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The Krasnoselskij Iteration

It is well known that if T is assumed to be only a nonexpansive map, then
the Picard iterations {Tnx0}n ≥ 0 need no longer converge (to a fixed point of
T ). In fact, in general, T need not have a fixed point, as shown by Exercises
1.15, 1.16 and 1.19.

It is the purpose of this chapter to survey some old and new results on the
approximation of fixed points for nonexpansive and pseudocontractive type
operators by means of Krasnoselskij iteration.

The key idea in introducing Krasnoselskij iteration is the fact that, if Tλ

is the averaged mapping associated to T , then if T is nonexpansive, so is Tλ,
and both have the same fixed point set, see Exercise 3.3. Furthermore, Tλ has
much more asymptotic behavior than the original mapping T .

Krasnoselskij was the first to notice the regularizing effect of Tλ in the case
of a uniformly convex Banach space, see also the Bibliographical Comments
at the end of this chapter.

3.1 Nonexpansive Operators in Hilbert Spaces

We begin this section by proving the Browder-Gohde-Kirk fixed point the-
orem (Theorem 1.2), which is a basic fixed point existence result for nonex-
pansive operators. The proof will be given in a Hilbert space setting, suitable
to many convergence theorems for the Krasnoselskij iteration.

Theorem 3.1. Let C be a closed bounded convex subset of the Hilbert
space H and T : C → C be a nonexpansive operator. Then T has at least one
fixed point.

Proof. For a fixed element v0 in C and a number s with 0 < s < 1, we
denote

Us(x) = (1 − s)v0 + s Tx , x ∈ C.
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Since C is convex and closed, we deduce that Us : C → C is a s−contrac-
tion and, in virtue of Theorem 1.1, it has a unique fixed point, say us. On the
other hand, since C is closed, convex and bounded in the Hilbert space H,
it is weakly compact. Hence we may find a sequence {sj} in (0,1) such that
sj → 1 (as j → ∞) and uj = usj

converges weakly to an element p of H.
Since C is weakly closed, p lies in C. We shall prove that p is a fixed point

of T . If u is any arbitrary point in H, we have

‖uj − u‖2 = ‖(uj − p) + (p − u)‖ 2 = ‖uj − p‖2 +‖p − u‖2 +2 〈uj − p, p − u〉 ,

where
2 〈uj − p, p − u〉 → 0 (as j → ∞),

since uj − p converges weakly to zero in H. Setting u = Tp above, we obtain

lim
j→∞

(
‖uj − Tp‖2 − ‖uj − p‖2

)
= ‖p − Tp‖2

.

Moreover, since sj → 1 and Usj
uj = uj , we have

Tuj − uj = [sjTuj + (1 − sj) v0] − uj + (1 − sj)[Tuj − v0] =

= (Usj
uj − uj) + (1 − sj)(Tuj − v0) = 0 + (1 − sj)(Tuj − v0) → 0,

as j → ∞, and therefore lim
j→∞

‖Tuj − uj‖ = 0.

On the other hand, since T is nonexpansive, we have

‖Tuj − Tp‖ ≤ ‖uj − p‖

and hence

‖uj − Tp‖ ≤ ‖uj − Tuj‖ + ‖Tuj − Tp‖ ≤ ‖uj − Tuj‖ + ‖uj − p‖ .

Thus
lim sup (‖uj − Tp‖ − ‖uj − p‖) ≤ lim

j→∞
‖uj − Tuj‖ = 0

and, due to the boundedness of C, we have also

lim sup
(
‖uj − Tp‖2 − ‖uj − p‖2

)
=

= lim sup (‖uj − Tp‖ − ‖uj − p‖) (‖uj − Tp‖ + ‖uj − p‖) ≤ 0,

which yields
lim

j→∞

(
‖uj − Tp‖2 − ‖uj − p‖2

)
= 0

and hence
‖p − Tp‖2 = 0,

that is, p is a fixed point of T. �
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Remark. Even if the proof of Theorem 3.1 is more constructive than
the corresponding version of this result in uniformly convex Banach spaces
(Theorem 1.2), it does not provide a method for computation of fixed points.

Definition 3.1. Let H be a Hilbert space and C a subset of H. A mapping
T : C → H is called demicompact if it has the property that whenever {un} is
a bounded sequence in H and {Tun − un} is strongly convergent, then there
exists a subsequence {unk

} of {un} which is strongly convergent.

We can give now a result on approximating fixed points of nonexpansive
mappings by means of the Krasnoselskij iteration. To this end, we start by
proving the next Lemma.

Lemma 3.1. Let C be a bounded closed convex subset of a Hilbert space
H and T : C → C be a nonexpansive and demicompact operator. Then the
set FT of fixed points of T is a nonempty convex set.

Proof. Since T is nonexpansive, by Theorem 3.1, T has fixed points in C,
that is, FT 
= ∅. Furthermore, FT is convex, i.e., when x, y ∈ FT and λ ∈ [0, 1]
we have

uλ = (1 − λ)x + λy ∈ FT .

Indeed,

‖ Tuλ − x‖ = ‖ Tuλ − Tx‖ ≤ ‖ uλ − x‖ and ‖ Tuλ − y‖ ≤ ‖ uλ − y‖ ,

which imply that

‖ x − y‖ ≤ ‖ x − Tuλ‖ + ‖ Tuλ − y‖ ≤ ‖ x − y‖ .

This shows that for some a, b with 0 ≤ a, b ≤ 1, we have

x − Tuλ = a(x − uλ) and y − Tuλ = b(y − uλ)

from which it follows that Tuλ = uλ ∈ FT . �
Theorem 3.2. Let C be a bounded closed convex subset of a Hilbert space

H and T : C → C be a nonexpansive and demicompact operator. Then the set
FT of fixed points of T is a nonempty convex set and for any given x0 in C
and any fixed number λ with 0 < λ < 1, the Krasnoselskij iteration {xn}∞n=0

given by
xn+1 = (1 − λ)xn + λT xn , n = 0, 1, 2, . . . (1)

converges (strongly) to a fixed point of T .

Proof. The first part follows by Lemma 3.1.
For any x0 ∈ C, the sequence {xn}∞n=0 given by (1) lies in C and is

bounded. Let p be a fixed point of T , and, so of the averaged map Uλ, given by

Uλ = (1 − λ)I + λT (I = the identity map). (2)
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We first prove that the sequence {xn − Txn}n∈N converges strongly to
zero. Indeed

xn+1 − p = (1 − λ)xn + λTxn − p = (1 − λ)(xn − p) + λ(Txn − p).

On the other hand, for any constant a,

a(xn − Txn) = a(xn − p) − a(Txn − p).

Then
‖ xn+1 − p‖2 = (1 − λ)2 ‖xn − p‖2 + λ2 ‖Txn − p‖2 +

+2λ(1 − λ) 〈Txn − p, xn − p〉
and

a2 ‖xn − Txn‖2 = a2 ‖xn − p‖2 + a2 ‖Txn − p‖2 − 2a2 〈Txn − p, xn − p〉 .

Hence, summing up the corresponding sides of the preceding two inequal-
ities and using the fact that T is nonexpansive and Tp = p, we get

‖xn+1 − p‖2 + a2 ‖xn − Txn‖2 ≤ [2a2 + λ2 + (1 − λ)2] · ‖ xn − p‖2 +

+2[λ(1 − λ) − a2] · 〈Txn − p, xn − p〉 .

If we choose now an a such that a2 ≤ λ(1 − λ), then from the last inequality
we obtain

‖xn+1 − p‖2 + a2 ‖xn − Txn‖2 ≤

≤
(
2a2 + λ2 + (1 − λ)2 + 2λ(1 − λ) − 2a2

)
‖xn − p‖2 = ‖xn − p‖2

(we used the Cauchy-Schwarz inequality,

〈Txn − p, xn − p〉 ≤ ‖Txn − P‖ · ‖xn − p‖ ≤ ‖ xn − p‖2
)

.

Letting now a2 = λ(1 − λ) > 0 and summing up the obtained inequality

a2 ‖xn − Txn‖2 ≤ ‖ xn − p‖2 − ‖ xn+1 − p‖2

for n = 0 to n = N we get

λ(1 − λ)
N∑

n=0

‖xn − Txn‖2 ≤
N∑

n=0

[
‖xn − p‖2 − ‖xn+1 − p‖2

]
=

= ‖x0 − p‖2 − ‖xN+1 − p‖2 ≤ ‖ x0 − p‖2
,

which shows that
∞∑

n=0
‖xn − Txn‖2

< ∞ and hence ‖xn − Txn‖ → 0, as
n → ∞.
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As T is demicompact, it results that there exists a strongly convergent
subsequence {xni

} such that xni
→ p ∈ FT .

Since T is nonexpansive, Txni
→ Tp and Tp = p.

The convergence of the entire sequence {xn}∞n=0 to p now follows from the
inequality ‖xn+1 − p‖ ≤ ‖xn − p‖, which can be deduced from the nonex-
pansiveness of T and is valid for each n. �

Remarks.
1) The class of demicompact operators contains the compact operators,

therefore by Theorem 3.2 we obtain, in particular, the result of Krasnoselskij
[Kra55], and that of Schaefer [Sch57], established there in the more general
context of uniformly convex Banach spaces;

2) From the proof of Theorem 3.2 it results that Uλ given by (2) is as-
ymptotically regular , i.e.,

∥∥ Un
λ x − Un+1

λ x
∥∥ → 0, as n → ∞, for any x ∈ C,

that is,
xn − xn+1 → 0, as n → ∞, (3)

for any x0 ∈ C.
The existence of the previous limit alone does not imply generally the con-

vergence of the sequence {xn}∞n=0 to a fixed point of T (in Theorem 3.2 one
additional assumption was the demicompactness of T ). There are other pos-
sible additional assumptions to ensure the convergence of {xn}∞n=0 under the
hypothesis of asymptotic regularity. For example, in the case of the real line,
C = [a, b] the closed bounded interval and T : C → C a continuous function,
Hillam [Hil76] showed that the Picard iteration associated to T converges if
and only if it is asymptotically regular;

3) Let us notice that the Krasnoselskij iteration is in fact the Picard
iteration corresponding to the “averaged operator” Uλ associated to T and
defined by (2);

4) The demicompactness on the whole D may be weakened to 0 by simul-
taneously adding an other assumption, to obtain the next result. A map T of
D ⊂ X into X is demicompact at f if, for any bounded sequence {xn} in D
such that xn − T (xn) → f as n → ∞, there exists a subsequence {xnj

} and
an x in D such that xnj

→ x as j → ∞ and x− T (x) = f. Clearly, when T is
demicompact on D, it is demicompact at 0 but the converse is not true.

Corollary 3.1. Let X be a uniformly convex Banach space, D a closed
bounded convex set in X, and T a nonexpansive mapping of D into D such
that T satisfies any one of the following two conditions:
(i) (I-T) maps closed sets in D into closed sets in X;
(ii) T is demicompact at 0.

Then, for any given x0 in C and any fixed number λ with 0 < λ < 1, the
Krasnoselskij iteration {xn}∞n=0 given by (1) converges (strongly) to a fixed
point of T .

Proof. It suffices to show that the averaged map Tλ satisfies all conditions
(a) − (e) in Exercise 2.14. �
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Remarks.
1) Conditions (i) and (ii) in Corollary 3.1 are independent;
2) If in Theorem 3.2 we remove the assumption that T is demicompact,

then the Krasnoselskij iteration does not longer converge strongly, in general,
but it converges (at least) weakly to a fixed point, as shown by the next
theorem.

Theorem 3.3. Suppose T is a nonexpansive operator that maps a bounded
closed convex set C of H into C and that FT = {p}. Then the Krasnoselskij
iteration converges weakly to p,

Un
λ x0 ⇀ p,

for any x0 ∈ C.

Proof. It suffices to show that if {xnj
}∞j=0, xnj

= U
nj

λ x converges weakly
to a certain p0, then p0 is a fixed point of T or of Uλ and therefore p0 = p.
Suppose that {xnj

}∞j=0 does not converge weakly to p. Then
∥∥ xnj

− Uλp0

∥∥ ≤
∥∥ Uλxnj

− Uλp0

∥∥+
∥∥ xnj

− Uλxnj

∥∥ ≤

≤
∥∥ xnj

− p0

∥∥+
∥∥ xnj

− Uλxnj

∥∥
and, using the arguments in the proof of Theorem 3.2, it results

∥∥ xnj
− Uλxnj

∥∥ → 0, as n → ∞,

and so the last inequality implies that

lim sup
( ∥∥ xnj

− Uλp0

∥∥−
∥∥ xnj

− p0

∥∥ ) ≤ 0. (4)

But, like in the proof of Theorem 3.2, we have
∥∥ xnj

− Uλp0

∥∥2 =
∥∥ (xnj

− p0) + (p0 − Uλp0)
∥∥2 =

=
∥∥ xnj

− p0

∥∥2 + ‖p0 − Uλp0‖2 + 2
〈
xnj

− p0, p0 − Uλp0

〉
,

which shows, together with xnj
⇀ p0 (as j → ∞), that

lim
n→∞

[∥∥ xnj
− Uλp0

∥∥2 −
∥∥xnj

− p0

∥∥2
]

= ‖p0 − Uλp0‖2
. (5)

On the other hand, we have
∥∥ xnj

− Uλp0

∥∥2 −
∥∥xnj

− p0

∥∥2 =
( ∥∥ xnj

− Uλp0

∥∥−
∥∥ xnj

− p0

∥∥ ) ·
·
( ∥∥ xnj

− Uλp0

∥∥+
∥∥ xnj

− p0

∥∥ ) . (6)

Since C is bounded, the sequence
{∥∥ xnj

− Uλp0

∥∥+
∥∥ xnj

− p0

∥∥} is bounded,
too, and by the relations (4)-(6) we get
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‖p0 − Uλp0‖ ≤ 0, i.e. Uλp0 = p0 ⇔ p0 ∈ FT = {p},

which ends the proof. �
Remark. The assumption FT = {p} in Theorem 3.3 may be removed in

order to obtain a more general result.

Theorem 3.4. Let C be a bounded closed convex subset of a Hilbert
space and T : C → C be a nonexpansive operator. Then, for any x0 in C, the
Krasnoselskij iteration converges weakly to a fixed point of T.

Proof. Let FT be the set of all fixed points of T in C (which is nonempty,
by Theorem 3.1, and convex, by Lemma 3.1). As T is nonexpansive, for each
p ∈ FT and each n we have

‖ xn+1 − p‖ ≤ ‖ xn − p‖ ,

which shows that the function g(p) = lim
n→∞

‖ xn − p‖ is well defined and is a
lower semicontinuous convex function on FT . Let

d0 = inf{g(p) : p ∈ FT }.

For each ε > 0, the set

Fε = {y : g(y) ≤ d0 + ε}

is closed, convex, nonempty and bounded and, hence, weakly compact. There-
fore ∩

ε>0
Fε 
= ∅, and in fact

∩
ε>0

Fε = {y : g(y) = d0} ≡ F0.

Moreover, F0 contains exactly one point. Indeed, since F0 is convex and closed,
for p0, p1 ∈ F0, and pλ = (1 − λ)p0 + λp1,

g2(pλ) = lim
n→∞

‖ pλ − xn‖2 = lim
n→∞

(‖λ(p1 − xn) + (1 − λ)(p0 − xn)‖2) =

= lim
n→∞

(λ2 ‖p1 − xn‖2 + (1 − λ)2 ‖ p0 − xn‖2 +

+2λ(1 − λ) 〈p1 − xn, p0 − xn〉) = lim
n→∞

(λ2 ‖p1 − xn‖2 +

+(1 − λ)2 ‖ p0 − xn‖2 + 2λ(1 − λ) ‖ p1 − xn‖ · ‖ p0 − xn‖)+
+ lim

n→∞
{2λ(1 − λ) [〈p1 − xn, p0 − xn〉 − ‖ p1 − xn‖ · ‖ p0 − xn‖]} =

= g2(p) + lim
n→∞

{2λ(1 − λ) 〈p1 − xn, p0 − xn〉 − ‖ p1 − xn‖ · ‖ p0 − xn‖} .

Hence

lim
n→∞

{2λ(1 − λ) [〈p1 − xn, p0 − xn〉 − ‖ p1 − xn‖ · ‖ p0 − xn‖]} = 0.
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Since
‖p1 − xn‖ → d0 and ‖ p0 − xn‖ → d0,

the latter relation implies that

‖ p1 − p0‖2 = ‖ (p1 − xn) + (xn − p0‖2 = ‖ p1 − xn‖2 +

+ ‖ xn − p0‖2 − 2 < p1 − xn, p0 − xn >→ d2
0 − d2

0 − 2d2
0 = 0,

giving a contradiction.
Now, in order to show that xn = Un

λ x0 ⇀ p0, is suffices to assume that
xnj

⇀ p for an infinite subsequence and then prove that p = p0. By the
arguments in Theorem 3.3, p ∈ FT . Considering the definition of g and the
fact that xnj

→ p, we have

∥∥ xnj
− p0

∥∥2 =
∥∥ xnj

− p + p − p0

∥∥2 =
∥∥ xnj

− p
∥∥2 + ‖ p − p0‖2 −

−2
〈
xnj

− p, p − p0

〉
→ g2(p) + ‖ p − p0‖2 = g2(p0) = d2

0.

Since g2(p) ≥ d2
0, the last inequality implies that

‖ p − p0‖ ≤ 0,

which means that p = p0. �

3.2 Strictly Pseudocontractive Operators

In this section we present some convergence theorems for the Krasnoselskij
iteration scheme in the class of pseudocontractive operators. The first of them
is concerned with the computation of fixed points of strictly pseudocontractive
operators.

Theorem 3.5. Let C be a bounded closed convex subset of a Hilbert space
and T : C → C be a strictly pseudocontractive operator, i.e., an operator for
which there exists a constant k < 1 such that

‖Tx − Ty‖2 ≤ ‖ x − y‖2 + k ‖ (I − T )x − (I − T ) y‖2
, x, y ∈ C. (7)

Then, for any x0 in C and any fixed µ such that µ < 1−k the Krasnoselskij
iteration {xn}∞n=0, given by x0 ∈ C and

xn+1 = (1 − µ)xn + µT xn , n = 0, 1, 2, . . . , (8)

converges weakly to a fixed point p of T.
If, additionally, we assume that T is demicompact, then {xn}∞n=0 converges

strongly to p.
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Proof. We denote as usually Tt = (1 − t) I + t T and show that Tt is
nonexpansive. Indeed, by the pseudocontractiveness condition (7) it follows
that U = I − T is strongly monotone, i.e.,

< Ux − Uy, x − y > ≥ m ‖ Ux − Uy‖2
, with m =

1 − k

2
> 0.

Then, for any t > 0

‖ Ttx − Tty‖2 = ‖ (I − tU)x − (I − tU) y‖2 =

= ‖x − y‖2 + t2 ‖Ux − Uy‖2 − 2t < Ux − Uy , x − y > ≤

≤ ‖ x − y‖2 + (t2 − 2tm) ‖ Ux − Uy‖2
.

Now, if we take t ≤ 2m = 1 − k, then from the preceding inequality we
obtain

‖ Ttx − λty‖ ≤ ‖ x − y‖ , x, y ∈ C,

which shows that Tt is nonexpansive.
Now, by Theorem 3.4, Tt (and therefore T ) has a fixed point p0 in C and

for any fixed λ with 0 < λ < 1, the Krasnoselskij iteration xn = (Tt)n
λ(x0)

associated to Tt converges weakly to some fixed point p of T in C.
But the iteration function (Tt)λ is in fact

(Tt)λ = (1−λ) I +λTt = (1−λ) I +λ[(1− t) I + t T ] = (1−λt) I +λ t T = Tµ,

with µ = λt < t ≤ 1 − k.
In order to prove the second part of the theorem, based on Theorem 3.3,

it suffices to show that Tµ is demicompact. But this follows immediately from
the demicompactness of T using the equality

Tµx − x = µ (Tx − x),

valid for every x in C. �

3.3 Lipschitzian and Generalized Pseudocontractive
Operators

Even though there is a rather strong connection between strictly pseudo-
contractive operators and generalized pseudocontractive operators, these two
classes are however independent each other.

This is the motivation why, in addition to the short previous section, we
consider here generalized pseudocontractions which are also Lipschitzian, a
class for which we can use the Krasnoselskij iteration in order to approximate
their fixed points.
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Definition 3.2. Let H be a Hilbert space with inner product 〈·, ·〉 and
norm ‖·‖. An operator T : H → H is said to be a generalized pseudo-
contraction if there exists a constant r > 0 such that, for all x, y in H,

‖ Tx − Ty‖2 ≤ r2 ‖x − y ‖2 + ‖Tx − Ty − r(x − y) ‖2
. (9)

Remarks.
1) Condition (9) is equivalent to

〈Tx − Ty, x − y〉 ≤ r ‖ x − y‖2
, for all x, y ∈ H, (10)

or to
〈(I − T )x − (I − T ) y〉 ≥ (1 − r) ‖ x − y‖2

. (11)

Relation (11) implies that U = I − T is strongly monotone for r < 1.
2) If r = 1, then a generalized pseudo-contraction reduces to a pseudo-

contraction;
3) By the Cauchy-Schwarz inequality

| 〈Tx − Ty, x − y 〉| ≤ ‖ Tx − Ty‖ · ‖ x − y‖ ,

we obtain that any Lipschitzian operator T , that is, any operator for which
there exists s > 0 such that

‖ Tx − Ty‖ ≤ s · ‖ x − y‖ , x, y ∈ H, (12)

is also a generalized pseudo-contractive operator, with r = s.
This, however, does not exclude the possibility that a certain operator

T be simultaneously Lipschitzian with constant s, and generalized pseudo-
contractive with constant r, and r < s. The existence of the last inequality is,
in fact, the only reason of considering together Lipschitzian and generalized
pseudo-contractive operators.

4) On the other hand, Theorem 3.6 below is obtained under the essential
assumptions r < 1 and s ≥ 1. Consequently, in the following, we shall assume
that the Lipschitzian constant s and the generalized pseudo-contractivity con-
stant r fulfill the conditions

0 < r < 1 and r ≤ s. (13)

Example 3.1. Let H be the real line R endowed with the Euclidean inner

product and norm, K =
[
1
2
, 2
]

and T : K → K a function given by Tx =
1
x

,

for all x in K.
Then T is Lipschitzian with constant s = 4 (so T is also generalized

pseudo-contractive with constant r = 4).
Moreover, T is generalized pseudocontractive with any constant r > 0. It

is easy to see that T has a unique fixed point, FT = {1}, and that, for any
initial choice x0 = a 
= 1, the Picard iteration yields the oscillatory sequence
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a,
1
a
, a,

1
a
, . . .

Theorem 3.6. Let K be a non-empty closed convex subset of a real Hilbert
space and T : K → K a generalized pseudocontractive and Lipschitzian
operator with the corresponding constants r and s fulfilling (13). Then

(i) T has an unique fixed point p;
(ii) for each x0 in K, the Krasnoselskij iteration {xn}∞n=0, given by

xn+1 = (1 − λ)xn + λTxn , n = 0, 1, 2, . . . , (14)

converges (strongly) to p, for all λ ∈ (0, 1) satisfying

0 < λ < 2(1 − r)/(1 − 2r + s2). (15)

(iii) Both the a priori

‖ xn − p‖ ≤ θn

1 − θ
· ‖ x1 − x0‖ , n = 1, 2, . . . (16)

and a posteriori

‖ xn − p‖ ≤ θ

1 − θ
· ‖ xn − xn−1‖ , n = 1, 2, . . . (17)

estimates hold, with

θ =
(
(1 − λ)2 + 2λ(1 − λ) r + λ2s2

)1/2
. (18)

Proof. We consider the averaged operator F associated to T,

Fx = (1 − λ)x + λ · Tx , x ∈ K, (19)

for all λ ∈ [0, 1]. Since K is convex, we have that F (K) ⊂ K for each λ ∈ [0, 1].
As a closed subset of a Hilbert space, K is a complete metric space. We

claim that F is a θ−contraction with θ given by (18).
Indeed, since T is generalized pseudo-contractive and Lipschitzian, we have

‖Fx − Fy‖2 = ‖ (1 − λ)x + λTx − (1 − λ) y − λTy‖2 =

= ‖ (1 − λ)(x − y) + λ(Tx − Ty)‖2 = (1 − λ)2 · ‖ x − y‖2 +

+2λ(1 − λ) · 〈Tx − Ty, x − y〉 + λ2 · ‖Tx − Ty‖2 ≤

≤
(
(1 − λ)2 + 2λ(1 − λ)r + λ2s2

)
· ‖ x − y‖2

,

which yields

‖Fx − Fy‖ ≤ θ · ‖ x − y‖ , for all x, y ∈ K.
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In view of condition (15), it results that 0 < θ < 1, so the mapping F is a
θ−contraction. In order to obtain the conclusion we now apply the contraction
mapping principle (Theorem 2.1) for the operator F and the complete metric
space K. �

Remarks.
1) The a priori estimate (16) in Theorem 3.6 shows that the Krasnoselskij

iteration converges to p at least as fast as the geometric series of ratio θ;
2) The Krasnoselskij iteration solves several situations when the Picard

iteration does not converge.

Example 3.2. Let K be as in Example 3.1. Here s = 4 and r > 0 arbitrary.
Taking, for example, r = 0.5 we get

2(1 − r)/(1 − 2r + s2) = 1/16,

and so, by Theorem 3.6, the sequence {xn}∞n=0 given by

xn+1 = (1 − λ) · xn + λ · 1
xn

, n = 0, 1, 2, . . . (20)

converges strongly to the fixed point p = 1 of T , for all values of λ in the

interval
(

0,
1
16

)
.

Remark. It is of interest to answer the following question: amongst all the
Krasnoselskij iterations {xn}∞n=0 in the family (14), obtained when λ ranges
the interval (0, a), with

a =
2(1 − r)

(1 − 2r + s2)
,

is there a certain iteration to be the fastest one (in that family) ?
To answer this question, we shall adopt a suitable concept of convergence

rate.
Let {xn} and {yn} be two sequences that converge to p (as n → ∞),

satisfying the estimate (16) with θ = θ1 and θ = θ2, respectively, and such
that θ1, θ2 ∈ (0, 1). We shall say that {xn} converges faster than {yn} if

θ1 < θ2.

Equipped now with this concept of rate of convergence, Theorem 3.7 below
answers in the affirmative the previous question.

Theorem 3.7. Let all assumptions in Theorem 3.6 be satisfied. Then the
fastest iteration {xn}∞n=0 in the family (14), with λ ∈ (0, a), is the one ob-
tained for

λmin = (1 − r) / (1 − 2r + s2). (21)

Proof. We have to find the minimum of the quadratic function
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f(x) = (1 − x)2 + 2x(1 − x) r + x2s2,

with respect to x, that is to minimize the function

f(x) = (1 − 2r + s2)x2 − 2(1 − r)x + 1 , x ∈ (0, a),

with a given by
a = 2(1 − r)/(1 − 2r + s2). (22)

This is an elementary task. Indeed from (13) we have that

1 − 2r + s2 ≥ (1 − r)2 > 0,

and hence f does admit a minimum, which is attained for

x = λmin,

with λmin given by (21). The minimum value of f(x) is then

fmin = (s2 − r2)/(1 − 2r + s2),

which shows that the minimum value of θ given by (18) is

θmin =
(
(s2 − r2) / (1 − 2r + s2)

)1/2
,

that completes the proof. �
Remarks.
1) It is important to notice that if s < 1, that is, T is actually a

s−contraction, then a > 1 and hence λ = 1 ∈ (0, a). This shows that among
all Krasnoselskij iterations (14) that converge to the fixed point of T , we also
find the Picard iteration associated to T , which is obtained from (14) for
λ = 1. (This of course does not happen if s ≥ 1);

2) As for the Picard iteration we have a similar a priori estimation, we
can compare the Picard iteration to the fastest Krasnoselskij iteration in the
family (14), with λ ∈ (0, a) :

a) If r = s2 < 1, then we have

θmin = s,

which means that the fastest Krasnoselskij iteration in the family (14) coin-
cides with the Picard iteration itself;

b) If r 
= s2, then it is easy to check that we have

θmin < s,

(since s < 1), which shows that the Krasnoselskij iteration (14) with λ = λmin

is faster than the Picard iteration associated to T .
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In this case, the fastest iteration from (14) may be regarded as an accel-
erating procedure of the Picard iteration.

Example 3.3. For T and K as in Examples 3.1 and 3.2, and for a certain
r ∈ (0, 1), we obtain the fastest Krasnoselskij iteration for

λ = (1 − r) / (1 − 2r + 16).

If we take r = 0.5, then (14) converges for each λ ∈
(

0,
1
16

)
. The fastest

Krasnoselskij iteration {xn}∞n=0 in this family is then obtained for λ =
1
32

,
and is given by

xn+1 =
1
32

(
31xn +

1
xn

)
, n = 0, 1, 2, . . . .

The averaged operator F,

F (x) =
1
32

(
31x +

1
x

)
,

associated to T is a contraction and has the contraction coefficient

θmin =
√

63
8

= 0.992,

which is very close to 1.
The fastest Krasnoselskij iteration obtained in this way, converges very

slowly to p = 1, the fixed point of T , as shown by the next Example.

Example 3.4. Starting with x0 = 1.5, and x0 = 1.25, respectively, the
first 32 iterations are the following:

n xn n xn

0 1.5 16 1.203
1 1.473 17 1.191
2 1.449 18 1.180
3 1.425 19 1.170
4 1.402 20 1.160
5 1.381 21 1.151
6 1.360 22 1.142
7 1.341 23 1.133
8 1.322 24 1.126
9 1.304 25 1.118
10 1.287 26 1.111
11 1.271 27 1.105
12 1.256 28 1.098
13 1.242 29 1.087
14 1.228 30 1.082
15 1.215 31 1.077

n xn n xn

0 1.25 16 1.0960
1 1.2359 17 1.0902
2 1.2226 18 1.0848
3 1.2100 19 1.0797
4 1.1980 20 1.0749
5 1.1866 21 1.0704
6 1.1759 22 1.0662
7 1.1657 23 1.0584
8 1.1561 24 1.0515
9 1.1470 25 1.0484
10 1.1384 26 1.0454
11 1.1303 27 1.0426
12 1.1226 28 1.0400
13 1.1153 29 1.0376
14 1.1085 30 1.0353
15 1.1021 31 1.0331



3.4 Lipschitzian and Generalized Pseudocontractive Operators 77

3.4 Pseudo ϕ-Contractive Operators

In this section we want to show how we can unify in a single concept various
notions as nonexpansive, Lipschitzian, pseudo-contractive type operators etc.
For this new class of operators, called pseudo ϕ-contractive, we shall prove a
convergence theorem for the Krasnoselskij fixed point procedure.

Let H be a Hilbert space with the inner product 〈·, ·〉 and the norm ‖·‖.
For the operators T : H → H, let us denote by

1) C0, the class of a−contractions, 0 ≤ a < 1;
2) C1, the class of nonexpansive operators;
3) C2, the class of strictly pseudo-contractive operators;
4) C3, the class of pseudo-contractive operators;
5) C4, the class of generalized pseudo-contractive operators.
The next lemmas are immediate consequences of the results given in the

previous sections and chapters.

Lemma 3.2.
1) T ∈ C3 if and only if

〈Tx − Ty, x − y〉 ≤ ‖ x − y‖2
, for all x, y ∈ H;

2) T ∈ C3 if and only if

〈(I − T )x − (I − T ) y, x − y〉 ≥ 0, for all x, y ∈ H.

Lemma 3.3.
1) T ∈ C4 if and only if there exists r > 0 such that

〈Tx − Ty, x − y〉 ≤ r · ‖ x − y‖2
, for all x, y ∈ H;

2) T ∈ C4 if and only if there exists r > 0 such that

〈(I − T )x − (I − T ) y, x − y〉 ≥ (1 − r) · ‖ x − y‖2
, for all x, y ∈ H.

Lemma 3.4. T ∈ C2 if and only if there exists k > 0 such that

〈(I − T )x − (I − T ) y, x − y〉 ≥ k · ‖ x − y‖2
, for all x, y ∈ H.

Remark. It is also easy to prove the following inclusions

C0 ⊂ C1 ⊂ C2 ⊂ C3 ⊂ C4.

Definition 3.3. An operator T : H → H is said to be (strictly) pseudo ϕ-
contractive if, for any a, b, c ∈ R with a+b+c = 1, there exists a (comparison)
function ϕ : R+ → R+, such that
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a · ‖x − y‖2 + b · 〈Tx − Ty, x − y〉 + c · ‖Tx − Ty‖2 ≤ ϕ2 ( ‖ x − y‖ ) ,

(23)

holds, for all x, y in H.

Example 3.4.
1) Any Lipschitzian operator T is pseudo ϕ−contractive with a = 0, b =

0, c = 1 and ϕ(t) = t;
2) Any pseudo-contractive operator is also of pseudo ϕ−contractive type

with a = 0, b = 1, c = 0 and ϕ(t) = t;
3) Any generalized pseudo-contractive operator is a (strictly, if r < 1)

pseudo ϕ−contractive operator, with a = 0, b = 1, c = 0 and ϕ(t) = r·t, r > 0;
4) Any strictly pseudocontractive operator is a pseudo ϕ−contractive op-

erator, with a =
k − 1
2k

, b = 1, c =
1 − k

2k
and ϕ(t) = t;

5) Any strongly pseudocontractive operator is a pseudo ϕ−contractive

operator, with a =
r t

2(1 + r)
, b = 1 , c = − r t

2(1 + r)
, ϕ(u) =

rt2 + 2r + 2
2t(r + 1)

· u.

There are many convergence theorems concerning the approximation of
fixed points for several classes of pseudocontractive type operators. The next
theorem shows that the Krasnoselskij iteration converges to a fixed point of
any strictly pseudo ϕ−contraction.

Theorem 3.8. Let K be a nonempty closed convex subset of a real Hilbert
space H and T : K → K a strictly pseudo ϕ−contractive operator. Then

(i) T has an unique fixed point p in K;
(ii) For each x0 ∈ K, the Krasnoselskij iteration {xn}∞n=0 given by (14)

converges strongly to p, for all λ ∈ (0, 1);
(iii) If, additionally, ϕ is a (c)−comparison function, then

‖ xn − p‖ ≤ s (‖ xn − xn+1‖) , n = 1, 2, . . .

(where s(t) =
∞∑

k=0

ϕk(t) denotes the sum of the comparison series).

Proof. The proof is similar to that of Theorem 3.6. We consider the
associated operator

Fx = (1 − λ)x + λTx , x ∈ K

and show that F : K → K is a ϕ−contraction. Indeed, by (23) we get

‖ Fx − Fy‖2 ≤ ϕ2 (‖ x − y‖) , for all x, y ∈ K,

which shows that F is a ϕ−contraction.
Now, by Theorems 2.7 and 2.8, the conclusion immediately follows. �
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Remarks.
1) If T is not a strictly pseudo ϕ−contraction, then Theorem 3.8 is no

longer valid;
2) We can obtain a result similar to the one given by Theorem 2.10 by

considering in the right hand side of (23) the expression

ϕ2 (‖ x − y‖ , ‖ x − Tx‖ , ‖ y − Ty‖ , ‖ x − Ty‖ , ‖ y − Tx‖) ,

given by a 5-dimensional comparison function rather than a one-dimensional
function;

3) If T is Lipschitzian and generalized pseudocontractive (with r < 1),
then by Theorem 3.8 we obtain exactly Theorem 3.6, by taking the most used
comparison function, i.e.,

ϕ(t) = r · t;
4) The next two examples illustrate why we needed to consider special

classes of pseudocontractive operators and not simply pseudocontractive op-
erators in some of the convergence theorems stated in this chapter.

Example 3.5. Let R denote the reals with the usual norm, K = [0, 1] and

define T : K → R by Tx =
1
2
x + 1. Then T is a

1
2
-contraction and hence is

strongly pseudocontractive, but T has no fixed points in K.

Example 3.6. Let R denote the reals with the usual norm, K = {1, 2}
and define T : K → K by T (1) = 2, T (2) = 1. Then T is strongly pseudocon-
tractive, but T has no fixed point in K.

3.5 Quasi Nonexpansive Operators

The convergence of Picard iteration for two classes of particular quasi
nonexpansive operators was studied in Section 2.3, see also Exercise 2.14,
which gives a convergence theorem for the whole class of quasi nonexpansive
operators, when some additional assumptions are satisfied.

In the case of Hilbert spaces, see Exercise 3.5, it is known that nonexpan-
sive operators are asymptotically regular. Since quasi nonexpansive operators
strictly include the nonexpansive ones, even though a quasi nonexpansive op-
erator is generally not asymptotically regular, however, its averaged operator
is asymptotically regular in the case of uniformly Banach spaces, as the next
Lemma shows.

Lemma 3.5. Let X be a uniformly convex Banach space, D a subset of X,
and T a mapping of D into X such that FT 
= ∅ and T is quasi nonexpansive.
Let Tλ be the averaged operator associated to T , i.e.,

Tλ(x) = (1 − λ)x + λTx, x ∈ D.
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If there exists x0 ∈ D and λ ∈ (0, 1) such that the Krasnoselskij iteration
{Tn

λ (x0)} is defined and lies in D for each n ≥ 1, then Tλ is asymptotically
regular at x0, that is,

lim
n→∞

[Tn
λ (x0) − Tn+1

λ (x0)] = 0.

Proof. Let p be any element in FT and let x0 be a point in D satisfying the
conditions above. Tλ is also quasi nonexpansive since FTλ

= FT 
= ∅ and for
all x in D we have

‖Tλ(x) − p‖ = ‖λx − λp + (1 − λ)(Tx − p)‖ ≤ λ ‖x − p‖ + (1 − λ) ‖x − p‖ =

= ‖x − p‖ .

This implies

‖xn+1 − p‖ = ‖Tλxn − p‖ ≤ ‖xn − p‖ , for each n ≥ 1,

and therefore {‖xn − p‖} converges to some d0 ≥ 0.
If d0 = 0, then lim

n→∞
xn = p and so in this case xn − xn+1 = Tn

λ (x0) −
Tn+1

λ (x0) → 0 as n → ∞, as required. In the case d0 > 0, since ‖xn − p‖ → d0,
‖Tλxn − p‖ ≤ ‖xn − p‖ for each n, and

lim
n→∞

‖Tλxn − p‖ = lim
n→∞

‖xn − p‖ = d0,

it follows from the uniform convexity of X that

lim
n→∞

‖(xn − p) − (Tλxn − p)‖ = 0,

i.e.,

lim
n→∞

‖(xn − Tλxn‖ = lim
n→∞

∥∥Tn
λ (x0) − Tn+1

λ (x0)
∥∥ = 0. �

The following Lemma will be also useful to prove the main result of this
section and is important by itself.

Lemma 3.6 Let X be a strictly convex Banach space and D a closed
convex subset of X. If T is a continuous mapping of D into X such that
FT 
= ∅ and

‖Tx − p‖ ≤ ‖x − p‖ , for x ∈ D \ FT and p ∈ FT , (24)

then FT is a convex set.

Proof. Let x and y be any two distinct points of FT and, for t ∈ (0, 1),
denote zt = tx+(1− t)y. Since D is convex, zt ∈ D. Suppose, contrary to our
assertion, that zt /∈ FT for some t ∈ (0, 1). This means zt ∈ D \ FT . Then, it
follows by (24) that
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‖x − y‖ ≤ ‖x − T (zt)‖ + ‖T (zt) − y‖ ≤ ‖x − zt‖ + ‖zt − y‖ .

Since X is strictly convex, we have that

x − T (zt) = a(T (zt) − y), for some a > 0,

from which we obtain

T (zt) =
1

1 + a
x +

a

1 + a
y,

which shows that T (zt) lies on the line determined by x and y. On the other
hand,

‖x − T (zt)‖ ≤ ‖x − zt‖ and ‖T (zt) − y‖ ≤ ‖zt − y‖ .

Thus T (zt) must coincide with zt. �
In the last part of this section we are interested to obtain convergence

theorems for Krasnoselskij iteration under the basic assumption that T or Tλ

is strictly quasi nonexpansive and that T satisfies the so-called Frum-Ketkov
contractive condition. To this end we also need the following lemma.

Lemma 3.7. Let D be a closed convex subset of X and T a selfmap of D
such that

d(T (x),K) ≤ kd(x,K), for all x ∈ D (25)

for some convex compact set K in X and constant k < 1. If Tλ = λI+(1−λ)T
is the averaged mapping and λ ∈ (0, 1), then

d(Tλ(x),K) ≤ kλd(x,K), for each x ∈ D, (26)

where kλ = λ + (1 − λ)k < 1.

Proof. Let λ be fixed in (0, 1), and x ∈ D, fixed. Since clearly 0 < kλ < 1,
it suffices to prove (26).

For a given δ > 0, there exist yδ ∈ K and zδ ∈ K such that

‖x − yδ‖ ≤ d(x,K) + δ/(2λ), ‖Tx − zδ‖ ≤ d(Tx,K) + δ/(2(1 − λ)).

Let wλ = λyδ + (1 − λ)zδ. Since K is convex, we have wλ ∈ K. Then

d(Tλx,K) ≤ ‖Tλx − wλ‖ = ‖λ(x − yδ) + (1 − λ)(Tx − zδ)‖ ≤
≤ λ ‖x − yδ‖ + (1 − λ) ‖Tx − zδ‖ ≤ kλd(x,K) + δ,

and since δ > 0 was chosen arbitrarily, the conclusion follows. �
The main result of this section is given by the next Theorem.

Theorem 3.9. Let D be a closed convex set in a strictly convex Banach
space X and let T : D → D be a conditionally quasi-nonexpansive operator.
Suppose further that there exists a convex compact set K in X and a number
k < 1 such that (25) holds.
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Then, for any x0 ∈ D and any λ ∈ (0, 1), the Krasnoselskij iteration
{Tn

λ (x0)} converges to a fixed point of T .

Proof. By the convexity of D it follows that Tλ maps D into itself. Since
T satisfies (25), by Lemma 3.7, Tλ satisfies (26) and hence, in view of Frum-
Ketkov fixed point theorem, see Exercise 3.20, Fix (Tλ) 
= ∅. Moreover, since
X is strictly convex and T is conditionally quasi-nonexpansive, it results that
Tλ is conditionally strictly quasi nonexpansive, i.e.,

‖Tλx − Tλ‖ < ‖x − y‖

for all x 
= y in D, whenever Fix (Tλ) 
= ∅.
In fact, as Fix (Tλ) 
= ∅, Tλ is strictly nonexpansive.
On the other hand, by the same Frum-Ketkov contractive condition, it

results
d(Tn

λ (x0),K) ≤ kn
λd(x0,K)

and since kλ < 1, this implies lim
n→∞

d(Tn
λ (x0),K) = 0, and since K is compact,

this forces {xn ≡ Tn
λ (x0)} to contain a convergent subsequence {xnj

}j≥1 with
lim

j→∞
= x∗.

The quasi nonexpansiveness condition implies that

lim
n→∞

d(xn, F ix (Tλ)) = d ≥ 0

exists. Therefore, it suffices to prove that d = 0. If x∗ ∈ Fix (Tλ), then d = 0.
If x∗ /∈ Fix (Tλ), then by the strictly quasi nonexpansiveness property, for
every x ∈ D \ Fix (Tλ), there exists p = px ∈ Fix (Tλ) such that

‖Tλx − Tλ‖ < ‖x − y‖ .

This implies that Tλ is continuous at x∗, and hence

‖Tλx∗ − p‖ =
∥∥∥∥Tλ

(
lim

j→∞
xnj

)
− p

∥∥∥∥ = lim
n→∞

‖Tn
λ (x0) − p‖ =

lim
j→∞

∥∥Tnj

λ (x0) − p
∥∥ = lim

j→∞

∥∥xnj
− p

∥∥ =
∥∥∥∥ lim

j→∞
xnj

− p

∥∥∥∥ = ‖x∗ − p‖ , (27)

(where the middle equalities hold since, Tλ quasi nonexpansive implies that
lim

n→∞
‖Tn

λ (x0) − p‖ exists).

But the equality (27) is a contradiction, hence always d = 0.
Now, by lim

n→∞
d(xn, F ix (Tλ)) = 0 we can prove that {xn} is a Cauchy

sequence and, as it contains a convergent subsequence, it is convergent in the
whole and x∗ ∈ Fix (Tλ). �
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3.6 Bibliographical Comments

§3.1.

The first result on the convergence of averaged sequences involving two
successive terms of the Picard iteration, i.e., the expression

1
2
(xn + Txn),

has been obtained by Krasnoselskij [Kra55]. There, it was shown that if K
is a closed bounded convex subset of a uniformly convex Banach space and
T : K → K is a nonexpansive and compact operator (i.e., T is continuous
and T (K) is relatively compact), then the sequence {xn}∞n=0 defined by

xn+1 =
1
2
(xn + Txn), n ≥ 0

converges strongly to a fixed point of T .
Krasnoselskij gave no estimation of the rate of convergence of {xn}∞n=0 and,

in fact, it is typical of iteration methods involving nonexpansive mappings that
their convergence may be arbitrarily slow. Actually, Oblomskaja [Obl68] gave
a linear example where convergence is slower that n−α for all α ∈ (0, 1). In
this context, we also mention the monograph Patterson [Pat74, Chapter 4]
which contains a thorough discussion of successive approximation method for
linear operators, and an extensive bibliography.

Schaefer [Sch57] extended Krasnoselskij’s result to the case when the con-
stant 1/2 is replaced by a λ ∈ (0, 1), obtaining in this way the first result for
the general Krasnoselskij iteration, defined by (1). Then, Edelstein [Ede66]
extended the previous result to the case when E is strictly convex.

Petryshyn [Pt66a] extended the results of Krasnoselskij and Schaefer to
demicompact nonexpansive mappings T : K → E that satisfy a Leray-
Schauder condition on the boundary ∂K of K, using the so-called iteration-
retraction method, that can work only in Hilbert spaces, while the results
of Krasnoselskij and Schaefer were derived in the more general setting of a
uniformly convex Banach space.

A new technique, based on a generalization of the projection method to
Banach spaces was recently developed by Alber [Alb96] and his collaborators.

Browder and Petryshyn [BrP66], [BrP67] carried further the results of
Krasnoselskij and Schaefer, investigating the convergence of the Krasnoselskij
(and Picard) iterations for nonexpansive operators T : E → E which are
asymptotically regular and for which I − T maps bounded closed sets into
closed sets. Further extensions were obtained by Diaz and Metcalf [DiM67],
[DiM69], Dotson [Dot70], Outlaw [Out69] and Petryshyn [Pet67], [Pet71].

The weak convergence of the Krasnoselskij iteration process was first
proved by Schaefer [Sch57], for the class of continuous nonexpansive oper-
ators. The extension of this result to general nonexpansive operators was car-
ried out in two stages by Browder and Petryshyn [BrP66] and Opial [Op67a],
respectively.
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The results included in this Section are taken from the following sources:
Theorem 3.1, which is the well known Browder-Gohde-Kirk fixed point the-
orem in a Hilbert space setting, is Theorem 4 in Browder and Petryshyn
[BrP67]; Theorem 3.2 is Theorem 6 of Petryshyn [Pt66a], reformulated in
Browder and Petryshyn [BrP67], while Theorem 3.3 is Theorem 7 and The-
orem 3.4 is Theorem 8, both taken from the same paper by Browder and
Petryshyn [BrP67], where many other interesting results for approximat-
ing fixed points are given. Corollary 3.1 is Corollary 2.1 in Petryshyn and
Williamson [PWi73], where several results from Browder and Petryshyn
[BrP67] are extended and improved.

§3.2.

Theorem 3.5 in this Section rewrites Theorem 12 in Browder and Petryshyn
[BrP67]. Theorem 14 in the same paper concerns the convergence of a modified
Krasnoselskij iteration, obtained by fixing the first term of the linear convex
combination, i.e., the iterative sequence is defined by means of the iteration
function Fλx := λTx + (1 − λ)u0, λ ∈ (0, 1), where u0 is fixed.

Several other results for this iteration procedure have been also obtained
independently by Browder [Br67b] and respectively by Halpern [Hal67], in
a Hilbert space setting. Their results say that: if xλ is the fixed point of
Fλ (which is a λ-contraction), then the sequence {xλ} converges strongly
to a fixed point of T as λ → 1. Later, Reich [Rei80] extended this result
to uniformly smooth Banach spaces. Thereafter, Singh, S.P. and Watson, B.
[SWa93] extended the result of Browder and Halpern to nonexpansive nonself
operators satisfying Rothe’s boundary condition.

Recently Xu, H.K. and Yin [XYi95] proved the convergence in the case
of nonexpansive nonself operators defined on a nonempty closed convex (not
necessarily bounded) subset of a Hilbert space. By adding the inwardness
condition, Xu, H.K. [XuH97] extended the latter to uniformly smooth Banach
spaces. For other related results, see also Jaggi [Ja77a], [Ja77b], Rhoades, B.E.,
Sessa, S., Khan, M.S., Swaleh, M. [RSK87], Jung and Kim, S.S. [JKS95],
[JK98a] and [JK98b] and Section 6.5.

§3.3.

The content of Section 3.3 is taken from Berinde [Be02e], [Be02a]. Theorem
3.6, without part (iii) regarding error estimates, has been proved by Verma,
R.U. [Ve97a], but the proof given here is at least formally different.

Theorem 3.7 has the merit to find the fastest Krasnoselskij iteration, under
the assumptions of Theorem 3.6. The argument we exploited in order to do
this was mentioned in passing in Browder and Petryshyn [BrP67].

§3.4.

The results in Section 3.4 are taken from Berinde [Be03a]. Various parts
of them were communicated, in different stages of evolution, at some interna-
tional conferences. Examples 3.5 and 3.6 are taken from Osilike [Os97c].
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§3.5.

All results in this section are taken from Petryshyn and Williamson
[PWi73]: Lemmas 3.5, 3.6 and 3.7 are respectively Lemma 2.1, Lemma 2.2
and Lemma 3.1, while Theorem 3.9 is Theorem 3.3 there. Exercise 3.21 is
Example 3.1. Condition (25) was first used in Frum-Ketkov [FrK67], see
Exercise 3.20, but a correct proof of this result was given by Nussbaum
[Nus72]. For a recent result involving a Frum-Ketkov condition see Binh
[Bin04].

Exercises and Miscellaneous Results

3.1. (a) Prove that if H is a Hilbert space then for any u, v ∈ H we have

‖u + v‖2 + ‖u − v‖2 = 2
(
‖u‖2 + ‖v‖2

)
. (*)

(b) Show that a Banach space X is a Hilbert space if and only if the identity
(∗) is satisfied for all u, v ∈ X.

3.2. Let H be a Hilbert space, C ⊂ H a closed bounded convex subset. For a
fixed element v0 in C and a number s ∈ (0, 1), define Us by
Us(x) = (1 − s)v0 + sTx, x ∈ C.
Show that: (a) Us maps C into C; (b) Us is a s-contraction.

3.3. Let H be a Hilbert space, C ⊂ H a closed bounded convex subset,
T : C → C and for λ ∈ (0, 1), define the averaged map
Tλ(x) = (1 − λ)x + λTx, x ∈ C. Show that:
(a) Tλ maps C into C;
(b) If T is nonexpansive then Tλ is nonexpansive as well;
(c) T and Tλ have the same fixed point set, i.e., Fix (T ) = Fix (Tλ).

3.4. Browder and Petryshyn (1967)
Let H be a Hilbert space, C ⊂ H a closed bounded convex subset, T : C → C
nonexpansive and, for λ ∈ (0, 1), define the averaged map

Tλ(x) = (1 − λ)x + λTx, x ∈ C.

Show that if {xn} is the Picard iteration associated to Tλ and x0 ∈ C, that
is, the Krasnoselskij iteration associated to T and x0, then

∞∑
n=0

‖xn+1 − xn‖2
< ∞.

Deduce from the above result that Tλ is asymptotically regular.

3.5. Let H be a Hilbert space, C ⊂ H a closed bounded convex subset. If
T : C → C is nonexpansive, then T is asymptotically regular, i.e., for any
x ∈ C, ∥∥Tn+1x − Tnx

∥∥ → 0 as n → ∞.



86 3 The Krasnoselskij Iteration

3.6. Let H be a Hilbert space and C ⊂ H be a closed bounded convex subset.
For each x ∈ H define RCx as the nearest point to x in C.
(a) If C = B(x0, r), show that RC : H → C is given by

RCx =

⎧⎨
⎩

x, if ‖x − x0‖ ≤ r
r(x − x0)
‖x − x0‖

, if ‖x − x0‖ ≥ r;

(b) Show that RC is nonexpansive.

3.7. Figueiredo-Karlovitz
If the mapping RC defined in Exercise 3.6 for C = B(0, 1) is nonexpansive for
a Banach space X of dimension > 2, then X is a Hilbert space.

3.8. Let H be a Hilbert space, C ⊂ H a closed bounded convex subset and
T : C → C a strictly pseudo-contractive operator. Show that there exist values
of λ ∈ (0, 1) such that the averaged operator

Tλ(x) = (1 − λ)x + λTx, x ∈ C,

is nonexpansive.

3.9. Let H be a Hilbert space, K ⊂ H a closed bounded convex subset.
Show that any Lipschitzian operator T : K → K is also generalized pseudo-
contractive with the same constant but the reverse is not true.

3.10. If K is a closed convex subset of a strictly convex Banach space X and
T : K → K is nonexpansive, then FT is closed and convex.

3.11. Let X = R
2 be endowed with the norm ‖(x, y)‖∞ = max{|x| , |y|} and

define T : R
2 → R

2 by T (x, y) = (x, |x|). Then
(a) T is nonexpansive;
(b) FT is not convex.

3.12. Consider the unit ball in the space C0 of all sequences of real numbers
with limit 0 endowed with the sup norm and define T : C0 → C0 by

Tx = (x1, 1 − |x1| , x2, x3, . . . ), x = (x1, x2, x3, . . . ).

Show that
(a) T is nonexpansive;
(b) FT = {u,−u}, where u = (1, 0, 0, 0, . . . ) (hence FT is disconnected).

3.13. Let C[0, 1] be endowed with the Chebyshev’s norm and let B be given
by

B = {x : [0, 1] → R |x(0) = 0, x(1) = 1 and 0 ≤ x(t) ≤ 1, t ∈ (0, 1)} .

Define T on B by Tx(t) = tx(t), t ∈ [0, 1]. Then
(a) T has no fixed points in B;
(b) If {xn(t)} is the Krasnoselskij iteration with x0(t) = 0, we have

lim
n→∞

‖Txn − xn‖ = 0.



3.6 Bibliographical Comments 87

3.14. Alspach (1981)

Let X = L1[0, 1] and K =
{

f ∈ X|
1∫
0

f = 1, 0 ≤ f ≤ 2 a.e.
}

. Then

(a) K is a closed convex subset of [0, 2] (and hence it is weakly compact);
(b) The mapping T : K → K given by

Tf(t) =

⎧⎪⎨
⎪⎩

min {2f(2t), 2} , if 0 ≤ t ≤ 1
2

max {2f(2t − 1) − 2, 0} , if
1
2

< t < 1

is isometric on K but has no fixed points. (This shows that a weakly compact
convex set in a Banach space does not have the fixed point property for
nonexpansive operators)

3.15. Let K be a subset of a Banach space X and T : K → K be nonexpansive
and x0 ∈ K. Show that

lim
n→∞

∥∥Tnx0 − Tn+1x0

∥∥
always exists but this limit may be nonzero.

3.16. Baillon, Bruck and Reich (1978)
Let X be a Banach space, K a bounded, closed and convex subset of X,
T : K → K nonexpansive and Tλ the averaged operator, i.e.,

Tλ(x) = (1 − λ)x + λTx, x ∈ K and λ ∈ (0, 1).

Then, for any x ∈ K,

lim
n→∞

∥∥Tn+1
λ x − Tn

λ x
∥∥ =

1
k

lim
n→∞

∥∥Tn+k
λ x − Tn

λ x
∥∥ = lim

n→∞

1
n
‖Tn

λ x‖ .

3.17. Ishikawa (1976)
Let X be a Banach space, K a bounded, closed and convex subset of X and
T : K → K be nonexpansive. For λ ∈ (0, 1), let Tλ be the averaged operator
associated to T , i.e.,

Tλ(x) = (1 − λ)x + λTx, x ∈ K

and define the sequences {xn} and {yn} as follows

xn+1 = Tλxn; yn = Tyn, n = 0, 1, 2, . . .

Then
(a) For each i, n ∈ N,

‖yi+n − xi‖ ≥ (1 − λ)−n [‖yi+n − xi+n‖ − ‖yi − xi‖] + (1 + nλ) ‖yi − xi‖ ;

and
(b) lim

n→∞
‖xn − Txn‖ = 0.
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3.18. Opial (1967)
Let X be a uniformly Banach space having a weakly continuous duality map
and let x∗ be the weak limit of a weakly convergent sequence {xn}. Then

lim sup
n→∞

‖xn − x∗‖ < lim sup
n→∞

‖xn − x‖ , for all x 
= x∗.

(Opial’s condition)

3.19. Browder and Petryshyn (1967)
If X is uniformly convex, C is bounded and T : C → C is asymptotically
regular, then the weak sequential limits of {Tnx} are fixed points of T , i.e.,
ωw(x) ⊂ FT .

3.20. Frum-Ketkov (1967)
Let D be a closed convex subset of a Banach space X and T : D → D
a continuous map. Assume that there exist a compact set K ⊂ X and a
constant k < 1 such that

d(Tx,K) ≤ kd(x,K), for each x ∈ D.

Then T has a fixed point.

3.21. Petryshyn and Williamson (1973)
Let X = lp, 1 < p < ∞ the space of infinite sequences of real numbers

x = (x1, x2, . . . ) whose norm, ‖x‖ ≡
(∑

i≥1

|xi|p
)1/p

is finite. Show that

(a) lp is uniformly convex;
(b) The collection {ei|i ≥ 1} forms a Schauder basis for lp, where ei are the

unit vectors in lp of the form ej = {δij}j≥1, that is, each x ∈ lp has a unique
representation in terms of this collection;
Let B be the unit ball in lp with center 0 and let {fi}i≥1 be a family of
nonexpansive self-mappings of the interval [−1, 1] with fi(0) = 0, i ≥ 1.
Define T for x ∈ B by

Tx ≡ f1(x1)e1 +
1
2

∑
i>1

fi(xi)ei, x = (x1, x2, . . . ) ∈ B.

(c) Show that T is well defined, T (B) ⊂ B and T is nonexpansive;
(d) Show that K ≡ {x ∈ lp|xi = 0, i > 1; |x1| ≤ 1} is convex and compact
and for any x ∈ B, T satisfies the Frum-Ketkov contractive condition:

d(Tx,K) ≤ 1
2
d(x,K);

(e) Apply Theorem 3.8 to show that the Krasnoselskij iteration associated to
T converges for any x0 ∈ B and any λ ∈ (0, 1) to a fixed point of T in B.




