◦ iOρ

.

(iii) Let k ∈ C∞(M)G be another G–invariant function on M and {·, ·}Oρ

be the Poisson bracket associated to the symplectic form ωOρ
on MOρ

.
Then, {h, k}Oρ

= {hOρ
, kOρ

}Oρ
.

We conclude this section with a brief description of the orbit version
of the regularized reduced spaces introduced in Definition 13.6.2 for the
symplectic case. If we follow the prescription introduced in Section 14.1
using the Lρ–action on Mρ

H we are first supposed to study the set J−1
Lρ (Lρ ·

σ). The initial smooth structure on this set induced by the twist product
Lρ ×Lρ

σ
J−1
Lρ (σ) makes it into an initial submanifold of Mρ

H . Moreover, if
we use the statements in Proposition 13.6.2 it is easy to see that

J−1
Lρ (Lρ · σ) = Lρ · J−1

Lρ (σ) = N(H)ρ · J−1(ρ) = J−1(Nρ),

with Nρ := N(H)ρ · ρ ⊂M/A′
G.

The set J−1
Lρ (Lρ ·σ) = J−1(Nρ) is an embedded submanifold of J−1(Oρ)

(since J−1(Nρ) � N(H)ρ ×Gρ
J−1(ρ) is embedded in G ×Gρ

J−1(ρ) �
J−1(Oρ)). Moreover, a simple diagram chasing shows that the symplectic
quotient (J−1

Lρ (Lρ · σ)/Lρ, (ω|Mρ
H

)Lρ·σ) is naturally symplectomorphic to
the orbit reduced space (J−1(Oρ)/G, ωOρ

). We will say that (J−1
Lρ (Lρ ·

σ)/Lρ, (ω|Mρ
H

)Lρ·σ) is an orbit regularization of (J−1(Oρ)/G, ωOρ
).

We finally show that

J−1(Oρ) =
⋃̇

[g]∈G/N(H)ρ
J−1(Ng·ρ). (14.2.1)

The equality is a straightforward consequence of the fact that for any g ∈ G,

Mgρ
gHg−1 = Φg(M

ρ
H),

N(gHg−1)gρ = gN(H)ρg−1,

J−1(Ng·ρ) = gN(H)ρJ−1(ρ).

The last relation implies that if g, g′ ∈ G are such that [g] = [g′] ∈
G/N(H)ρ, then J−1(Ng·ρ) = J−1(Ng′·ρ). We now show that the union
in (14.2.1) is indeed disjoint: let gn·z ∈ J−1(Ng·ρ) and g′n′·z′ ∈ J−1(Ng′·ρ)
be such that gn · z = g′n′ · z′, with g, g′ ∈ G, n, n′ ∈ N(H)ρ, and z, z′ ∈
J−1(ρ). Since gn · z = g′n′ · z′, we necessarily have that Ggn·z = Gg′n′·z′
which implies that gHg−1 = g′H(g′)−1, and hence g−1g′ ∈ N(H). We now
recall that Mρ

H is the accessible set going through z or z′ of the integrable
generalized distribution B′

G defined by

B′
G := span{X ∈ X(U)G | U open G–invariant set in M},

where the symbol X(U)G denotes the set of G–equivariant vector fields de-
fined on U . Let B′

G be the pseudogroup of transformations of M consisting
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of the G–equivariant flows of the vector fields that span B′
G. Now, as the

points n · z, n′ · z′ ∈Mρ
H , there exists FT ∈ B′G such that n′ · z′ = FT (n · z),

hence (g′)−1gn · z = FT (n · z). Moreover, as any element in Mρ
H can be

written as GT (n · z) with GT ∈ B′G, we have

(g′)−1g · GT (n · z) = GT ((g′)−1gn · z) = GT (FT (n · z)) ∈Mρ
H ,

which implies that (g′)−1g ∈ N(H)ρ and therefore [g] = [g′] ∈ G/N(H)ρ,
as required.

14.3 The Polar Reduced Spaces

As we already pointed out, the standard theory of orbit reduction provides
a characterization of the symplectic form of the orbit reduced spaces in
terms of the symplectic structures of the corresponding coadjoint orbits
that, from the dual pairs point of view, play the role of the symplectic
leaves of the Poisson manifold in duality, namely J(M) ⊂ g∗.

We will now show that when the group of Poisson transformations AG is
von Neumann (actually we just need weakly von Neumann), that is, when
the diagram

(M/G, {·, ·}M/AG
)
πAG← (M, {·, ·}) J→ (M/A′

G, {·, ·}M/A′
G

)

is a dual pair in the sense of Definition 13.3.3, the classical picture can be
reproduced in this context. More specifically, in this section we will show
that:

• The symplectic leaves of (M/A′
G, {·, ·}M/A′

G
) admit a smooth presym-

plectic structure that generalizes the Kostant–Kirillov–Souriau sym-
plectic structure in the coadjoint orbits of the dual of a Lie algebra
in the sense that they are homogeneous presymplectic manifolds. We
will refer to these “generalized coadjoint orbits” as polar reduced
spaces.

• The presymplectic structure of the polar reduced spaces is related
to the symplectic form of the orbit reduced spaces introduced in the
previous section via an equality that holds strong resemblance with
the classical expression (13.5.1). Also, it is possible to provide a very
explicit characterization of the situations in which the polar reduced
spaces are actually symplectic.

• When the manifold M is symplectic, the polar reduced space decom-
poses as a union of embedded symplectic submanifolds that corre-
spond to the polar reduced spaces of the regularizations of the orbit
reduced space. Each of these symplectic manifolds is a homogeneous
manifold and we will refer to them as the regularized polar reduced
subspaces.
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We start with a proposition that spells out the smooth structure of the
polar reduced spaces. In this section we use a stronger hypothesis on Gρ
with respect to the one we used in the previous section, namely, we will
assume that Gρ is closed in G which, as we point out in the proof of
Proposition 14.1.2, implies that the Gρ action on J−1(ρ) is proper.

14.3.1 Proposition. Let (M, {·, ·}) be a smooth Poisson manifold and G
be a Lie group acting canonically and properly on M . Let J : M →M/A′

G

be the optimal momentum map associated to this action and ρ ∈ M/A′
G.

Suppose that Gρ is closed in G. Then, the polar distribution A′
G restricts

to a smooth integrable regular distribution on J−1(Oρ), that we will also
denote by A′

G. The leaf space M ′
Oρ

:= J−1(Oρ)/A′
G admits a unique smooth

structure that makes it into a regular quotient manifold and diffeomorphic
to the homogeneous manifold G/Gρ. With this smooth structure the projec-
tion

JOρ
: J−1(Oρ)→ J−1(Oρ)/A′

G

is a smooth surjective submersion. We will refer to M ′
Oρ

as the polar
reduced space.

Proof. Let m ∈ J−1(Oρ). By Proposition 14.1.2 we have TmJ−1(Oρ) =
D(m) = g·m+A′

G(m), which implies that the restriction of A′
G to J−1(Oρ)

is tangent to it. Consequently, as J−1(Oρ) is an immersed submanifold
of M , there exists for each Hamiltonian vector field Xf ∈ X(M), f ∈
C∞(M)G, a vector field X ′

f ∈ X(J−1(Oρ)) such that

TiOρ
◦X ′

f = Xf ◦ iOρ
,

with iOρ
: J−1(Oρ) ↪→ M the injection. The restriction A′

G|J−1(Oρ) of
A′
G to J−1(Oρ) is generated by the vector fields of the form X ′

f and it
is therefore smooth. It is also integrable since for any point m = g · z ∈
J−1(Oρ), z ∈ J−1(ρ), the embedded submanifold J−1(g · ρ) of J−1(Oρ)
is the maximal integral submanifold of A′

G|J−1(Oρ). This is so because the
flows Ft and F ′

t of Xf and X ′
f , respectively, satisfy that iOρ

◦F ′
t = Ft ◦ iOρ

.
It is then clear that A′

G|J−1(Oρ) has constant rank since dimA′
G|J−1(Oρ) =

dimJ−1(ρ). This all shows that the leaf space J−1(Oρ)/A′
G is well-defined.

In order to show that the leaf space J−1(Oρ)/A′
G is a regular quotient

manifold we first notice that

J−1(Oρ)/A′
G � (G×Gρ

J−1(ρ))/A′
G

is in bijection with the quotient G/Gρ that, by the hypothesis on the
closedness of Gρ is a smooth homogeneous manifold. Take in M ′

Oρ
:=

J−1(Oρ)/A′
G the smooth structure that makes the bijection with G/Gρ

a diffeomorphism. It turns out that that smooth structure is the unique
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one that makes M ′
Oρ

into a regular quotient manifold since it can be read-
ily verified that the map

JOρ
: J−1(Oρ) � G×Gρ

J−1(ρ) −→ J−1(Oρ)/A′
G � G/Gρ

[g, z] �−→ gGρ

is a surjective submersion. �

We now introduce the regularized polar reduced subspaces of M ′
Oρ

, avail-
able when M is symplectic. We retake the ideas and notations introduced
just above (14.2.1). Let (J−1

Lρ (Lρ · σ)/Lρ, (ω|Mρ
H

)Lρ·σ) be an orbit regular-
ization of (J−1(Oρ)/G, ωOρ

). A straightforward application of Proposition
13.6.1 implies that the reduced space polar to

(J−1
Lρ (Lρ · σ)/Lρ, (ω|Mρ

H
)Lρ·σ)

equals
J−1
Lρ (Lρ · σ)/A′

Lρ = J−1(Nρ)/A′
G

which is naturally diffeomorphic to N(H)ρ/Gρ. We will say that

J−1(Nρ)/A′
G

is a regularized polar reduced subspace of M ′
Oρ

. We will write

M ′
Nρ

:= J−1(Nρ)/A′
G

and denote by JNρ
: J−1(Nρ) → J−1(Nρ)/A′

G the canonical projection.
Notice that the spaces M ′

Nρ
are embedded submanifolds of M ′

Oρ
. Finally,

the decomposition (14.2.1) implies that the polar reduced space can be
written as the following disjoint union of regularized polar reduced sub-
spaces:

M ′
Oρ

= J−1(Oρ)/A′
G

=
⋃̇

[g]∈G/N(H)ρ
J−1(Ng·ρ)/A′

G

=
⋃̇

[g]∈G/N(H)ρ
M ′

Ng·ρ . (14.3.1)

Equivalently, we have

G/Gρ =
⋃̇

[g]∈G/N(H)ρ
gN(H)ρ/Gρ, (14.3.2)

where the quotient gN(H)ρ/Gρ denotes the orbit space of the free and
proper action of Gρ on gN(H)ρ by h · gn := gnh, h ∈ Gρ, n ∈ N(H)ρ.

Before we state our next result we need some terminology. We will denote
by C∞ (

J−1(Oρ)/A′
G

)
the set of smooth real valued functions on M ′

Oρ
with
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the smooth structure introduced in Proposition 14.3.1. Recall now that, as
we pointed out in (13.1.3), there is a notion of smooth function on M/A′

G,
namely

C∞(M/A′
G) := {f ∈ C0(M/A′

G) | f ◦ J ∈ C∞(M)A
′
G}.

Analogously, for each open A′
G–invariant subset U of M we can define

C∞(U/A′
G) := {f ∈ C0(U/A′

G) | f ◦ J |U ∈ C∞(U)A
′
G}.

We define the set of Whitney smooth functions W∞ (
J−1(Oρ)/A′

G

)
on

J−1(Oρ)/A′
G as

W∞ (
J−1(Oρ)/A′

G

)

:= {f : M ′
Oρ
→ R | f = F |M ′

Oρ
, with F ∈ C∞(M/A′

G)}.

The definitions and the fact that JOρ
is a submersion imply that

W∞ (
J−1(Oρ)/A′

G

)
⊂ C∞ (

J−1(Oρ)/A′
G

)
.

Indeed, let f ∈ W∞ (
J−1(Oρ)/A′

G

)
arbitrary. By definition, there exist

F ∈ C∞(M/A′
G) such that f = F |M ′

Oρ
. As F ∈ C∞(M/A′

G) we have

F ◦ J ∈ C∞(M). Also, as J−1(Oρ) is an immersed initial submanifold
of M , the injection iOρ

: J−1(Oρ) ↪→ M is smooth, and therefore so is
F ◦J ◦ iOρ

= F ◦JOρ
. Consequently, f ◦JOρ

= F ◦JOρ
is smooth. As JOρ

is a submersion f is necessarily smooth, that is, f ∈ C∞ (
J−1(Oρ)/A′

G

)
,

as required.

14.3.2 Definition. We say that M ′
Oρ

is Whitney spanned when the
differentials of its Whitney smooth functions span its cotangent bundle, that
is,

span{df(σ) | f ∈W∞(M ′
Oρ

)} = T ∗
σM

′
Oρ
, for all σ ∈M ′

Oρ
.

A sufficient (but not necessary!) condition forM ′
Oρ

to be Whitney spanned
is that W∞(M ′

Oρ
) = C∞(M ′

Oρ
).

We are now in the position to state the main results of this section.

14.3.3 Theorem (Polar reduction of a Poisson manifold). Let (M, {·, ·})
be a smooth Poisson manifold and G be a Lie group acting canonically
and properly on M . Let J : M → M/A′

G be the optimal momentum map
associated to this action and ρ ∈M/A′

G be such that Gρ is closed in G. If
AG is weakly von Neumann then, for each point z ∈ J−1(Oρ) and vectors
v, w ∈ TzJ−1(Oρ), there exists an open A′

G–invariant neighborhood U of
z and two smooth functions f, g ∈ C∞(U) such that v = Xf (z) and w =
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Xg(z). Moreover, there is a unique presymplectic form ω′
Oρ

on the polar
reduced space M ′

Oρ
that satisfies

{f, g}|U (z) = π∗
Oρ
ωOρ

(z)(v, w) + J ∗
Oρ
ω′
Oρ

(z)(v, w) (14.3.3)

If M ′
Oρ

is Whitney spanned then the form ω′
Oρ

is symplectic.

Remark. It can be proved that when AG is von Neumann and A′
G satisfies

the extension property the symplecticity of ω′
Oρ

is equivalent to M ′
Oρ

being
Whitney spanned.

When the Poisson manifold (M, {·, ·}) is actually a symplectic manifold
with symplectic form ω the von Neumann condition in the previous result
is no longer needed. Moreover, the conditions under which the form ω′

Oρ
is

symplectic can be completely characterized and the regularized polar sub-
spaces appear as symplectic submanifolds of the polar space that contains
them.

14.3.4 Theorem (Polar reduction of a symplectic manifold). Let (M,ω)
be a smooth symplectic manifold and G be a Lie group acting canonically
and properly on M . Let J : M → M/A′

G be the optimal momentum map
associated to this action and ρ ∈M/A′

G be such that Gρ is closed in G.

(i) There is a unique presymplectic form ω′
Oρ

on the polar reduced space
M ′

Oρ
� G/Gρ that satisfies

i∗Oρ
ω = π∗

Oρ
ωOρ

+ J ∗
Oρ
ω′
Oρ
. (14.3.4)

The form ω′
Oρ

is symplectic if and only if for one point z ∈ J−1(Oρ)
(and hence for all) we have

g · z ∩ (g · z)ω ⊂ TzMGz
(14.3.5)

(ii) Let M ′
Nρ

= J−1(Nρ)/A′
G � N(H)ρ/Gρ be a regularized polar reduced

subspace of M ′
Oρ

. Let

jNρ
: J−1(Nρ)/A′

G ↪→ J−1(Oρ)/A′
G

be the inclusion and ω′
Oρ

the presymplectic form defined in (i). Then,
the form

ω′
Nρ

:= j∗Nρ
ω′
Oρ

(14.3.6)

is symplectic, that is, the regularized polar subspaces are symplectic
submanifolds of the polar space that contains them.

Remark. The characterization (14.3.5) of the symplecticity of ω′
Oρ

admits
a particularly convenient reformulation when the G–action on the symplec-
tic manifold (M,ω) admits an equivariant momentum map J : M → g∗.
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Indeed, let z ∈ M be such that J(z) = µ ∈ g∗ and Gz = H. Then, if the
symbol Gµ denotes the coadjoint isotropy of µ, (14.3.5) is equivalent to

g · z ∩ (g · z)ω = gµ · z ⊂ TzMH ,

which in turn amounts to gµ · z ⊂ gµ · z ∩TzMH = Lie(N(H)∩Gµ) · z. Let
NGµ

(H) := N(H)∩Gµ. With this notation, the condition can be rewritten
as gµ + h ⊂ Lie(NGµ

(H)) + h ⊂ gµ or, equivalently, as

gµ = Lie(NGµ
(H)). (14.3.7)

Proof of Theorem 14.3.3.. Since AG is weakly von Neumann, we see
that for any z ∈ M g · z ⊂ A′′

G(z) or, equivalently, that for any z ∈ M
and any ξ ∈ g, there is a A′

G–invariant neighborhood U of z and a function
F ∈ C∞ (U/A′

G) such that ξM (z) = XF◦J (z). Consequently, for any vector
v ∈ TzJ−1(Oρ) there exists f ∈ C∞(M)G and F ∈ C∞ (U/A′

G) (shrink U
if necessary) such that

v = Xf (z) +XF◦J (z) = Xf |U+F◦J (z).

Let w ∈ TzJ−1(Oρ), l ∈ C∞(M)G, and L ∈ C∞ (U/A′
G) be such that

w = Xl(z) +XL◦J (z) = Xl|U+L◦J (z).

The expression (14.3.3) can then be rewritten as

J ∗
Oρ
ω′
Oρ

(z)(v, w) = J ∗
Oρ
ω′
Oρ

(z)(Xf |U+F◦J (z),Xl|U+L◦J (z))
= {f + F ◦ J , l + L ◦ J }|U (z)

−π∗
Oρ
ωOρ

(z)(Xf |U+F◦J (z),Xl|U+L◦J (z))
= {F ◦ J , L ◦ J }|U (z)

(14.3.8)
We now show that ω′

Oρ
is well-defined. Indeed, let z′ ∈ J−1(Oρ) and

v′, w′ ∈ Tz′J−1(Oρ) be such that TzJOρ
· v = Tz′JOρ

· v′ and TzJOρ
·w =

Tz′JOρ
· w′. First of all these equalities imply the existence of an ele-

ment FT in the polar pseudogroup of AG such that z′ = FT (z). As FT
is a local diffeomorphism such that JOρ

◦ FT = JOρ
, we get TzJOρ

=
Tz′JOρ

· TzFT . Now, we can rewrite the conditions TzJOρ
· v = Tz′JOρ

· v′
and TzJOρ

· w = Tz′JOρ
· w′ as Tz′JOρ

· TzFT · v = Tz′JOρ
· v′ and

Tz′JOρ
· TzFT · w = Tz′JOρ

· w′, respectively, which implies the existence
of two functions f ′, l′ ∈ C∞(M)G such that

v′ = TzFT (Xf (z) +XF◦J (z)) +Xf ′(FT (z))
w′ = TzFT (Xl(z) +XL◦J (z)) +Xl′(FT (z))

or, equivalently:

v′ = Xf◦F−T
(FT (z)) +XF◦J (FT (z)) +Xf ′(FT (z))

w′ = Xl◦F−T
(FT (z)) +XL◦J (FT (z)) +Xl′(FT (z)).
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Therefore, using (14.3.3), we arrive at

J ∗
Oρ
ω′
Oρ

(z′)(v′, w′)

= {f ◦ F−T + F ◦ J + f ′, l ◦ F−T + L ◦ J + l′}|V (FT (z))
− π∗

Oρ
ωOρ

(FT (z))(Xf◦F−T |V +F◦J+f ′(z),Xl◦F−T |V +L◦J+l′(z))

= {F ◦ J , L ◦ J }|V (FT (z)) = {F ◦ J , L ◦ J }|U (z)
= J ∗

Oρ
ω′
Oρ

(z)(v, w),

where V = U ∩ FT (Dom(FT )) = FT (U ∩ Dom(FT )). Hence, the form
ω′
Oρ

is well-defined. The closedness and skew symmetric character of ω′
Oρ

is obtained as a consequence of JOρ
being a surjective submersion, ωOρ

being closed and skew symmetric, and the {·, ·} being a Poisson bracket.
An equivalent fashion to realize this is by writing ω′

Oρ
in terms of the sym-

plectic structure of the leaves of M . Indeed, as AG is weakly von Neumann,
each connected component of J−1(Oρ) lies in a single symplectic leaf of
(M, {·, ·}). In order to simplify the exposition suppose that J−1(Oρ) is
connected and let LOρ

be the unique symplectic leaf of M that contains
it (otherwise one has just to proceed connected component by connected
component). Let iLOρ

: J−1(Oρ) → LOρ
be the natural injection. Given

that iOρ
: J−1(Oρ) → M is smooth and LOρ

is an initial submanifold of
M , the map iLOρ

is therefore smooth. If we denote by ωLOρ
the symplectic

form of the leaf LOρ
, expression (14.3.4) can be rewritten as:

i∗LOρ
ωLOρ

= π∗
Oρ
ωOρ

+ J ∗
Oρ
ω′
Oρ
. (14.3.9)

The antisymmetry and closedness of ω′
Oρ

appears then as a consequence of
the antisymmetry and closedness of ωOρ

and ωLOρ
.

It just remains to be shown that if M ′
Oρ

is Whitney spanned then the
form ω′

Oρ
is non degenerate. Let z ∈ J−1(Oρ) and v ∈ TzJ−1(Oρ) be such

that

ω′
Oρ

(JOρ
(z))(TzJOρ

· v, TzJOρ
· w) = 0, for all w ∈ TzJ−1(Oρ).

(14.3.10)
Take now f ∈ C∞(M)G and F ∈ C∞ (U/A′

G) such that v = Xf (z) +
XF◦J (z). Condition (14.3.10) is equivalent to requiring that

ω′
Oρ

(JOρ
(z))(TzJOρ

·XF◦J (z), TzJOρ
·XL◦J (z)) = 0, (14.3.11)

for all L ∈ C∞ (V/A′
G) and all open A′

G–invariant neighborhoods V of z.
By (14.3.8) we can rewrite (14.3.11) as

{F ◦ J , L ◦ J }|U∩V (z) = 0. (14.3.12)
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Now, notice that for any h ∈ W∞(M ′
Oρ

) there exists a function H ∈
C∞(M/A′

G) such that H|M ′
Oρ

= h. Moreover, by (14.3.12) we obtain:

dh(JOρ
(z)) · (TzJOρ

·XF◦J (z))
= d(h ◦ JOρ

)(z) ·XF◦J (z) = d(H ◦ J )(z) ·XF◦J (z) = 0.

Given that the previous equality holds for any h ∈W∞(M ′
Oρ

) and M ′
Oρ

is
Whitney spanned, we obtain

TzJOρ
·XF◦J (z) = TzJOρ

· v = 0,

as required.

Proof of Theorem 14.3.4. (i) The well–definedness and presymplectic
character of ω′

Oρ
in this case can be obtained as a consequence of Theo-

rem 14.3.3. This is particularly evident when we think of ω′
Oρ

as the form
characterized by equality (14.3.9) and we recall that in the symplectic case
ωLOρ

= ω.
It just remains to be shown that the form ω′

Oρ
is non degenerate if

and only if condition (14.3.5) holds. We proceed by showing first that if
condition (14.3.5) holds for the point z ∈ J−1(Oρ) then it holds for all
the points in J−1(Oρ). We will then prove that (14.3.5) at the point z is
equivalent to the non degeneracy of ω′

Oρ
at JOρ

(z).
Suppose first that the point z ∈ J−1(Oρ) is such that g · z ∩ (g ·

z)ω ⊂ TzMGz
. Notice now that any element in J−1(Oρ) can be written as

Φg(FT (z)) with g ∈ G and FT in the polar pseudogroup of AG. It is easy
to show that the relation

g · (Φg(FT (z))) ∩ (g · (Φg(FT (z))))ω ⊂ TΦg(FT (z))MGΦg(FT (z))

is equivalent to Tz(Φ ◦FT )(g · z ∩ (g · z)ω) ⊂ Tz(Φ ◦FT )MGz
and therefore

to g · z ∩ (g · z)ω ⊂ TzMGz
.

Let now v ∈ TzJ−1(Oρ) be such that

ω′
Oρ

(JOρ
(z))(TzJOρ

· v, TzJOρ
· w) = 0, for all w ∈ TzJ−1(Oρ).

(14.3.13)
Take now f ∈ C∞(M)G and ξ ∈ g such that v = Xf (z) + ξM (z). Condi-
tion (14.3.13) is equivalent to having that

ω′
Oρ

(JOρ
(z))(TzJOρ

· ξM (z), TzJOρ
· ηM (z)) = 0, for all η ∈ g

which by (14.3.4) can be rewritten as

ω(z)(ξM (z), ηM (z)) = 0, for all η ∈ g,

and thereby amounts to having that ξM (z) ∈ g · z ∩ (g · z)ω. Hence,
ω′
Oρ

(JOρ
(z)) is non degenerate if and only if ξM (z) ∈ kerTzJOρ

= A′
G(z).
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Suppose now that condition (14.3.5) holds; then, as ξM (z) ∈ g·z∩(g·z)ω we
have ξM (z) ∈ TzMGz

. Using (13.1.1) we can conclude that ξM (z) ∈ A′
G(z),

as required. Conversely, suppose that ω′
Oρ

is symplectic. The previous
equalities immediately imply that g · z ∩ (g · z)ω ⊂ A′

G(z) ⊂ TzMGz
, as

required.

(ii) The form ω′
Nρ

is clearly closed and antisymmetric. We now show that
it is non degenerate. Recall firs that the tangent space to TzJ−1(Nρ) at a
given point z ∈ J−1(Nρ) is given by the vectors of the form

v = Xf (z) + ξM (z),

with f ∈ C∞(M)G and ξ ∈ Lie(N(H)ρ). Let v = Xf (z) + ξM (z) ∈
TzJ−1(Nρ) be such that

J ∗
Nρ

(j∗Nρ
ω′
Oρ

)(z)(Xf (z) + ξM (z),Xg(z) + ηM (z)) = 0,

for all η ∈ Lie(N(H)ρ) and g ∈ C∞(M)G.
If we plug into the previous expression the definition of the form ω′

Oρ
we

obtain
ω(z)(ξM (z), ηM (z)) = 0,

for all η ∈ Lie(N(H)ρ), that is,

ξM (z) ∈ (Lie(N(H)ρ) · z) ∩ (Lie(N(H)ρ) · z)ω

= (Lie(N(H)ρ) · z) ∩ (Lie(N(H)ρ) · z)
ω|Mρ

H

= (Lie(N(H)ρ/H) · z) ∩A′
N(H)ρ/H(z),

where the last equality follows from (13.1.1) and the freeness of the natural
N(H)ρ/H–action on Mρ

H . We now recall (see Lemma 4.4 in Ortega and
Ratiu [2002]) that any N(H)ρ/H–invariant function on Mρ

H admits a local
extension to a G–invariant function on M , hence ξM (z) ∈ (Lie(N(H)ρ/H) ·
z) ∩ A′

G(z), and consequently TzJOρ
· ξM (z) = TzJOρ

· v = TzJNρ
· v = 0,

as required. �

14.4 Symplectic Leaves and the Reduction
Diagram

Suppose that A′
G is completable so that the symplectic leaves of M/A′

G are
well-defined. We recall that this is automatically the case when (M,ω) is
symplectic and the G–group action is proper (see Ortega [2003a]). Assume
also that AG is von Neumann so that the diagram (M/G, {·, ·}M/AG

)
πAG←

(M, {·, ·}) J→ (M/A′
G, {·, ·}M/A′

G
) constitutes a dual pair.
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Notice that by Definition 13.4.1, the symplectic leaves of M/AG and
M/A′

G coincide with the connected components of the orbit reduced spaces
MOρ

and polar reduced spaces M ′
Oρ

, that we studied in sections 14.2
and 14.3, respectively. We saw that whenever Gρ is closed in G and the
Whitney spanning condition is satisfied these spaces are actual symplec-
tic manifolds. When M is symplectic, the symplecticity of the leaves of
M/A′

G is characterized by condition (14.3.5) or even by (14.3.7), provided
that the G–action has an associated standard equivariant momentum map
J : M → g∗. Moreover, when MOρ

and M ′
Oρ

are corresponding leaves,
their symplectic structures are connected to each other by an identity that
naturally generalizes the classical relation that we recalled in (13.5.2).

The following diagram represents all the spaces that we worked with and
their relations. The part of the diagram dealing with the regularized spaces
refers only to the situation in which M is symplectic.

(M, {·, ·})

(M/AG, {·, ·}M/AG
) (M/A′

G
, {·, ·}

M/A′
G

)
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G
, ω′

Oρ
)(J−1(ρ)/Gρ, ωρ) G/Gρ

J−1(Oρ) (J−1(Nρ)/A′
G

, ω′
Nρ

)

N(H)ρ/Gρ

(J−1
Lρ (Lρ · σ)/Lρ, (ω|

M
ρ
H
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ρ
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ρ
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14.5 Orbit Reduction: Beyond Compact
Groups

The approach to optimal orbit reduction developed in the last few sec-
tions sheds some light on how to carry out orbit reduction with a standard
momentum map when the symmetry group is not compact. This absence
of compactness poses some technical problems that have been tackled by
various people over the years using different approaches. Since these prob-
lems already arise in the free actions case we will restrict ourselves to this
situation. More specifically we will assume that we have a Lie group G (not
necessarily compact) acting freely and canonically on the symplectic man-
ifold (M,ω). We will suppose that this action has an associated coadjoint
equivariant momentum map J : M → g∗. For the sake of simplicity in the
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exposition and in order to have a better identification with the material
presented in the previous sections we will assume that J has connected
fibers. This assumption is not fundamental. The reader interested in the
general case with no connectedness hypothesis in the fibers and nonfree
actions may want to check with [HRed].

In the presence of the hypotheses that we just stated, the momentum
map J is a submersion that maps M onto an open coadjoint equivariant
subset g∗J of g∗. Moreover, any value µ ∈ g∗J of J is regular and has an asso-
ciated smooth Marsden–Weinstein symplectic reduced space J−1(µ)/Gµ.
What about the orbit reduced space J−1(Oµ)/G? When the Lie group G
is compact there is no problem to canonically endow J−1(Oµ)/G with a
smooth structure. Indeed, in this case the coadjoint orbit Oµ is an embed-
ded submanifold of g∗ transverse to the momentum mapping. The Transver-
sal Mapping Theorem ensures that J−1(Oµ) is a G–invariant embedded
submanifold of M and hence the quotient J−1(Oµ)/G is smooth and sym-
plectic with the form spelled out in (13.5.1). In the non compact case this
argument breaks down due to the non embedded character of Oµ in g∗.
In trying to fix this problem this has lead to the assumption of locally
closedness on the coadjoint orbits that one can see in a number of papers
(see for instance Bates and Lerman [1997]). Nevertheless, this hypothesis
is not needed to carry out point reduction, and therefore makes the two
approaches non equivalent. The first work where this hypothesis has been
eliminated is Cushman and Śniatycki [2001]. In this paper the authors use
a combination of distribution theory with Sikorski differential spaces to
show that the orbit reduced space is a symplectic manifold. Nevertheless,
the first reference where the standard formula (13.5.1) appears at this level
of generality is Blaom [2001]. In that paper the author only deals with the
free case. Nevertheless the use of a standard technique of reduction to the
isotropy type manifolds that the reader can find in Sjamaar and Lerman
[1991]; Ortega [1998]; Cushman and Śniatycki [2001]; Ortega and Ratiu
[2004a] generalizes the results of Blaom [2001] to singular situations.

In the next few paragraphs we will illustrate Theorem 14.3.3 by showing
that the results in Cushman and Śniatycki [2001]; Blaom [2001] can be
obtained as a corollary of it.

We start by identifying in this setup all the elements in that result.
First of all, we note that the polar distribution satisfies A′

G = kerTJ (see
Ortega and Ratiu [2002]) and the connectedness hypothesis on the fibers
of J implies that the optimal momentum map J :M→M/A′

G in this case
can be identified with J : M → g∗J. This immediately implies that for any
µ ∈ g∗J � M/A′

G, the isotropy Gµ is closed in G and, by Theorem 14.1.4
there is a unique smooth structure on J−1(Oµ) that makes it into an initial
submanifold of M and, at the same time, an integral manifold of the distri-
bution D = A′

G+g·m = kerTJ+g·m. This structure coincides with the one
given in Blaom [2001]. Also, by Theorem 14.2.1, the quotient J−1(Oµ)/G
admits a unique symplectic structure ωOµ

that makes it symplectomorphic
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to the Marsden–Weinstein point reduced space (J−1(µ)/Gµ, ωµ). It remains
to be shown that we can use (14.3.4) in this case and that the resulting
formula coincides with the standard one (13.5.1) provided by Blaom [2001].
An analysis of the polar reduced space in this setup will provide an affir-
mative answer to this question.

By Proposition 14.3.1 the polar reduced space J(Oµ)/A′
G is endowed with

the only smooth structure that makes it diffeomorphic to the homogeneous
space G/Gµ � Oµ. Hence, in this case JOµ

: J−1(Oµ) → Oµ is the map
given by JOµ

(z) := J(z) which is smooth because the coadjoint orbits are
always initial submanifolds of g∗. Therefore we can already compute the
polar symplectic form ω′

Oµ
. By (14.3.4) we see for any ξ, η ∈ g and any

z ∈ J−1(Oµ) (for simplicity in the exposition we take J(z) = µ):

J∗
Oµ
ω′
Oµ

(z)(ξM (z), ηM (z))

= i∗Oµ
ω(z)(ξM (z), ηM (z))− π∗

Oµ
ωOµ

(z)(ξM (z), ηM (z)),

or, equivalently:

ω′
Oµ

(µ)(ad∗
ξ µ, ad∗

η µ) = ω(z)(ξM (z), ηM (z)) = 〈J(z), [ξ, η]〉 = 〈µ, [ξ, η]〉.

In conclusion, in this case the polar reduced form ω′
Oµ

coincides with the
“+”–Kostant–Kirillov–Souriau symplectic form on the coadjoint orbit Oµ.
Therefore, the general optimal orbit reduction formula (14.3.4) coincides
with the standard one (13.5.1).

14.6 Examples: Polar Reduction
of the Coadjoint Action

We now provide two examples on how we can use the coadjoint action along
with Theorems 14.3.3 and 14.3.4 to easily produce symplectic manifolds and
symplectically decomposed presymplectic manifolds.

Coadjoint Orbits as Polar Reduced Spaces. Let G be a Lie group,
g be its Lie algebra, and g∗ be its dual considered as a Lie–Poisson space.
In this elementary example we show how the coadjoint orbits appear as the
polar reduced spaces of the coadjoint G–action on g∗.

A straightforward computation shows that the coadjoint action of G
on the Lie–Poisson space g∗ is canonical. Moreover, the polar distribution
A′
G(µ) = 0 for all µ ∈ g∗ and therefore the optimal momentum map J :

g∗ → g∗ is the identity map on g∗. This immediately implies that any open
set U ⊂ g∗ is A′

G–invariant, that C∞(U)A
′
G = C∞(U), and that therefore

g · µ ⊂ A
′′
G(µ), for any µ ∈ g∗. The coadjoint action on g∗ is therefore

weakly von Neumann (actually, if G is connected AG is von Neumann).
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We now look at the corresponding reduced spaces. On one hand the orbit
reduced spaces J−1(Oρ)/G are the quotients G ·µ/G and therefore amount
to points. At the same time, we have J−1(Oρ)/A′

G = Oµ/A′
G = Oµ, that is,

the polar reduced spaces are the coadjoint orbits which, by Theorem 14.3.3,
are symplectic. Indeed, the Whitney spanning condition necessary for the
application of this result is satisfied since in this case

span{df(µ) | f ∈W∞(M ′
Oρ

)} = span{dh|Oµ
(µ) | h ∈ C∞(g∗)} = T ∗

µOµ.

Note that the last equality is a consequence of the immersed character of
the coadjoint orbits Oµ as submanifolds of g∗ (the equality is easily proved
using immersion charts around the point µ).

Symplectic Decomposition of Presymplectic Homogeneous
Manifolds. Let G be a Lie group, g be its Lie algebra, and g∗ be its
dual. Let Oµ1 and Oµ2 be two coadjoint orbits of g∗ that we will consider
as symplectic manifolds endowed with the KKS–symplectic forms ωOµ1

and
ωOµ2

, respectively. The cartesian product Oµ1 × Oµ2 is also a symplectic
manifold with the sum symplectic form ωOµ1

+ ωOµ2
. The diagonal action

of G on Oµ1 × Oµ2 is canonical with respect to this symplectic structure
and, moreover, it has an associated standard equivariant momentum map
J : Oµ1 × Oµ2 → g∗ given by J(ν, η) = ν + η. We now suppose that this
action is proper and we will study, in this particular case, the orbit and
polar reduced spaces introduced in the previous sections.

We start by looking at the level sets of the optimal momentum map

J : Oµ1 ×Oµ2 → Oµ1 ×Oµ2/A
′
G.

A general result (see Theorem 3.6 in Ortega and Ratiu [2002]) states that
in the presence of a standard momentum map the fibers of the optimal
momentum map coincide with the connected components of the intersec-
tions of the level sets of the momentum map with the isotropy type sub-
manifolds. Hence, in our case, if ρ = J (µ1, µ2), we have

J−1(ρ) = (J−1(µ1 + µ2) ∩ (Oµ1 ×Oµ2)G(µ1,µ2))c, (14.6.1)

where the subscript c in the previous expression stands for the connected
component of J−1(µ1 + µ2) ∩ (Oµ1 × Oµ2)G(µ1,µ2) that contains J−1(ρ).
Given that the isotropy G(µ1,µ2) = Gµ1 ∩ Gµ2 , with Gµ1 and Gµ2 the
coadjoint isotropies of µ1 and µ2, respectively, the expression (14.6.1) can
be rewritten as

J−1(ρ) = ({(Ad∗
g−1 µ1,Ad∗

h−1 µ2) | g, h ∈ G, such that

Ad∗
g−1 µ1 + Ad∗

h−1 µ2 = µ1 + µ2, gGµ1g
−1 ∩ hGµ2h

−1 = Gµ1 ∩Gµ2})c.

It is easy to show that in this case

Gρ = NGµ1+µ2
(Gµ1 ∩Gµ2)c, (14.6.2)
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where the superscript c denotes the closed subgroup of

NGµ1+µ2
(Gµ1 ∩Gµ2) := N(Gµ1 ∩Gµ2) ∩Gµ1+µ2

that leaves J−1(ρ) invariant. Theorems 13.5.1 and 14.2.1 guarantee that
the quotients J−1(ρ)/Gρ � J−1(Oρ)/G are symplectic. Nevertheless, we
will focus our attention in the corresponding polar reduced spaces.

According to Theorem 14.3.4 and to (14.6.2), the polar reduced space
corresponding to J−1(Oρ)/G is the homogeneous presymplectic manifold

G/NGµ1+µ2
(Gµ1 ∩Gµ2)c. (14.6.3)

Expression (14.3.7) states that G/NGµ1+µ2
(Gµ1∩Gµ2)c is symplectic if and

only if
gµ1+µ2 = Lie(NGµ1+µ2

(Gµ1 ∩Gµ2)),

which is obviously true when, for instance, Gµ1 ∩ Gµ2 is a normal sub-
group of Gµ1+µ2 . In any case, using (14.3.2) we can write the polar reduced
space (14.6.3) as a disjoint union of its regularized symplectic reduced sub-
spaces that, that in this case are of the form

gN(Gµ1 ∩Gµ2)ρ/NGµ1+µ2
(Gµ1 ∩Gµ2)c

with g ∈ G and where the superscript ρ denotes the closed subgroup of
N(Gµ1 ∩ Gµ2) that leaves invariant the connected component of (Oµ1 ×
Oµ2)Gµ1∩Gµ2

that contains J−1(ρ). More explicitly, we can write the fol-
lowing symplectic decomposition of the polar reduced space:

G/NGµ1+µ2
(Gµ1 ∩Gµ2)c

=
⋃̇

[g]∈G/N(Gµ1∩Gµ2 )c
gN(Gµ1 ∩Gµ2)c/NGµ1+µ2

(Gµ1 ∩Gµ2)c.

What we just did in the previous paragraphs for two coadjoint orbits can
be inductively generalized to n orbits. We collect the results of that con-
struction under the form of a proposition.

14.6.1 Proposition. Let G be a Lie group, g be its Lie algebra, and g∗

be its dual. Let µ1, . . . , µn ∈ g∗. Then, the homogeneous manifold

G/NGµ1+···+µn
(Gµ1 ∩ . . . ∩Gµn

)c (14.6.4)

has a natural presymplectic structure that is nondegenerate if and only if

gµ1+···+µn
= Lie(NGµ1+···+µn

(Gµ1 ∩ . . . ∩Gµn
)).

Moreover, (14.6.4) can be written as a the following disjoint union of sym-
plectic submanifolds

G/NGµ1+···+µn
(Gµ1 ∩ . . . ∩Gµn

)c

=
⋃̇

[g]∈G/N(Gµ1∩...∩Gµn )ρ
gN(Gµ1∩. . .∩Gµn

)ρ/NGµ1+···+µn
(Gµ1∩. . .∩Gµn

)c.




