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Summary. In the first four lectures we describe a recent proof of the short time
existence of curved multidimensional viscous shocks, and the associated justifica-
tion of the small viscosity limit for piecewise smooth curved inviscid shocks. Our
goal has been to provide a detailed, readable, and widely accessible account of the
main ideas, while avoiding most of the technical aspects connected with the use of
pseudodifferential (or paradifferential) operators. The proof might be described as
a combination of ODE/dynamical systems analysis with microlocal analysis, with
the main new ideas coming in on the ODE side. In a sense the whole problem can
be reduced to the study of certain linear systems of nonautonomous ODEs depend-
ing on frequencies as parameters. The frequency-dependent matrices we construct
as conjugators or symmetrizers in the process of proving estimates for those ODEs
serve as principal symbols of pseudodifferential operators used to prove estimates
for the original PDEs.

The linearized problem one has to study in the multiD curved viscous shock
problem is one for which there are no available constructive methods (in contrast
to the 1D case). In other words we have no idea how to estimate solutions by first
constructing them using tools like Fourier-Laplace transforms or Green’s functions
or even Fourier integral operators and their generalizations. Instead, we rely on
energy estimates proved using Kreiss-type symmetrizers. Indeed, our main tool is
a symmetrizer for hyperbolic-parabolic boundary problems which generalizes the
kind of symmetrizer invented by Kreiss in the early 1970s to deal with hyperbolic
boundary problems.

In the final lecture we describe how symmetrizers can be used to study the re-
lated (but nonequivalent) problem of long time stability for planar viscous shocks.
For zero mass perturbations or nonzero mass perturbations in high space dimen-
sions (d ≥ 5), one can use symmetrizers just like those used for the first problem
(nondegenerate symmetrizers). However, in order to get the strongest results by
symmetrizer methods (nonzero mass perturbations for dimensions d ≥ 2) we’ve had
to introduce degenerate symmetrizers. In addition, we have to use them in a non-
standard way involving duality and interpolation arguments to get L1−Lp estimates
instead of L2 estimates. We’ll focus on the use of degenerate symmetrizers in lecture
five.

� Research was supported in part by NSF grant DMS-0070684 (M.W.).
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Preface.

These lectures are based on joint work with Olivier Guès, Guy Métivier,
and Kevin Zumbrun contained in the papers [GMWZ1, GMWZ2, GMWZ3,
GMWZ4] and also on the papers [GW, MZ]. I thank them all for an exciting
collaboration that I hope will last well into the future.

There is a large literature dealing with small viscosity limits and long time
stability questions for shocks in one space dimension. I’ll mention now only
some of the papers that deal with questions most closely analogous to the ones
studied here. For the small viscosity problem the papers include [GX, MN,
R, Y] and for long time stability [Go, KK, L1, L2, LZ, SX, ZH]. In 1D there
are also remarkable small viscosity results by quite different methods where
the inviscid limits are allowed to be much more general than the piecewise
smooth shocks considered here. These results are discussed in the companion
lectures by Alberto Bressan.

1 Lecture One: The Small Viscosity Limit: Introduction,
Approximate Solution

In this lecture we set up the problem and construct an approximate solution.
This construction is one of several places where the inviscid and viscous theo-
ries make close contact. In addition, it illuminates part of the role of our main
stability hypothesis, and indicates the need to allow variation of the viscous
front in the later stability analysis.

We begin with a simple case that still contains most of the main difficulties.
Our regularity and hyperbolicity hypotheses can be weakened considerably,
and more general viscosities can be treated by these methods (even the de-
generate viscosity of compressible Navier-Stokes, we expect; we’re checking
NS as this is being typed). For those generalizations we refer to the GMWZ
papers in the bibliography.

We work in two space dimensions just to make some things easier to write
down. The same arguments work in any space dimension.

Consider the m×m hyperbolic system of conservation laws on R
3
x,t,y

∂tu + ∂xf(u) + ∂yg(u) = 0, (1.1)

for which we are given a shock solution (u0
±, ψ0). This means that u0

+ (resp.
u0
−) satisfy (1.1) in the classical sense to the right (resp. left) of the shock sur-

face S defined by x = ψ0(t, y) and in the distribution sense in a neighborhood
of S. The piecewise classical solution is a distribution solution near S if and
only if the Rankine-Hugoniot jump condition holds:

ψ0
t [u0] + ψ0

y[g(u0)] − [f(u0)] = 0 on S. (1.2)
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Assumption 1.1 (Hypotheses on the inviscid shock) (H1) For states
u near u0

±, the matrix f ′(u)ξ + g′(u)η has simple real eigenvalues for (ξ, η) ∈
R

2 \ 0.
(H2) The inviscid shock is piecewise smooth (C∞), exists on the time

interval [0, T0], is constant outside some compact set, and is a Lax shock.
This means that the normal matrices

Aν(u0
±, dψ0) ≡ f ′(u0

±) − ψ0
t I − ψ0

yg
′(u0

±) (1.3)

are invertible, and that if we let k (resp. l) be the number of positive (resp.
negative) eigenvalues of Aν(u0

+, dψ
0) (resp. Aν(u0

−, dψ
0)), then k+ l = m−1.

Consider also a corresponding system of viscous conservation laws on R
3
x,t,y

∂tu + ∂xf(u) + ∂yg(u) − ε�u = 0 (1.4)

where
� = ∂2

x + ∂2
y .

A “weak” formulation of the problem we want to consider is: show that
the given inviscid shock (u0

±) is the limit in some appropriate sense as ε → 0
of smooth solutions uε to the parabolic problem (1.4). An appropriate sense
of convergence would be, for example, L2

loc near the shock and pointwise away
from the shock.

Imagine one had such a family of smooth uε. In order to have convergence
to u0

±, there must be a fast transition region located near the inviscid shock
S. One might imagine the approximate “center” of that transition region as
being defined by a surface Sε that approaches S as ε → 0. If we knew Sε we
could treat it as an artificial boundary or transmission interface, and proceed
to construct uε by constructing the boundary layers on each side of Sε that
describe the fast transition.

As a first guess one might take Sε to be the known surface S itself, but
that choice turns out to overdetermine the parabolic problem in a sense we’ll
clarify later. Thus, we are forced to introduce the unknown front Sε given by

x = ψε(t, y) = ψ0(t, y) + εφε(t, y) (1.5)

and to treat ψε (or φε) as an extra unknown (along with uε). We’ll often refer
to Sε as the viscous front, although as we’ll see it is not uniquely determined
unless we add an extra condition.

To formulate the transmission problem more clearly, we flatten Sε by the
change of variables

(x̃, t, y) = (x− ψε(t, y), t, y). (1.6)

If we set



162 Mark Williams

ũε(x̃, t, y) = uε(x, t, y) (1.7)

and note that ∂xu = ∂x̃ũ, ∂tu = ∂tũ − ψt∂x̃ũ, ∂yu = ∂yũ − ψy∂x̃ũ, we find
that the parabolic problem (1.4) in the new variables is (dropping tildes and
epsilons)

∂tu + ∂xfν(u, dψ) + ∂yg(u) − ε�ψu = 0 on R
3
x,t,y, (1.8)

where

fν(u, dψ) = f(u) − ψtu− ψyg(u)

�ψ = ∂2
x + (∂y − ∂yψ∂x)2 = ((1 + ψ2

y)∂2
x − 2ψy∂

2
xy + ∂2

y) − 2ψyy∂x.
(1.9)

In the new coordinates the surface Sε is x = 0. Observe that solving (1.8)
is equivalent to solving the transmission problem

∂tu± + ∂xfν(u±, dψ) + ∂yg(u±) − ε�ψu± = 0 on ± x ≥ 0,
[u] = 0, [∂xu] = 0 on x = 0.

(1.10)

The transmission problem can easily be reformulated as a standard bound-
ary problem on the half-space x ≥ 0 by “doubling”; that is, for x ≥ 0 one can
define ũ+(x, t, y) = u+(x, t, y) and ũ−(x, t, y) = u−(−x, t, y). We won’t do this
yet though, to avoid having to write ± all the time. In fact, we’ll usually write
the transmission problem (1.10) without the ± on u. An important point is
that with the transmission formulation we now have tools (like Kreiss-type
symmetrizers) from the theory of boundary problems at our disposal to solve
the original problem (1.8) on the full space.

Observe that with the extra unknown ψ we should expect the problem
(1.10) to be underdetermined and to require an extra boundary condition
involving ψ.

1.1 Approximate Solution

The first step in solving (1.10) is to construct a high order approximate solu-
tion, and the remaining step amounts to proving the stability of that solution.
As we explain below uniform stability of the inviscid shock and transversality
of the connection play a central part in the construction. The construction
also illustrates the importance of allowing variation of the front in the viscous
problem.

Since we expect solutions to (1.10) to undergo a fast transition near x = 0,
it is natural to look for approximate solutions of the form (suppress ±)

ũε(x, t, y) = (U0(x, t, y, z) + εU1 + · · · + εMUM )|z= x
ε

ψ̃ε(t, y) = ψ0(t, y) + εψ1 + · · · + εMψM ,
(1.11)

where each profile
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U j(x, t, y, z) = U j(x, t, y) + V j(t, y, z) (1.12)

is the sum of a slow U j that describes behavior away from the viscous front
and a fast boundary layer profile V j which decays to 0 (exponentially, it turns
out) as z → ±∞.

Plug (1.11) into (1.10), collect coefficients of equal powers of ε, and separate
slow from fast profiles to get

M∑

−1

εjF j(x, t, y, z)|z= x
ε

+ εMRε,M (x, t, y), (1.13)

where

F j(x, t, y, z) = F j(x, t, y) + Gj(t, y, z) (1.14)

and (assuming smooth decaying profiles for the moment),

|∂α
t,y∂

k
xR

ε,M |L∞ ≤ Cα,kε
−k

|∂α
t,y∂

k
xR

ε,M |L2 ≤ Cα,kε
1
2−k,

(1.15)

(caution: each estimate here is two estimates, one in x ≥ 0 and one in x ≤ 0).
Observe that F−1 is automatically zero, and the equations obtained by setting
F 0 and G−1 equal to zero are

(a) ∂tU
0 + ∂xfν(U0, dψ0) + ∂yg(U0) = 0,

(b) − (1 + (ψ0
y)2)∂2

zU0 + ∂zfν(U0, dψ0) = 0
(1.16)

respectively. Again, each equation here is really two equations; for example,
in ±z ≥ 0 for (1.16)(b). The coefficient (1 + (ψ0

y)2) will appear often in what
follows; let’s call it B0(t, y).

The equation (1.16)(a) is the inviscid shock problem (1.1) in the new
coordinates, so a solution is given by (U0

±, ψ
0), where

U0
±(x, t, y) = u0

±(x + ψ0(t, y), t, y). (1.17)

In equation (1.16)(b) U0 is evaluated at (0, t, y, z) instead of (x, t, y, z). The
error of order O(x) introduced by doing this is solved away at the stage of the
next fast equation G0 by writing

x = ε
x

ε
= εz. (1.18)

The boundary conditions in (1.10) yield the boundary profile equations on
x = 0, z = 0

(a) U0
+ + V 0

+ = U0
− + V 0

−

(b) ∂zV
0
+ = ∂zV

0
−,

(1.19)
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or equivalently,

[U0] = 0, [∂zU0] = 0, (1.20)

at the orders ε0, ε−1 respectively.
Next integrate (1.16)(b) (

∫ z

±∞ in ±z ≥ 0) to obtain

B0∂zU0
± = fν(U0

±, dψ
0) − fν(U0

±, dψ
0), (1.21)

where the unknowns are really V 0
±(t, y, z), since U0

± are given.
The two boundary conditions in (1.20) clearly overdetermine this first

order transmission problem, but note that the Rankine-Hugoniot condition on
(U0

±, dψ0) is the necessary compatibility condition. More precisely, assume
that U0 satisfies (1.21) and [U0] = 0. Then

[∂zU0] = 0 holds ⇔ [fν(U0, dψ0)] = 0 on x = 0. (1.22)

In view of the transmission conditions (1.20), solving the problem (1.21)
for unknowns V 0

± → 0 as z → ±∞ is equivalent to solving the connection
problem on Rz for W (t, y, z)

(a)B0∂zW = fν(W,dψ0) − fν(U0
−, dψ

0)

(b)W (t, y, z) → U0
±(0, t, y) = u0

±(ψ0(t, y), t, y) as z → ±∞.
(1.23)

From this point of view the Rankine-Hugoniot condition is the statement that
U0

+(t, y) is an equilibrium for the ODE (1.23)(a). We’ll refer to the travelling
wave equation (1.23)(a) as the profile equation. The solution W (t, y, z) =
U0(0, t, y, z) is variously referred to as a connection, a profile, and a viscous
shock. Note that there is a lack of uniqueness due to translation invariance;
that is, if W (t, y, z) is a solution, so is W (t, y, z + a) for any a ∈ R.

Remark 1.1 1. It is not hard to prove the existence of profiles W (t, y, z) for
sufficiently weak Lax shocks (see [MP], for example). To handle the case of
strong shocks, we have to assume the existence of profiles.

The fact that W decays exponentially to its endstates

|W (t, y, z) − U0
±(0, t, y)| = O(e−δ|z|) as z → ±∞ (1.24)

is a consequence of the invertibility of the normal matrices Aν(U0
±, dψ

0). The
latter fact implies U0

± are hyperbolic equilibria for the ODE (1.23).
2. In view of (H2) we see that the range of W (t, y, z) is contained in a

compact subset of R
m.

To see how the construction of the higher order profiles works, it will be
enough just to consider the case of (U1

±(x, t, y), dψ1(t, y)) and V 1
±(t, y, z). The

interior problems satisfied by V 1
± are the fast problems at the order ε0. As in

the case of V 0
±, each problem is a second order ODE that can be integrated
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using the conservative structure to give a first order ODE. The equation for
V 1
± is a linearization (with respect to both U0

± and ψ0) of (1.21) with forcing
Q0

± depending on previously determined functions:

B0∂zV
1
± = Aν(U0

±, dψ
0)(V 1

± + U1
±) − ψ1

tU0
± − ψ1

yg(U0
±)

− {Aν(U0
±, dψ

0)U1
± − ψ1

tU
0
± − ψ1

yg(U
0
±)} + Q0

±(t, y, z),
(1.25)

where Q0
± → 0 exponentially as z → ±∞.

The interior equation for U1
± is a linearization (with respect to U0

±) of
(1.16)(a):

H(U0
±)∂U1

± := ∂tU
1
± + Aν(U0

±, dψ
0)∂xU

1
± + g′(U0

±)∂yU
1
± = P 0

±, (1.26)

where again the forcing P 0
± depends on previously determined functions.

Again, there are two boundary conditions at x = 0, z = 0:

(a) U1
+ + V 1

+ = U1
− + V 1

−

(b) ∂xU
0
+ + ∂zV

1
+ = ∂xU

0
− + ∂zV

1
−,

(1.27)

so the first order problem for V 1
± is overdetermined. Suppose for a moment

that (1.25) and (1.27)(a) are satisfied. Then parallel to (1.22) we clearly have
the compatibility condition

[∂xU
0 + ∂zV

1] = 0 ⇔ on x = 0, z = 0 we have

[Aν(U0, dψ0)U1 − ψ1
tU

0 − ψ1
yg(U

0)] = B0[∂xU
0] + [Q0].

(1.28)

Thus, we may arrange the compatibility condition (1.28) by solving the
following linearized shock problem for (U1

±, ψ
1):

(a)H(U0
±)∂U1

± = P 0
±(x) on ± x ≥ 0

(b)ψ1
t [U0] + ψ1

y[g(U0)] − [Aν(U0, dψ0)U1] = −B0[∂xU
0] − [Q0] on x = 0,

(1.29)

The interior problem (1.29)(a) is the slow problem at the order ε1, and the
boundary operator in (b) is a linearization of the Rankine-Hugoniotconditions.

Linearized shock problems like (1.29) were first studied by Majda in [M2]
as the first step in his proof of existence of curved multi-D inviscid shocks
[M3]. It is a consequence of our main Evans assumption, Assumption (3.1),
that the inviscid shock (U0

±, ψ
0) is uniformly stable in the sense of Majda [M2].

We’ll discuss uniform stability more carefully later, but for now we just state
informally that it is essentially equivalent to L2 well-posedness of problems
like (1.29).

So we now have the functions (U0
±, ψ

0), V 0
±, (U1

±, ψ
1), and the next step

is to solve for V 1
±. We must choose initial data for V 1

± at z = 0 so that both
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(1.27)(a) holds and the solution V 1
± to (1.25) decays exponentially to 0 as

z → ±∞. We explain next how a transversality condition implied by the
same Evans assumption allows us to do this.

Consider again the travelling wave equation (1.23)(a) on Rz, and recall
that U0

± are both equilibrium points. Clearly, W (t, y, z)|z=0 belongs to both
the stable manifold of U0

+(0, t, y) and the unstable manifold of U0
−(0, t, y). The

Evans assumption implies these manifolds intersect transversally at W (t, y, 0).
For fixed (t, y) let W

s(t, y) and W
u(t, y), respectively, be the affine sub-

manifolds of R
m consisting of initial data at z = 0 of solutions to (1.25) that

decay as z → ±∞. These submanifolds are translates of the tangent spaces (at
W (t, y, 0)) to the above stable and unstable manifolds, so they too intersect
transversally. Equivalently, the intersection of the affine submanifolds

(Ws(t, y) × W
u(t, y)) ∩ {(v1, v2) ∈ R

2m : v1 − v2 = U1
−(0, t, y) − U1

+(0, t, y)}
(1.30)

is transversal, hence nonempty. In fact, since by assumption (H2) the dimen-
sion of W

s(t, y)×W
u(t, y) is m+ 1, the intersection (1.30) is a line. Thus, we

obtain a one-parameter family of choices of initial data for decaying solutions
of (1.25) satisfying (1.27)(a).

We continue according to this pattern to solve for (U2
±, ψ

2), then V 2
±, then

(U3
±, ψ

3), etc., always obtaining linearized Majda well-posed shock problems
for (U j

±, ψ
j) whose boundary conditions are chosen as the compatibility con-

ditions for the overdetermined problems satisfied by V j
±.

Remark 1.2 1. Later we’ll add an extra boundary condition (2.10), and one
effect of this will be to remove the nonuniqueness in the higher profiles.

2. The boundary condition (1.27)(b) shows that in general [∂zV
1] �= 0, so

one can’t solve for V 1
± by solving a single ODE on Rz as we did for V 0

±.
3. The above construction doesn’t work if one simply fixes ψ̃ε = ψ0. If one

does not allow the variation in the front given by ψ1, for example, the problem
(1.29) is overdetermined and generally unsolvable. A similar statement applies
to ψj for j > 1.

1.2 Summary

Let’s write the transmission problem (1.10) as

E(u, ψ) = 0
[u] = 0, [∂xu] = 0.

(1.31)

Recalling (1.13) we now have an approximate solution (ũ, ψ̃) defined on a
fixed time interval independent of ε (determined by the time of existence of
the given inviscid shock) such that



Multi-D Viscous Shocks 167

E(ũ, ψ̃) = εMRε,M

[ũ] = 0, [∂xũ] = 0.
(1.32)

We proceed to look for an exact solution to (1.31) of the form

u = ũ + v, ψ = ψ̃ + φ. (1.33)

The main difficulty is to obtain good L2 estimates for the linearization
of (1.31) about (ũ, ψ̃). Once these are in hand it is fairly routine to obtain
higher derivative estimates by differentiating the equation, and to then solve
the error equation for (v, φ) by Picard iteration (i.e., contraction).

Here is the main result:

Theorem 1.1 Under assumptions (1.1) and (3.1) there exists an ε0 > 0 such
that for 0 < ε ≤ ε0 the parabolic transmission problem (1.10) has an exact
solution on [0, T0] × R

2
x,y of the form

uε = ũ + v, ψε = ψ̃ + φ, (1.34)

where (ũ, ψ̃) is an approximate solution satisfying (1.32). For arbitrary posi-
tive integers K and L, provided M = M(K,L) in (1.32) is taken large enough,
we have the estimates

|∂α(v, ε∂xv)|L2(x,t,y) + |∂α(v, ε∂xv)|L∞(x,t,y) ≤ εL (∂ = ∂t,y)

|∂αφ|L2(t,y) + |∂αφ|L∞(t,y) ≤ εL
(1.35)

for |α| ≤ K.

Remark 1.3 The theorem asserts the stability of the boundary layer given by
the approximate solution, and allows us to read off a precise sense in which
the solution uε of (1.4) converges to the inviscid shock u0. For example, we
have convergence in L2

loc near the shock, and in C0
loc away from the shock.

2 Lecture Two: Full Linearization, Reduction to ODEs,
Conjugation to a Limiting Problem

2.1 Full Versus Partial Linearization

To find the error problem satisfied by (v, φ) we first rewrite (1.31)

E(ũ + v, ψ̃ + φ) = E(ũ, ψ̃) + E ′
u(ũ, ψ̃)v + E ′

ψ(ũ, ψ̃)φ + Q(v, φ) = 0, (2.1)

where E ′
u and E ′

ψ are the linearizations of E with respect to u and ψ respec-
tively, and Q is a sum of terms at least quadratic in ∂α(v, φ), |α| ≤ 2.

Thus, we must solve the transmission problem
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E ′
u(ũ, ψ̃)v + E ′

ψ(ũ, ψ̃)φ = −εMRε,M −Q(v, φ)

[v] = [∂xv] = 0.
(2.2)

The explicit formulas for the linearizations are

E ′
u(ũ, ψ̃)v = ∂tv + ∂x(Aν(ũ, ψ̃)v) + ∂y(g′(ũ)v) − ε�ψ̃v

E ′
ψ(ũ, ψ̃)φ = −φt∂xũ− φy

(
g′(ũ)∂xũ− 2ε(∂y − ψ̃y∂x)∂xũ

)
+ εφyy∂xũ.

(2.3)

One should expect there to be some simple relationship between the two
operators in (2.3). Much of what follows hinges on observing that

E ′
ψ(ũ, ψ̃)φ = −E ′

u(ũ, ψ̃)(φ∂xũ) + φ∂x(E(ũ, ψ̃)). (2.4)

This can be proved by a direct verification; later we’ll see that it becomes
rather obvious after a few reductions.

This implies that the left side of (2.2) is the same as

E ′
u(ũ, ψ̃)(v − φ∂xũ) + φ∂x(E(ũ, ψ̃)),

so we reduce to solving

E ′
u(ũ, ψ̃)(v − φ∂xũ) = −εMRε,M −Q(v, φ) − φ∂x(εMRε,M ). (2.5)

This suggests the strategy of reducing the study of the fully linearized operator
given by the left side of (2.2) to that of the partially linearized operator E ′

u

by introducing the “good unknown”

v# = v − φ∂xũ. (2.6)

Indeed this strategy turns out to work well in what we’ll soon define as the
medium and high frequency regimes, where E ′

u is nonsingular. In the low
frequency regime, we’ll see that E ′

u is singular, but that the singularity can
be removed by the introduction of an extra boundary condition and a more
subtle choice of “good unknown”.

Remark 2.1 The need to consider the full linearization is not obvious at this
point. We have a high order approximate solution (ũ, ψ̃), so why not just fix
ψ̃ once and for all, and solve (1.31) by solving

E(ũ + v, ψ̃) = 0
[v] = 0, [∂xv] = 0

(2.7)

for v. Indeed, this was the strategy pursued in [GMWZ2]. What happens is that
the singularity in E ′

u in the low frequency regime leads to a slightly degenerate
linearized L2 estimate of the form

√
ε|v|L2 ≤ |F |L2 , (2.8)
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provided we restrict how much the curved inviscid shock S can deviate from
flatness. The estimate (2.8) somewhat surprisingly turns out to be good enough
for Picard iteration, and this yields a solution of (1.31).

But, of course, it is highly desirable to remove the restriction on how much
S can curve, and we’ll be able to do that by adding an extra boundary condition
and working with the full linearization. That way we’ll get an estimate without
the

√
ε on the left as in (2.8).

2.2 The Extra Boundary Condition

Even though an extra boundary condition is not strictly needed except in the
low frequency regime, where the unknown v# in (2.6) is not used, we can use
(2.5) to motivate our choice of boundary condition.

If we work with the full linearization we’ll need estimates on φ in all
frequency regimes, so the idea is to choose a boundary condition that will
yield estimates for φ once we have an estimate on the trace of v#. φ is scalar
so we choose a vector l(t, y) and consider on x = 0

l · v# = l · v − φ(l · ∂xũ). (2.9)

The leading part of ∂xũ is 1
ε∂zW , so if we choose l(t, y) so that l(t, y) ·

∂zW (t, y, 0) = −1 and demand, for example, that

l · v = ∂tφ− ε∂2
yφ on x = 0, (2.10)

the leading part of the right side of (2.9) is

∂tφ− ε∂2
yφ +

φ

ε
.

Set φ̃ = φ
ε and rewrite (2.9) to obtain

l · v# = (ε∂t − ε2∂2
y + 1)φ̃, (2.11)

which leads to an estimate for φ̃ if one has an estimate for the trace of v#.
Other similar choices are of course possible for the differential operator in
(2.10), but we’ll settle on (2.10) as the extra boundary condition. This con-
dition also turns out to work well in the low frequency regime. So we must
solve the nonlinear transmission problem

E ′
u(ũ, ψ̃)v + E ′

ψ(ũ, ψ̃)φ = −εMRε,M −Q(v, φ)

[v] = [∂xv] = 0, ∂tφ− ε∂2
yφ− l · v = 0 on x = 0.

(2.12)

Remark 2.2 One can also impose the extra boundary condition in (1.31),
before even constructing the approximate solution or defining (v, φ). Here a
good choice is
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∂tψ − ε∂2
yψ − l · u = ∂tψ

0 − ε∂2
yψ

0 − l ·W (t, y, 0). (2.13)

It’s easy to check that imposing this extra condition in the construction of the
approximate solution (ũ, ψ̃) removes the translational nonuniqueness that we
observed for every fast profile V j

±(t, y, z). They are now pinned down. If one
takes that uniquely determined solution (ũ, ψ̃) and defines (v, φ) as we did
above, the extra condition on (v, φ) is exactly that in (2.12).

2.3 Corner Compatible Initial Data and Reduction to a Forward
Problem

To determine a unique solution of (2.12) we must impose some initial condi-
tions

v = εM0v0, φ = εM0φ0 at t = 0. (2.14)

We are free to choose these in many different ways, but our later work will be
much easier if we choose the initial data to satisfy corner compatibility con-
ditions to high order at the corner x = 0, t = 0 (recall, we can also formulate
(2.12) as a doubled boundary problem, and then we really do have a corner).
We show how to do that in [GW] or [GMWZ2], but those rather technical
details seem like good ones to omit here. The key point is that such data will
allow us to obtain solutions to the transmission problem that are piecewise
smooth to high order in ±x ≥ 0 (recall the interior forcing term Rε,M is
piecewise smooth). The M0 in (2.14) is about M − k0, where k0 is the order
of compatibility. It’s worth noting that the high order approximate solution
plays an important role here. Arranging compatibility uses x derivatives, and
each x derivative introduces a power of 1

ε . This leads to the reduction in M .
This choice of initial data allows us to reduce to a forward transmission

problem, one where all data is zero in t < 0, and the boundary conditions
are homogeneous. By a standard maneuver from linear PDE, we first transfer
initial data to forcing at the price of introducing nonzero boundary forcing.
But the above compatibility conditions are designed precisely so that the new
boundary forcing vanishes to high order at t = 0. Next a similar maneuver
transfers the nonzero boundary forcing to interior forcing, leaving us with the
forward error problem (relabelling unknowns (v, φ) again) in R

3
x,t,y

E ′
u(ũ, ψ̃)v + E ′

ψ(ũ, ψ̃)φ = −εM
′
F −Q(v, φ)

[v] = [∂xv] = 0, ∂tφ− ε∂2
yφ− l · v = 0 on x = 0

v = 0, φ = 0 in t < 0,

(2.15)

where F = 0 in t < 0 and piecewise smooth to high order in ±x ≥ 0.
Here M ′ < M , but M ′ is still large provided M was large compared to k0.
Q is not the same as before, but the earlier properties attributed to Q continue
to hold.
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Remark 2.3 We’re free to introduce a cutoff in time on the right in (2.15),
so we can choose extensions of ũ and ψ̃ to all time so that the coefficients in
(2.15) are defined for all time.

2.4 Principal Parts, Exponential Weights

The main task now is to prove a nondegenerate L2 estimate for the fully
linearized forward transmission problem on R

3
x,t,y

E ′
u(ũ, ψ̃)v + E ′

ψ(ũ, ψ̃)φ = f

[v] = 0, [∂xv] = 0, ∂tφ− ε∂2
yφ− l · v = 0 on x = 0

v = 0, φ = 0, f = 0 in t < 0.

(2.16)

Recall that the leading parts of ũ and ψ̃ are W (t, y, z)|z= x
ε

and ψ0(t, y) re-
spectively. If we replace (ũ, ψ̃) by (W (t, y, x

ε ), ψ0(t, y)) in (2.16), we introduce
several error terms in the estimate, including some of size

O(|v|L2) + O(|ε∂xv|L2) + O(|dφ|L2) + O(ε|d2φ|L2). (2.17)

Errors like (2.17) turn out to be absorbable by the left side of the estimate
we obtain.

Remark 2.4 The difference U0(x, t, y) − U0(0, t, y) leads to another sort of
error when ũ is replaced by W that can’t simply be absorbed as above. When |x|
is small though, the coefficients are perturbed only slightly by this difference,
so the symmetrizer construction presented below for the slightly simplified case
where this perturbation is ignored works in the same way for the case where
the perturbation is included.

Thus, the proof of the L2 estimate for the original linearized PDE needs to
be split in two parts; one where the solution is supported near the boundary,
and another for solutions supported away from the boundary (errors introduced
by cutoffs used to localize the estimate are again absorbable). In the second
case there are no boundary conditions, no glancing modes, and no singular
terms in the linearized operator, and the estimates can be proved by a much
simpler argument (for details we refer to Propositions 5.6 and 5.7 of [MZ]).
We focus on the symmetrizer construction needed for the estimates near the
boundary in these notes.

There are other terms like ∂y(g′(W ))v in (2.16) of size (2.17). Throwing
away all such terms in (2.3) and replacing (ũ, ψ̃) by (W,ψ0) we obtain the
principal parts
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Lu(t, y,
x

ε
, ∂x,t,y)v =∂tv + Aν(W,dψ0)∂xv + g′(W )∂yv+

+
(duAν ·Wz)v

ε
− ε
(
B0∂2

x + ∂2
y − 2ψ0

y∂
2
xy

)
v,

Lψ(t, y,
x

ε
, ∂t,y)φ = − 1

ε

(
Wzφt + g′(W )Wzφy + 2ψ0

yWzzφy − εWzφyy

)
.

(2.18)

At this point we introduce exponential weights in time e−γt, γ ≥ 1 and
define

vγ = e−γtv, φγ = e−γtφ, fγ = e−γtf. (2.19)

If (v, φ) satisfies

Luv + Lψφ = f (2.20)

with the above boundary conditions, then (vγ , φγ) satisfies the same problem
with ∂t replaced by ∂t + γ

Lu(t, y,
x

ε
, ∂t + γ, ∂x,y)vγ + Lψ(t, y,

x

ε
, ∂t + γ, ∂y)φγ = fγ

[vγ ] = 0, [∂xvγ ] = 0, (∂t + γ)φγ − ε∂2
yφγ − l · vγ = 0 on x = 0

vγ = 0, φγ = 0, fγ = 0 in t < 0.

(2.21)

Henceforth, we’ll drop the subscripts γ, but the exponential weights are always
there. Also, we’ll often neglect to mention that all data is zero in the past.

Remark 2.5 Why introduce exponential weights? One reason is that γ will
be an important parameter in the later stability analysis, but that is hardly
apparent now. Another reason is that we’ll sometimes be able to absorb errors
by taking γ large (not apparent now). Another is that later we’ll freeze (t, y)
in the coefficients, and it’s common to take a Fourier-Laplace transform in
time, thereby introducing an exponential weight, in the stability analysis of
constant coefficient problems (not convincing yet, perhaps). Finally, a reason
that seems clear even at this point is that it is technically much more conve-
nient to estimate solutions to (2.21) on R

3
x,t,y instead of on a bounded time

domain (e.g., we’ll use pseudodifferential operators acting in (t, y)), and one
can’t expect solutions of (2.20) to have bounded L2 norms for all time, but
one can expect that to be true for (2.21) if γ is large enough.

2.5 Some Difficulties

We have to find estimates for (2.21) that are uniform in ε as ε → 0, but a
quick glance at Lu and Lψ does not encourage optimism on that point. On the
one hand the coefficients contain a mixture of powers of ε, including ε−1. In
addition, the crucial normal matrix Aν , although nonsingular at the endstates
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U0
±(0, t, y), is singular at some intermediate value of z = x

ε since one of its
eigenvalues changes sign along the profile (the pth eigenvalue if the inviscid
shock is a p shock). Indeed, the latter problem is one of the main difficulties in
the entire analysis. Another difficulty we should expect from experience with
hyperbolic boundary problems is that, since we are working in multiD we’ll
have to contend with glancing points. We’ll define these later but for now we
just point out that they correspond to characteristics that are tangent to the
free boundary given by the curved viscous front Sε. Except for special cases
it is not known how to construct explicit solutions (using Green’s functions,
parametrices, Fourier integral operators, ...) for the linearized problem near
glancing points. In the case of planar fronts the Fourier-Laplace transform can
be used. In the case of first-order tangency the Fourier-Airy integral opera-
tors of Melrose and Taylor are available. For higher order tangency there are
no constructive methods as far as we know. Fortunately, we will be able to
construct Kreiss-type symmetrizers to deal with glancing points of any order.
Indeed, one of the main points of our work is that, even in these singular
hyperbolic-parabolic problems, one can avoid explicit constructions by using
symmetrizers much as Kreiss did in the early 1970s for hyperbolic boundary
problems.

2.6 Semiclassical Form

The equations become more balanced in ε if we simply multiply through by
epsilon and write them in semiclassical form.

Let (τ, η) be dual variables to (t, y) (in the Fourier transform sense), and
set ζ = (τ, γ, η) and ζ̃ = εζ. Define semiclassical symbols

(a) Lu(t, y, z, ζ̃, ∂z) =
(
(iτ̃ + γ̃ + η̃2)I + g′(W )iη̃ + duAν ·Wz

)
+
(
Aν(W,dψ0) + 2ψ0

yiη̃
)
∂z −B0∂2

z

(b) Lψ(t, y, z, ζ̃) = −
(
Wz(iτ̃ + γ̃ + η̃2) + g′(W )Wziη̃ + 2ψ0

yWzziη̃
)

(c) p(ζ̃) = (iτ̃ + γ̃ + η̃2).
(2.22)

Then if we set f̃ = εf , φ̃ = φ
ε , (Dt,Dy) = 1

i (∂t, ∂y), and change variables
z = x

ε , we can rewrite (2.21) in semiclassical form (dropping subscripts γ)

Lu(t, y, z, εDt, εγ, εDy, ∂z)v + Lψ(t, y, z, εDt, εγ, εDy)φ̃ = f̃

[v] = 0, [∂zv] = 0, p(εDt, εγ, εDy)φ̃− l · v = 0 on z = 0.
(2.23)

Here we’ve used ∂z = ε∂x.
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2.7 Frozen Coefficients; ODEs Depending on Frequencies as
Parameters

Set q = (t, y) and parallel to (2.23), consider on Rz the system of transmission
ODEs depending on parameters (q, ζ̃):

Lu(q, z, ζ̃, ∂z)v + Lψ(q, z, ζ̃)φ = f

[v] = 0, [∂zv] = 0, p(ζ̃)φ− l · v = 0 on z = 0.
(2.24)

Here v = v(z), f = f(z), and φ is a scalar unknown.
Observe that if we freeze the variables (t, y) = q in (2.23) and then take

the Fourier transform in (t, y), we arrive at a problem just like (2.24) with

v(z) = v̂(τ, η, z), φ = ̂̃φ(τ, η), f(z) = ̂̃f(τ, η, z). (2.25)

Here the hat denotes Fourier transform and the absence of tildes on (τ, η)
is correct in (2.25). Thus, there are two paths, equivalent of course, to the
system of ODEs (2.24).

Consider the problem of proving estimates, uniform in the parameters
(q, ζ̃), for the system of transmission ODEs (2.24). Here we refer to estimates of

|v|2 := |v|L2(z), |φ| := |φ|C, (2.26)

weighted by appropriate functions depending on the frequency, in terms of
|f |2. An immediate consequence of Plancherel’s theorem and (2.25) is that
such estimates imply corresponding estimates for the semiclassical system of
PDEs (2.23) with coefficients frozen at (t, y) = q, and hence (after unravelling
the changes of variables) estimates on the |v|L2(x,t,y) and |∂t,yφ, γφ|L2(t,y)

norms of solutions to the frozen version of (2.21).
Now it turns out, rather remarkably, that the same constructions needed

(by us) to prove uniform estimates for the system of ODEs (2.24) are also the
main steps in the proof of estimates even for the variable coefficient problem
(2.21). To really see how this can be, one needs to use pseudodifferential
(or paradifferential) operators and Garding inequalities, and we’ll say a bit
about those later. The point is that constructions for the ODEs (constructions
of objects like conjugators, symmetrizers, ...) are exactly the same as the
constructions of the principal symbols of the pseudodifferential operators that
we use to prove estimates for the variable coefficient system of PDEs (2.21).
So it’s not too much of a stretch to say that if one takes pseudodifferential
calculus as a given, the problem of proving estimates uniform with respect
to frequency for the ODEs (2.24) is essentially equivalent to the problem of
proving estimates uniform in epsilon for (2.21). We stress this because much
of our effort from now on will be devoted to understanding the ODEs (2.24).
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Remark 2.6 The relationship we observed earlier between the linearizations
E ′

u and E ′
ψ (2.4) is more obvious now at the ODE level. We have

Lu(q, z, ζ̃, ∂z)Wz = −Lψ(q, z, ζ̃) (2.27)

This is clear by inspection of (2.22) or can be deduced by looking at the leading
O( 1

ε2 ) term of (2.4). Observe that the leading part of ∂x(E(ũ, ψ̃)) in (2.4) is
zero, since W satisfies the profile equation.

2.8 Three Frequency Regimes

Consider the frequency ζ̃ = ε(τ, γ, η) that appears in (2.24). Estimates of
solutions to (2.24) depend critically on the size of |ζ̃|. The small, medium,
and large frequency regimes (SF,MF,HF) are respectively

|ζ̃| ≤ δ, δ ≤ |ζ̃| ≤ R, |ζ̃| ≥ R (2.28)

for small enough δ and large enough R to be determined.
The compact set of nonzero medium frequencies, where Lu(q, z, ζ̃, ∂z) is

nonsingular, is the easiest to handle. SF, where Lu is singular and hyperbolic
and parabolic effects mix in a subtle way, is the hardest by far. In HF parabolic
effects dominate and the hyperbolic part behaves like a perturbation, but care
is needed because frequencies occur with mixed homogeneities and vary in an
unbounded set.

Caution: When we speak of small, medium, or large frequencies, we are
referring to the size of ζ̃ = εζ, not |ζ|. For example, |ζ| can be extremely large
in the small frequency regime, provided ε is small enough. In our analysis of
(2.24) we’re going to drop the tilde on ζ from now on, but it’s important to
remember the tilde is there before translating back to results for the PDE
(2.21).

2.9 First-Order System

To prepare the way for conjugation and the construction of symmetrizers let’s
rewrite (2.24) as a 2m×2m first order system for the unknown (U, φ). Setting
U = (v, ∂zv), we have

∂zU −G(q, z, ζ)U = F +
(

0
−(B0(q))−1Lψ(q, z, ζ)φ)

)

[U ] = 0, p(ζ)φ− l(q) · v = 0 on z = 0
(2.29)

where

F =
(

0
−(B0(q))−1f

)

and

G(q, z, ζ) =
(

0 I
M A

)

,

(2.30)
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with

M(q, z, ζ) = (B0(q))−1
(
(iτ + γ + η2)I + g′(W )iη + duAν ·Wz

)
,

A = (B0(q))−1
(
Aν(W,dψ0) + 2ψ0

yiη
)
.

(2.31)

For now we’ll ignore the Lψ term in (2.29) and study the problem

∂zU −G(q, z, ζ)U = F, [U ] = 0. (2.32)

Since W → U0
±(q) as z → ±∞ we also have the limiting systems on ±z ≥ 0

∂zV −G±∞(q, ζ)V = F̃ , (2.33)

where

G±∞(q, ζ) =
(

0 I
M±∞ A±∞

)

(2.34)

with

M±∞(q, ζ) = (B0(q))−1
(
(iτ + γ + η2)I + g′(U0

±(q))iη
)

A±∞ = (B0(q))−1
(
Aν(U0

±(q), dψ0) + 2ψ0
yiη
)
.

(2.35)

Here we’ve written U0
±(q) for U0

±(0, q).

2.10 Conjugation

It would be a great simplification to reduce the study of the variable coefficient
problem (2.32) to that of the constant coefficient problem (2.33) (with an
appropriately altered boundary condition), and we proceed to do that now
in SF and MF but not HF. Since Aν is nonsingular at the endstates U0

±(q)
but not along W (q, z), we’ll then be in a much better position to construct
symmetrizers and prove estimates.

There are classical results in the theory of ODEs (see, e.g. [Co]) that es-
tablish a correspondence between solutions to variable coefficient ODEs and
solutions to corresponding limiting constant coefficient ODEs, when those lim-
its exist and satisfy certain hypotheses. For such a correspondence to be useful
here, we need it to be somehow uniform in the parameters (q, ζ). However,
even if we restrict ζ to a compact set, the classical results fail to apply near
ζ = 0 because of the degeneracy

G±∞(q, 0) =
(

0 I
0 A±∞(q, 0)

)

. (2.36)

Nevertheless, using the Gap Lemma of [GZ, KS] we can, locally near any
basepoint (q, ζ), reduce the study of (2.32) to (2.33) by constructing matrices
Z±(q, z, ζ) in ±z ≥ 0 depending smoothly on (q, z, ζ) such that
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(a)∂zZ = GZ − ZG±∞ on ± z ≥ 0

(b)|Z(q, z, ζ) − I| = O(e−θ|z|) for some θ > 0

(c)Z−1(q, z, ζ) is uniformly bounded for (q, ζ) near (q, ζ), ±z ≥ 0.

(2.37)

Set U = ZV . Then expanding out ∂z(ZV ) shows that U satisfies (2.32) if and
only if V satisfies

∂zV −G±∞V = Z−1F on ± z ≥ 0,
[ZV ] = 0 on z = 0.

(2.38)

The acceptable price is a more complicated boundary condition. When we
translate back to the PDE problem, the new boundary condition is pseudodif-
ferential. The properties of Z in (2.37) show that L2 estimates for (2.38) can
be immediately transported to L2 estimates for (2.32).

To construct Z+ say, note that the matrix ODE (2.37)(a) can be written

∂zZ = LZ + (∆G)Z (2.39)

where L(q, ζ) is the constant coefficient operator given by the commutator
[G+∞, ·] and ∆G is left multiplication by G−G+∞ = O(e−δz) (δ as in Remark
1.1).

The ODE (2.39) also has a limiting problem ∂zY = LY . The identity
matrix I is an eigenvector of L associated to the eigenvalue 0, and hence
Y (z) = I solves the limiting problem. Suppose that the eigenvalues of L(q, ζ),
which are differences of eigenvalues of G+∞(q, ζ), avoid a line �µ = −κ for
some 0 < κ < δ. This will always be true for (q, ζ) close enough to a fixed
basepoint (q, ζ).

A solution of (2.39) close to the solution I of ∂zY = LY could then be
found by solving the equation on z ≥ 0

Z+(q, z, ζ) =I +
∫ z

0

e(z−s)Lπ−(∆G)(s)Z+(s)ds

−
∫ +∞

z

e(z−s)Lπ+(∆G)(s)Z+(s)ds, (2.40)

where π±(q, ζ) are the spectral projectors on the generalized eigenspaces of
L corresponding to eigenvalues with �µ > −κ, �µ < −κ respectively. Note
that the range of π+ includes part of the negative eigenspace of L, so we
might expect the second integral in (2.40) to blow up since z − s ≤ 0 there.
But the integral is rescued by the exponential decay of ∆G and the fact that
0 < κ < δ (this, essentially, is the Gap Lemma). The estimates of [GZ] show
that we obtain a solution of (2.40) satisfying (2.37)(b) for θ < κ.

Observe that if we set D+(z) = detZ+, we have

∂zD+ = tr(G(z) −G+∞)D+, (2.41)

which implies D+ is never 0 on [0,∞).
We’ll sometimes refer to Z± as the MZ conjugator [MZ].
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2.11 Conjugation to HP Form.

In SF we need another conjugation which separates G±∞ into one m × m
block whose eigenvalues vanish as |ζ| → 0 and another whose eigenvalues have
real parts bounded away from zero as |ζ| → 0. Inspection of (2.36) suggests
there should be such a decomposition. Indeed, for |ζ| small there exist smooth
matrices Y±(q, ζ) with smooth inverses such that

Y −1
± G±∞Y± =

(
H±(q, ζ) 0

0 P±(q, ζ)

)

:= GHP±, (2.42)

where

H± = −A−1
±∞M±∞ + O(|ζ|2) =

−Aν(U0
±, dψ

0)−1
(
(iτ + γ)I + g′(U0

±)iη
)

+ O(|ζ|2),
P± =A±∞ + O(|ζ|) = B0(q)−1Aν(U0

±, dψ
0) + O(|ζ|), and

Y±(q, 0) =
(
I A−1

±∞
0 I

)

.

(2.43)

The forms of H± and P± can be motivated by a short computation which
shows that for |ζ| small, small (resp. large) eigenvalues of G±∞ are close to
eigenvalues of −A−1

±∞ (resp. M±∞A±∞). One can then posit Y± of the given
form and solve the equation

G±∞Y± = Y±GHP± (2.44)

for the entries of Y±.

3 Lecture Three: Evans Functions, Lopatinski
Determinants, Removing the Translational Degeneracy

Before defining the Evans function we need to make a few observations about
the spectrum of G±∞(q, ζ).

Proposition 3.1 1. For ζ �= 0, γ ≥ 0 G±∞(q, ζ) each have m eigenvalues
counted with multiplicities in �µ > 0 and m eigenvalues in �µ < 0.

2. G±∞(q, 0) each have 0 as a semisimple eigenvalue of multiplicity m and
nonvanishing eigenvalues equal to the eigenvalues of A±∞(q, 0).

G+∞(q, 0) has m − k eigenvalues in �µ < 0 and m − l eigenvalues in
�µ > 0, where k + l = m− 1.

Proof. 1. Consider G+∞(q, ζ), where ζ �= 0, γ ≥ 0. Then µ is an eigenvalue
of G+∞ ⇔
(

0 I
M+∞ A+∞

)(
u
v

)

= µ

(
u
v

)

⇔ v = µu, M+∞u + A+∞v = µv, (3.1)
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so M+∞u + A+∞µu = µ2u. If µ = iξ, ξ ∈ R, the latter equation is the same
as
(
(iτ+γ)I+Aν(U0

+(q), dψ0)iξ+g′(U0
+(q))iη+(B0(q)ξ2−2ψ0

yηξ+η2)
)
u=0.

(3.2)

Thus, iτ + γ is an eigenvalue of

−
(
Aν(U0

+(q), dψ0)iξ + g′(U0
+(q))iη

)
−
(
B0(q)ξ2 − 2ψ0

yηξ + η2
)

so hyperbolicity (H1) and positivity of the quadratic form given by the scalar
second term imply

γ = −
(
B0(q)ξ2 − 2ψ0

yηξ + η2
)
< 0 if (ξ, η) �= 0.

Now γ ≥ 0 so we must have (ξ, η) = 0 which implies iτ + γ = 0, contradicting
ζ �= 0.

We conclude that the number of eigenvalues µ with positive (or negative)
real part is constant for ζ �= 0, γ ≥ 0. We can then take (τ, η) = 0 and γ large
to obtain an obvious count of m in each region.

2. The assertion follows immediately from (H2) and the explicit form of
G±∞(q, 0).

•

3.1 Evans Functions, Instabilities, the Zumbrun-Serre Result

The Evans function is a wronskian of solutions to

∂zU −G(q, z, ζ)U = 0 (3.3)

which contains information about the stability of the viscous profile and, less
obviously, about the stability of the original inviscid shock. For ζ �= 0 let
E±(q, ζ) be the set of initial data U(0) such that the solution of (3.3) with
that data decays to zero as z → ±∞. As one might expect from the degeneracy
(2.36), these spaces are singular in ζ near ζ = 0, and to resolve that singularity
we blow up the origin using polar coordinates

ζ = ρζ̂, ζ̂ = (τ̂ , γ̂, η̂), where

ζ̂ ∈ S2
+ = {ζ̂ : |ζ̂| = 1, γ̂ ≥ 0}.

(3.4)

For ζ �= 0 we may just as well write E±(q, ζ̂, ρ) in place of E±(q, ζ).

Proposition 3.2 For ζ �= 0 the spaces E±(q, ζ̂, ρ) each have dimension m

and are C∞ in (q, ζ̂, ρ). They extend continuously to ρ = 0.
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Proof (Partial proof). Suppose ζ �= 0, and let F±(q, ζ) be the analogously
defined decaying spaces for

∂zV −G±∞(q, ζ)V = 0. (3.5)

By Proposition 3.1 F± have dimension m and using the MZ conjugators we
have

E±(q, ζ) = Z±(q, 0, ζ)F±(q, ζ). (3.6)

In particular this shows that solutions of (3.3) with initial data in E±(q, ζ)
decay exponentially to zero.

The continuous extension to ρ = 0 is subtle because of glancing modes. A
proof, which is best read after the reduction to block structure (4.24), is given
in Appendix B. For now, note that when ρ = 0 (3.5) has nonzero constant
solutions of the form (r(q, ζ̂), 0). We’ll see that solutions of (3.3) with data in
E±(q, ζ̂, 0) decay as z → ±∞ to limits that are constant solutions of (3.5).

•

Definition 3.1 For ζ̂ ∈ S2
+, ρ ≥ 0 define the Evans function as the 2m× 2m

determinant

D(q, ζ̂, ρ) = det(E+(q, ζ̂, ρ), E−(q, ζ̂, ρ)). (3.7)

Now suppose D vanishes for some (q0, ζ0) with ζ0 = (τ0, γ0, η0) and γ0 > 0.
In this case we expect exponential instabilities of the boundary layers de-
scribed by our approximate solution (ũ, ψ̃). Let us explain. Vanishing of
D(q0, ζ0) means there is a smooth solution w(z, ζ0) of

Lu(q0, z, ζ0, ∂z)w = 0 (Lu as in (2.22)) (3.8)

on the whole line Rz which decays exponentially to zero as z → ±∞. Direct
computation shows that

wε(x, t, y) = e
(iτ0+γ0)t+iyη0

ε w(
x

ε
, ζ0) (3.9)

is then a solution of the linearized transmission problem

Lu(q0,
x

ε
, ∂x,t,y)wε = 0 (Lu as in (2.18)),

[wε] = [∂xw
ε] = 0.

(3.10)

Recalling that linearized equations describe evolution of small perturbations,
we see from (3.9) that some small disturbances are amplified by the factor e

γ0t

ε ,
so the boundary layers described by (ũ, ψ̃) should be completely destroyed on
a time scale of O(ε). In this case there is no chance for L2 estimates uniform
in ε, and (ũ, ψ̃) is of no help in solving the small viscosity problem.
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When ζ = 0 note that (3.3) is the same as the linearized profile equation

Lu(q, z, 0, ∂z)v = −B0(q)∂2
zv + ∂z(Aν(W,dψ0)v) = 0. (3.11)

Since W satisfies the profile equation (1.23)(a), it follows by differentiating
that equation twice that Wz(q, z) satisfies (3.11). Wz decays to zero expo-
nentially fast as z → ±∞, so we conclude D(q, ζ̂, 0) = 0. This degeneracy
reflects the translation-invariance of profiles, so we’ll sometimes refer to it as
the translational degeneracy.

The (q, z) dependence in G(q, z, ζ) enters through the viscous profile
W (q, z). Our main stability hypothesis is the following Evans hypothesis on
W (q, z):

Assumption 3.1 (H3) D(q, ζ̂, ρ) vanishes to exactly first order at ρ = 0 and
has no other zeros for (ζ̂ , ρ) ∈ S2

+ × {ρ ≥ 0}.
The preceding discussion shows that nonvanishing of D in γ > 0 is neces-

sary for even for linearized stability.
In the construction of the approximate solution we had to use transversality

of the connection (recall (1.30)) and uniform stability of the inviscid shock. An
immediate corollary of the following theorem is that Assumption 3.1 implies
both of these properties.

Theorem 3.1 ([ZS])

D(q, ζ̂, ρ) = β(q)∆(q, ζ̂)ρ + o(ρ) as ρ → 0, (3.12)

where β(q) is nonvanishing if and only if the connection is transverse at
W (q, 0). The second factor ∆(q, ζ̂) is the Majda uniform stability determi-
nant (6.5), which is nonvanishing if and only if (U0

±(0, q), dψ0(q)) is uniformly
stable.

A short proof is given in Appendix D.

Remark 3.1 1. It follows from Assumption 1.3 that the stable/unstable man-
ifolds of (1.23)(a) for the rest points U0

±(0, q) have dimensions m−k and m−l
respectively, where (m−k)+(m−l) = m+1. Thus, the connection is transver-
sal ⇔ the intersection of these two manifolds is one dimensional ⇔ the only
L2(z) solution of Lu(q, z, 0, ∂z)w = 0 on Rz is Wz.

2. The singularity of E ′
u in the low frequency regime that we referred to

in Lecture 2 corresponds exactly to this one dimensional kernel of Lu when
ρ = 0. The Evans hypothesis implies that for ρ > 0, the only L2 solution of
Lu(q, z, ζ, ∂z)w = 0 on Rz is w = 0.

3. The example of exponential blowup given above provides another (but
belated) motivation for the introduction of exponential weights in Lecture 2.

4. The main Evans hypothesis (H3) is not easy to check, so we are glad to
report that in recent work by Freistühler-Szmolyan [FS] and Plaza-Zumbrun
[PZ], (H3) has been shown to hold for weak Lax shocks under mild structural
assumptions satisfied by some of the important physical examples.
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3.2 The Evans Function as a Lopatinski Determinant

Here is an equivalent definition of the Evans function that we’ll use when con-
structing symmetrizers. With slight abuse of notation, write the transmission
problem as

∂zU± −G(q, z, ζ)U± = 0 on ± z ≥ 0, ΓU = 0 (3.13)

where U = (U+, U−) and Γ : C
4m → C

2m is given by ΓU = U+ − U−.
Consider the 4m× 4m determinant

D(q, ζ̂, ρ) = det
(
kerΓ,E+(q, ζ̂, ρ) × E−(q, ζ̂, ρ)

)
. (3.14)

Performing a few row/column operations shows that D=cD, for some c ∈ C\0.
Indeed, we should expect this since, clearly, having a nontrivial intersection
of the subspaces on the right side of (3.14) is equivalent to have a nontrivial
intersection of E±.

In the theory of boundary problems determinants of this sort, which mea-
sure the degree of linear independence of a subspace giving the kernel of the
boundary operator with the decaying eigenspace of the interior operator, are
often called Lopatinski determinants. When these determinants are nonzero,
we expect good L2 estimates; when they vanish, we expect degenerate esti-
mates or no estimates. Indeed, we saw above that vanishing of D in γ > 0
leads to exponential blowup. The vanishing of D at ρ = 0 (which implies
γ = ργ̂ = 0) because of the translational degeneracy is a borderline case, and
leads to degenerate L2 estimates [GMWZ1, GMWZ2].

3.3 Doubling

For future use and to make the connection to boundary problems more ex-
plicit, let’s double the problem (3.13) and write it as a 4m × 4m system on
z ≥ 0. If f(z) is any function (complex valued, matrix valued,...) defined on
z ≤ 0, we set

f̃(z) = f(−z) for z ≥ 0. (3.15)

Then the 2m× 2m transmission problem on Rz

∂zU± −G(q, z, ζ)U± = F±, U+ − U− = 0 (3.16)

is equivalent to the 4m× 4m boundary problem on z ≥ 0

∂zU − G(q, z, ζ)U = F , ΓU = 0, (3.17)

where U = (U+, Ũ−), F = (F+,−F̃−), ΓU = U+ − Ũ−, and

G =
(
G 0
0 −G̃

)

. (3.18)
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Note that

E(q, ζ̂, ρ) := E+(q, ζ̂, ρ) × E−(q, ζ̂, ρ) (3.19)

is the decaying generalized eigenspace for Uz −GU = 0 on z ≥ 0 and D is now
exactly the Lopatinski determinant (in the classical sense) for the boundary
problem (3.17).

It’s easy to check that if we use the MZ conjugators Z± to define

Z(q, z, ζ) =
(
Z+ 0
0 Z̃−

)

(3.20)

and define V by U = ZV , then U satisfies (3.17) ⇔ V satisfies

∂zV − G∞V = Z−1F , ΓZV = 0, (3.21)

where

G∞ =
(
G+∞ 0

0 −G−∞

)

. (3.22)

One advantage of doubling is that the two distinct limiting problems have
become a single limiting problem at z = +∞. Observe that each additional
conjugation twists the boundary condition by an additional matrix factor to
the right of Γ . We won’t use the doubled form until the symmetrizer con-
struction in Lecture 4.

3.4 Slow Modes and Fast Modes

Recall that the problems on ±z ≥ 0

Uz −GU = 0, Vz −G±∞V = 0,Wz −GHP±W = 0 (3.23)

are related by the conjugators: U = ZV , V = YW .
We have already defined the decaying spaces E±, F± for the first two

problems. For ρ �= 0 set K±(q, ζ) equal to the decaying generalized eigen-
spaces for

∂zW −GHP±W = 0. (3.24)

Clearly, F± = Y±K± and E± = (Z±|z=0)Y±K±.
Write H±(q, ζ̂, ρ) = ρĤ±(q, ζ̂, ρ) where

Ĥ(q, ζ̂, 0) = −Aν(U0
±, dψ

0)−1
(
(iτ̂ + γ̂)I + g′(U0

±)iη̂
)
. (3.25)

Using obvious notation we can in turn decompose K± as

K±(q, ζ̂, ρ) = KĤ±
(q, ζ̂, ρ) ⊕KP±(q, ζ). (3.26)
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By (H1) the dimensions of KĤ±
are k (resp. l), while the dimensions of KP±

are m−k (resp. m−l). By the result proved in Appendix B, K±(q, ζ̂, ρ) extend
continuously to ρ = 0. The main step is to prove continuous extendability of
KĤ±

.
We may now define slow (resp. fast) modes as solutions of (3.3) of the

form

U± = Z±Y±W±, (3.27)

where W±(q, z, ζ̂, ρ) is a solution of (3.24) with W±(q, 0, ζ̂, ρ) ∈ KĤ±
(resp.

KP±).
Fast modes decay exponentially to zero as z → ±∞ for ρ ≥ 0, and slow

modes decay exponentially to zero (but slowly) for ρ > 0 small. For ρ = 0
slow modes can decay to nonzero constant vectors. In Appendix C we identify
those limits, a knowledge of which is needed for the Zumbrun-Serre result
(Appendix D) and also for removal of the translational degeneracy. Here is
the result on slow modes.

Proposition 3.3 Let U±(q, z, ζ̂, ρ) be a slow mode. Then

lim
z→±∞

U±(q, z, ζ̂, 0) exists and belongs to KĤ±
(q, ζ̂, 0). (3.28)

Let’s rephrase this in a manner useful for the applications. The spaces
KĤ±

(q, ζ̂, ρ) have bases

{(rs
+(q, ζ̂, ρ), 0)}k

s=1 and {(rt
−(q, ζ̂, ρ), 0)}l

t=1 (3.29)

respectively, where the rj
± are smooth in ρ > 0 and extend continuously to

ρ = 0. Since

Ĥ±(q, ζ̂, 0) = H±(q, ζ̂) (for H as in Appendix A), (3.30)

we may choose the rj
± to agree at ρ = 0 with the vectors rj

±(q, ζ̂) that appear
in the definition of the uniform stability determinant ∆(q, ζ̂) (6.5). Thus, for
each choice of sign

lim
z→±∞

U±(q, z, ζ̂, 0) ∈ span{(rj
±(q, ζ̂), 0)}, (3.31)

where rj
±(q, ζ̂) span the decaying generalized eigenspaces of H± as in

Appendix A.

3.5 Removing the Translational Degeneracy

Our next main task is to show how the extra boundary condition can be used
to remove the translational degeneracy. In lecture two we sketched a strategy
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for reducing study of the fully linearized problem to the partially linearized
one (E ′

u). Let’s recall that here in the context of our ODE problem.
Returning to transmission notation, where U = (v, vz), we recall (2.29)

the fully linearized transmission problem

∂zU −G(q, z, ζ)U = F +
(

0
−(B0(q))−1Lψ(q, z, ζ)φ)

)

= F + B(q, z, ζ)φ

[U ] = 0, p(ζ)φ− l(q) · v = 0 on z = 0
(3.32)

Set P (q, z) = (Wz,Wzz). The relationship (2.27) between the partial lin-
earizations

Lu(q, z, ζ, ∂z)Wz = −Lψ(q, z, ζ) (3.33)

is equivalently expressed as

(∂z −G)P = B. (3.34)

Thus, (U, φ) satisfies (3.32) ⇔ (v�, v�
z) = U � := U − Pφ satisfies

∂zU
� −G(q, z, ζ)U � = F, [U �] = 0, (3.35)

together with the extra boundary condition

l(q) · v� = (p(ζ) + 1)φ = (1 + iτ + γ + η2)φ on z = 0. (3.36)

Now as we’ve seen, the main Evans hypothesis implies the Lopatinski deter-
minant D(q, ζ̂, ρ) for the problem (3.35) is nonvanishing in MF or HF, so we
expect good estimates there, including an estimate for the trace |v�(0)|. The
extra condition (3.36) will then allow us to estimate |φ| in terms of |v�(0)|.

On the other hand we can’t use this approach to get estimates uniform
with respect to ζ in SF since in the notation of (3.14)

kerΓ ∩ (E+(q, ζ̂, 0)×E−(q, ζ̂, 0)) =
= span(Wz(q, 0),Wzz(q, 0),Wz(q, 0),Wzz(q, 0)),

(3.37)

so (3.20) is singular in SF.
To handle SF, instead of U � we define as our “good unknown”

U 	 = U −R(q, z, ζ)φ, (3.38)

where R± = (r±, s±) is smooth in ±z ≥ 0 and constructed to satisfy

(a)∂zR−G(q, z, ζ)R = B in ± z ≥ 0, l(q) · r±(q, 0, ζ) = p(ζ)

(b)R(q, z, 0) = 0, |R(q, z, ζ)| ≤ Ce−δ|z|.
(3.39)
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The construction is not hard and is given in Appendix E. For now we note
that since B(q, z, ζ) also satisfies (3.39)(b) and we can use MZ conjugators to
reduce to a constant coefficient problem, we should expect such R to exist.

Since R±(q, z, 0) = 0 we may write

R±(q, z, ζ) = ρR̂±(q, z, ζ̂, ρ). (3.40)

Now (U, φ) satisfies (3.32)⇔ U 	 = (u	, u	
z) satisfies

(a)∂zU
	 −G(q, z, ζ)U 	 = F,

(b)[U 	] = −φ[R] = −φρ[R̂] = −φ̂[R̂],

(c)l(q) · u	
+ = l · v − φl · r+ = p(ζ)φ− p(ζ)φ = 0.

(3.41)

The following fact, proved below, is a consequence of uniform stability of
the inviscid shock.

Proposition 3.4 For all ζ̂ ∈ S2
+, we have [R̂(q, 0, ζ̂, 0] �= 0.

So for ρ small there is a well-defined orthogonal projection

π(q, ζ̂, ρ) : C
2m → C

2m (3.42)

onto [R̂(q, 0, ζ̂, ρ)]⊥, the subspace of C
2m orthogonal to [R̂(q, 0, ζ̂, ρ)].

Now we can apply π(q, ζ̂, ρ) to (3.41)(b) to project out the front, giving
us the following problem for U 	:

∂zU
	 −G(q, z, ζ)U 	 = F

π(q, ζ̂, ρ)[U 	] = 0, l(q) · u	
+ = 0.

(3.43)

Using a notation like the one we used in defining D(q, ζ̂, ρ), let

Γ̃ : C
4m → C

2m+1 (3.44)

denote the boundary condition in (3.43). It’s easy to check that dim(kerΓ̃ ) =
2m.

The next Proposition, a key to the whole analysis, expresses the fact that
the modified problem (3.43) does satisfy the Lopatinski condition in SF:

Proposition 3.5 Assume (H1), (H2), and (H3). Then for all ζ̂ ∈ S2
+

D̃(q, ζ̂, 0) = det
(
ker Γ̃ , E+(q, ζ̂, 0) × E−(q, ζ̂, 0)

)
�= 0,

or equivalently,

ker Γ̃ ∩ (E+(q, ζ̂, 0) × E−(q, ζ̂, 0)) = {0}.
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By continuity we have D̃(q, ζ̂, ρ) �= 0 for ρ small. In other words the trans-
lational degeneracy has been removed. In view of our earlier discussion of
Lopatinski determinants, we may expect good L2 estimates for (3.43), includ-
ing an estimate for the trace U 	(0). Since [U 	] = −φ̂[R̂] and [R̂] is nonvanishing
for ρ small (Proposition 3.4), we can then estimate |φ̂| in terms of |U 	(0)|.

Remark 3.2 The proof of Proposition 3.5, given in Appendix E, is based on
nonvanishing of the uniform stability determinant ∆(q, ζ̂). It is easy to see
that if (U+(0), U−(0)) is a nonvanishing element of

E+(q, ζ̂, 0) × E−(q, ζ̂, 0),

the boundary condition l(q) · u+ = 0 implies

(U+(0), U−(0)) /∈ kerΓ (3.45)

(use (3.37) and the fact that l(q) · Wz(q, 0) = −1). However, to prove the
Proposition we need to show that (U+(0), U−(0)) is not in the larger space
ker(π(q, ζ̂, 0)Γ ).

4 Lecture Four: Block Structure, Symmetrizers,
Estimates

In the construction of symmetrizers it is most convenient to work with the
4m× 4m doubled problem (3.17)

∂zU − G(q, z, ζ)U = F , ΓU = 0, (4.1)

where U = (U+, Ũ−), ΓU = U+ − Ũ−, and

G =
(
G 0
0 −G̃

)

. (4.2)

This is because the problems in ±z ≥ 0 are coupled by the boundary condition
which depends on both U+ and U−, and the boundary estimates can’t be done
for ± blocks separately. Symmetrizer construction is much easier after further
conjugation of G to an appropriate block structure, which is different in each
of the three frequency regimes.

4.1 The MF Regime.

We’ve already described the MZ conjugation to the doubled limiting problem
(3.21) on z ≥ 0

∂zV − G∞V = F, ΓZV = 0, where

G∞ =
(
G+∞ 0

0 −G−∞

)

.
(4.3)
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This conjugation can’t be done uniformly in HF, so we use it only in the SF
and MF regimes. Here we’ll carry out the full details in MF, the easiest of the
three regimes. This will clarify how Lopatinski conditions yield estimates.

We work near a basepoint (q, ζ) with ζ �= 0. Proposition 3.1 implies that
for (q, ζ) near (q, ζ) the spectrum of G∞ lies in a compact subset of the comple-
ment of the imaginary axis, with 2m eigenvalues (counted with multiplicity)
on each side. Thus, there exists a smooth conjugator TM (q, ζ) such that

T−1
M G∞TM =

(
Pg(q, ζ) 0

0 Pd(q, ζ)

)

:= Ggd (4.4)

where for some C > 0

�Pg :=
Pg + P ∗

g

2
> CI; �Pd < −CI. (4.5)

Note that each block in (4.4) is of size 2m with, for example, m of the eigen-
values of Pg coming from G+∞ and m from −G−∞. The letters g and d stand
for “growing” and “decaying” respectively.

Redefining F and setting V = TMU (so U = (U1, U2) is not the same as
before), we have reduced the study of (4.3) to the study of

∂zU − GgdU = F in z ≥ 0
Γ ′(q, ζ)U := ΓZ(q, 0, ζ)TM (q, ζ)U = 0 on z = 0.

(4.6)

In Lecture 3 we defined the decaying generalized eigenspaces E±(q, ζ) for
G(q, z, ζ) on ±z ≥ 0. Observe that

E(q, ζ) := E+(q, ζ) × E−(q, ζ) (4.7)

is the 2m dimensional decaying space for G. The decaying space for Ggd(q, ζ)

F(q, ζ) := {(0, U2) : U2 ∈ C
2m} (4.8)

is independent of (q, ζ) and evidently satisfies E(q, ζ) = Z(q, 0, ζ)TM (q, ζ)F.
The main Evans hypothesis (H3) implies that for (q, ζ) near the basepoint

kerΓ ∩ E(q, ζ) = {0}, or equivalently
kerΓ ′(q, ζ) ∩ F = {0}.

(4.9)

We’re ready now to construct the symmetrizer. In fact, with the above
preparation the construction is practically trivial. We’ll write

U = Ug + Ud, where Ug = (U1, 0) and Ud = (0, U2). (4.10)

We’ll use the notation

|U |2 = |U(z)|L2(z), |U | = |U(0)|C4m , (U, V ) =
∫ ∞

0

〈U(z), V (z)〉dz, (4.11)
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where 〈 , 〉 is the inner product in C
4m.

The symmetrizer for (4.6) in MF is a matrix S(q, z, ζ) with the following
properties

(a)S = S∗, |S(q, z, ζ)| ≤ C

(b)�(SGgd) ≥ I in z ≥ 0
(c)S + C(Γ ′)∗Γ ′ ≥ I on z = 0

(4.12)

for some C > 0. We may take S to be simply
(
cI 0
0 −I

)

(4.13)

for some large enough c > 0 to be chosen. Clearly, properties (4.12)(a),(b) are
then satisfied.

The Lopatinski condition (4.9) is then equivalent to

|Γ ′(q, ζ)Ud| ≥ C|Ud| for some C > 0 (4.14)

near the basepoint, and this implies

|Ud|2 ≤ C|Γ ′Ud|2 ≤ C1(|Γ ′U |2 + |Ug|2). (4.15)

To arrange (4.12)(c) observe that on z = 0

〈SU,U〉 = c|Ug|2 − |Ud|2 = c|Ug|2 + |Ud|2 − 2|Ud|2

≥ c|Ug|2 + |Ud|2 − 2C1(|Γ ′U |2 + |Ug|2)
= (c− 2C1)|Ug|2 + |Ud|2 − 2C1|Γ ′U |2,

(4.16)

which gives (4.12)(c) for c big enough.
Integration by parts, the equation, and the property S = S∗ yield the

identity

−〈SU(0), U(0)〉 =
∫ ∞

0

∂z〈SU,U〉dz = 2�(SGgdU,U) + 2�(SF,U), (4.17)

which together with (4.12) easily implies the L2 estimate

|U |22 + |U |2 ≤ C(|F |22 + |Γ ′U |2), (4.18)

for a C independent of (q, ζ) near the basepoint. Here we’ve used

|(SF,U)| ≤ δ|U |22 + Cδ|F |22 (4.19)

and absorbed the δ|U |22 from the right. Conjugation via ZTM and compactness
of MF then yield the uniform estimate for (4.1) in MF

|U |22 + |U |2 ≤ C(|F |22 + |ΓU |2). (4.20)

Recall that the q dependence enters only through W (q, z).
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4.2 The SF Regime.

Symmetrizer construction was rather easy in MF thanks mainly to three
things: the MZ conjugator, the compactness of MF, and the fact that for
ζ in MF the spectrum of G∞ is contained in K+ ∪K− for compact sets K±
in ±�µ > 0 respectively.

SF is more subtle because, even though we have the MZ conjugator and
compactness here, the third property does not hold. As ρ → 0 the spectrum
creeps right up to the imaginary axis �µ = 0 from both sides (and in a rather
singular way). Indeed, recall that at ζ = 0 we have

G±∞(q, 0) =
(

0 I
0 A±∞(q, 0)

)

. (4.21)

In SF we first conjugate (4.1) via Z to G∞, then again via

Y (q, ζ) =
(
Y+ 0
0 Y−

)

to

G̃HP (q, ζ) =

⎛

⎜
⎜
⎝

H+ 0 0 0
0 P+ 0 0
0 0 −H− 0
0 0 0 −P−

⎞

⎟
⎟
⎠

(4.22)

(recall (2.42)), and next via a constant matrix Tc to

GHP (q, ζ) =

⎛

⎜
⎜
⎝

H+ 0 0 0
0 −H− 0 0
0 0 P+ 0
0 0 0 −P−

⎞

⎟
⎟
⎠ . (4.23)

We may write H±(q, ζ) = ρĤ±(q, ζ̂, ρ).
So far the conjugations work uniformly for ρ small. For the final conjuga-

tion to block structure GB , we fix a basepoint (q, ζ̂, 0) and construct a matrix
TB(q, ζ̂, ρ) such that:

T−1
B GHPTB =

⎛

⎝
HB(q, ζ̂, ρ) 0 0

0 Pg(q, ζ) 0
0 0 Pd(q, ζ)

⎞

⎠ := GB(q, ζ̂, ρ) (4.24)

for (q, ζ̂, ρ) near (q, ζ̂, 0). Here TB is of the form

TB =
(
TBH(q, ζ̂, ρ) 0

0 TBP (q, ζ)

)

(4.25)

with blocks of size 2m, while the blocks HB , Pg, and Pd are of sizes 2m, m−1,
and m + 1 respectively. All the blocks appearing in TB and GB are smooth
functions of their arguments.
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The eigenvalues of Pg and Pd lie in compact subsets K± of ±�µ > 0 re-
spectively. Their dimensions can be read off from Proposition 3.1. In addition

�Pg =
1
2
(Pg + P ∗

g ) ≥ cI and �Pd ≤ −cI (4.26)

for some c > 0.
The eigenvalues of HB are those of G∞ that approach zero as ρ → 0. We

may write HB(q, ζ̂, ρ) = ρĤB(q, ζ̂, ρ) with

ĤB(q, ζ̂, ρ) =

⎡

⎢
⎣

Q1 · · · 0
...

. . .
...

0 · · · Qs

⎤

⎥
⎦ . (4.27)

The blocks Qk are νk×νk matrices which satisfy one of the following conditions
for (q, ζ̂, ρ) near (q, ζ̂, 0):

i) �Qk > 0.
ii) �Qk < 0.
iii) νk = 1, �Qk = 0 when γ̂ = ρ = 0, and ∂γ̂(�Qk)∂ρ(�Qk) > 0.
iv) νk > 1, Qk(q, ζ̂, ρ) has purely imaginary coefficients when γ̂ = ρ = 0,

there is αk ∈ R such that

Qk(q, ζ̂, 0) = i

⎡

⎢
⎢
⎢
⎢
⎣

αk 1 0

0 αk
. . . 0

. . . . . . 1
· · · αk

⎤

⎥
⎥
⎥
⎥
⎦
, (4.28)

and the lower left corner a of Qk satisfies ∂γ̂(�a)∂ρ(�a) > 0.

Proof (Sketch of proof).
1. Starting from GHP we construct smooth projectors Pg(q, ζ) and Pd(q, ζ)

Pg,d(q, ζ) =
1

2πi

∫

Cg,d

(ξ −
(
P+ 0
0 −P−

)

)−1dξ (4.29)

using contours Cg and Cd in the right and left half planes, respectively, which
enclose the eigenvalues of the submatrix (P+,−P−) in those half planes.
Applying Pg,d(q, ζ) to a basis of Pg,d(q, 0) yields a basis of

range Pg,d(q, ζ)

varying smoothly with ζ.
The blocks H+ and −H− are conjugated separately to block structure.

Thus, there is a k0 such that the blocks Q1, . . . , Qk0 in ĤB correspond to Ĥ+,
while blocks Qk0+1, . . . , Qp correspond to −Ĥ−. For example, suppose

{iα1, . . . , iαk0−2} (4.30)
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are the distinct pure imaginary eigenvalues of Ĥ+(q, ζ̂, 0) with iαj of multi-
plicity mj , and let m± be the number of eigenvalues of Ĥ+(q, ζ̂, 0) counted
with multiplicity in ±�µ > 0. Using projectors defined by integration on suit-
able contours as above, one obtains a decomposition of Ĥ+ near the basepoint
in which there is a block of size mj satisfying either (iii) or (iv) corresponding
to each iαj , a block of size m+ satisfying (i), and a block of size m− satisfying
(ii). As the basepoint changes so does the decomposition.

A further change of basis in cases (iii),(iv) puts Qk(q, ζ̂, 0) in Jordan form.
Changing basis again using Ralston’s Lemma [Ra, CP] makes Qk pure imag-
inary in cases (iii),(iv) when γ̂ = ρ = 0. Observe that by hyperbolicity blocks
satisfying conditions (iii) or (iv) only arise when γ̂ = 0.

2. We discuss the crucial sign condition in cases (iii) and (iv) in the next
subsection. •

4.3 The Sign Condition

Suppose we start with Ĥ+(q, ζ̂, 0), where we assume γ̂ = 0 as in cases (iii)
and (iv) above, and then perturb to γ̂ > 0 while holding ρ = 0 (case A), or
to ρ > 0 holding γ̂ = 0 (case B). In both cases the perturbed matrix Ĥ+ has
m− k eigenvalues with positive real part and k with negative real part.

In case A this follows from hyperbolicity (H1), (H2), and the explicit form
of Ĥ+ (2.43). Hyperbolicity implies that the number of eigenvalues with pos-
itive (or negative) real part is constant for γ̂ > 0, ρ = 0. We can then take
(τ̂ , η̂) = 0 to obtain a count. In case B the count follows directly from (H2)
and Proposition (3.1).

To describe this situation we’ll say that changes in γ̂ or ρ lead to iden-
tical splitting for Ĥ+(q, ζ̂, 0) (this should not be confused with “consistent
splitting”, which has a different meaning).

Identical splitting follows from the sign condition in (iii) and (iv), but
does not quite imply it. The sign condition implies more; namely, that we
have identical splitting for each block Qk. This is because the behavior of
the lower left entry governs the splitting of iαk when a block Qk(q, ζ̂, 0) has
the Jordan form (4.28). The sign condition implies changes in γ̂ or ρ have the
same effect.

Let’s try to understand the role of the lower left entry in a simple case.
For α ∈ R set

Q(γ) = i

⎛

⎝
α 1 0
0 α 1
0 0 α

⎞

⎠+ γ(bij) (4.31)

where (bij) is some 3 × 3 constant matrix with b31 �= 0. Compute the charac-
teristic polynomial of Q(γ) by expanding down the first column to get

det(Q(γ) − ξI) = (iα− ξ)3 − γb31 + O(γ2) + O(γ(iα− ξ)). (4.32)
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Eigenvalues ξ(γ) satisfy

iα− ξ(γ) = o(1) as γ → 0, (4.33)

so to determine the splitting we can solve

(iα− ξ)3 = γb31 (4.34)

for ξ.
When �b31 > 0 we obtain two solutions with �ξ > 0, one with �ξ < 0.

When �b31 < 0 we obtain one solution with �ξ > 0, two with �ξ < 0.
The sign condition allows one to construct symmetrizers by a modification

of the ansatz used by Kreiss in [K]. In [K] there was only one perturbation
parameter γ̂ and one derivative to consider ∂γ̂�a. That derivative was nonzero
as a consequence of his strict hyperbolicity assumption. Because of our sign
condition, we can construct a symmetrizer in this two-parameter situation by
adding an extra term, corresponding to the ρ parameter, to the kth block
of S in the Kreiss ansatz. As explained in Appendix B the sign condition
is also used in the proof that the decaying eigenspaces E±(q, ζ̂, ρ) extend
continuously to ρ = 0.

4.4 Glancing Blocks and Glancing Modes

Definition 4.1 Blocks satisfying condition (iv) in the above theorem will be
referred to as glancing blocks. From the above discussion we see these blocks
correspond to coalescing eigenvalues of Ĥ±.

In the remainder of this subsection we’ll allow our 2D notation to represent
any number of space dimensions. Thus, if η ∈ R

d−1, when we write g′(U0
±)iη

we mean

g′(U0
±)iη :=

d−1∑

j=1

g′j(U
0
±)iηj . (4.35)

To define glancing modes and relate them to glancing blocks we consider
the linearized inviscid limiting operators

L±(q, ξ, τ, η) = iτI + Aν(U0
±(0, q), dψ0(q))iξ + g′(U0

±)iη (4.36)

and the corresponding scalar symbols

p±(q, ξ, τ, η) = det L±(q, ξ, τ, η). (4.37)

Definition 4.2 Define the glancing set Gq to be the set of (τ, η) ∈ R
d \ 0

such that for at least one choice of sign the equation p±(q, ξ, τ, η) = 0 has a
real root ξ of multiplicity ≥ 2. We’ll refer to individual points (τ0, η0) ∈ G as
glancing modes.
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Clearly, at any point (τ0, η0) ∈ Gq at least one real root ξ of p±(q, ξ, τ, η) = 0,
has a branch singularity. (The degree of singularity with respect to τ (η held
fixed) is equal to the integer s in (4.40) below.)

The hyperbolicity assumption (H1) implies there exist real functions

τ±1 (q, ξ, η), . . . , τ±m(q, ξ, η),

smooth and homogeneous of degree one in (ξ, η) �= 0, such that

τ±1 < · · · < τ±m and

p±(q, τ, ξ, η) = (τ − τ±1 (q, ξ, η)) · · · (τ − τ±m(q, ξ, η)).
(4.38)

If (τ0, η0) ∈ Gq, there exist ξ0 and for at least one choice of sign a τ±j
(with j uniquely determined by the choice of ± and (ξ0, τ0, η0)) such that
(dropping ±)

τ0 = τj(q, ξ0, η0), and
∂ξτj(q, ξ0, η0) = 0.

(4.39)

Moreover, the multiplicity of ξ0 as a root of p(q, ξ0, τ0, η0) = 0, and thus the
degree of singularity (with respect to τ) of the associated branch point, is
equal to s (2 ≤ s ≤ m) if and only if

∂k
ξ τj(q, ξ0, η0) = 0, for k = 1, . . . , s− 1, but

∂s
ξτj(q, ξ0, η0) �= 0.

(4.40)

Note that this implies at the same time that ∂ξτj(·, η0) has no roots nearby
ξ0 other than ξ0 itself.

To relate glancing modes to glancing blocks note, for example, that

p+(q, ξ̂, τ̂ , η̂) = det
(
Aν(U0

+(0, q), dψ0(q))(iξ̂ − Ĥ+(q, τ̂ , γ̂ = 0, η̂, ρ = 0)
)
.

(4.41)

So when we have a block of size ν associated to a multiple pure imaginary
eigenvalue iα of Ĥ+(q, ζ̂, 0), this means (τ̂ , η̂) ∈ Gq and that α is a root of
multiplicity ν of

p+(q, ξ, τ̂ , η̂) = 0.

The word glancing is used because characteristics (x(t), t, y(t)) associated
to a glancing mode (τ0, η0) ∈ Gq with τ0 = τj(q, ξ0, η0) satisfy

x′(t) = −∂ξτj(q, ξ0, η0) = 0, (4.42)

and thus run parallel to the boundary x = 0.
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4.5 Auxiliary Hypothesis for Lecture 5

This is a good place to state an auxiliary hypothesis that we’ll need later.
In Lecture 5 we deal with planar inviscid shocks so there is no q dependence
anymore. In particular, we can remove the q dependence from all the functions
appearing in the previous subsection and in place of (4.36) we have

L±(ξ, τ, η) = iτI + A(W±)iξ + g′(W±)iη (4.43)

for constant states W±.
Clearly, (4.40) and the implicit function theorem imply that for any such

(τ0, ξ0, η0) and function τj , there exists a function ξ(η) such that locally near
(ξ0, η0)

∂s−1
ξ τj(ξ, η) = 0 precisely when ξ = ξ(η). (4.44)

Note that ξ(η) is smooth and homogeneous of degree one away from η = 0.
We can now state the auxiliary assumption (H4):

Assumption 4.1 (H4) For any (τ0, η0) ∈ G, corresponding root ξ0 of mul-
tiplicity s, and functions τj and ξ(η) as above, we have

∂k
ξ τj(ξ(η), η) = 0 for k = 1, . . . , s− 1 and η near η0. (4.45)

In other words ξ0 persists as a root ξ(η) of multiplicity s of

p(ξ(η), τj(ξ(η), η), η) = 0

for η near η0, and (by the remark below (4.40)) there are no other nearby
roots of multiplicity > 1.

A compactness argument using the fact that G is a closed conic set shows
that under the assumption (H4) all such branch singularities are confined to
a finite union of surfaces

τ = τj,l(η) ≡ τj(ξl(η), η)

on which the singularity (with respect to τ) has order equal to sl, the mul-
tiplicity of the root ξl(η). We’ll usually relabel and replace the double index
j, l by a single index as in τ = τk(η). Note that graphs τk may well intersect.

Remark 4.1 1. The statements of this subsection (and the previous one)
require only slight modification when the assumption of strict hyperbolicity
(H1) is relaxed to the following more general hypothesis of [Z], [GMWZ3]:

(H1’): f ′(u)ξ + g′(u)η has semisimple real eigenvalues of constant multi-
plicity for (ξ, η) ∈ R

d \ 0 (nonstrict hyperbolicity with constant multiplicity).
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In this case the multiplicity of ξ0 as a root of p(ξ0, τ0, η0) = 0 is some
integer multiple of s as in (4.40).

2. Condition (H4) is automatic in the cases d = 1, 2 and also in any
dimension for rotationally invariant problems. In 1D the glancing set is empty.
In the 2D case the homogeneity of τj and its derivatives implies that the ray
through (ξ0, η0) is the graph of ξ(η) and that (H4) holds there. (H4) also clearly
holds if no real root ξ of p(ξ, τ, η) = 0 has multiplicity > 2, in particular in
the case that all eigenvalues τj(ξ, η) are linear or convex/concave in their
dependence on ξ.

3. In the equations of gas dynamics all characteristics are linear com-
binations of (ξ, η) and |ξ, η|, hence the above results show that (H4) is valid
whenever the constant multiplicity assumption (H1’) applies. Thus, we see that
(H4), though mathematically restrictive, nonetheless allows important physical
applications.

4.6 The SF Estimate

Using the conjugator ZY TcTB we have reduced the study of

Uz − G(q, z, ζ)U = F, Γ̃U = 0 to

Uz − GB(q, ζ̂, ρ)U = F, Γ̃ZY TcTBU := Γ ′U = 0.
(4.46)

Here Γ̃ is the Lopatinski boundary condition from (3.44) obtained by removing
the translational degeneracy.

The block form (4.24) of GB determines a partition of U ∈ C
4m as U =

(u1, . . . , us, u+, u−), where u± correspond to the blocks Pg, Pd respectively.
We caution that in the remainder of this subsection the meaning of ± is
completely different from earlier usage.

Denote by βj the number of eigenvalues of Qj with �µ < 0 for γ̂ > 0 (or
ρ > 0), and write

uj = (uj−, uj+) (4.47)

where uj− consists of the first βj components of uj .
Next set

UP+ = (0, . . . , 0, u+, 0)
UP− = (0, . . . , 0, 0, u−)
UH+ = ((0, u1+), . . . , (0, us+), 0, 0)
UH− = ((u1−, 0), . . . , (us−, 0), 0, 0),

(4.48)

and write
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U = UP+ + UP− + UH+ + UH−

U± = UP± + UH±

UP = UP+ + UP−

UH = UH+ + UH− .

(4.49)

The definition of UH− is based on the observation, proved in Appendix B,
that {(uj−, 0) : uj− ∈ C

βj} is precisely the continuous extension at the base-
point of the decaying space corresponding to the block Qj . Note that the
analogous statement is not true for UH+ , because of the fact that continu-
ous extensions of growing and decaying spaces have nontrivial intersection
(and sometimes even coincide) at glancing basepoints. Rather, UH+ is just a
convenient choice of complementary vector.

The symmetrizer S has the form

S(q, ζ̂, ρ) =

⎛

⎜
⎜
⎜
⎝

S1(q, ζ̂, ρ)
. . .

Ss(q, ζ̂, ρ)
SP (q, ζ)

⎞

⎟
⎟
⎟
⎠

, (4.50)

where the Sj , SP are C∞ functions of their arguments. We’ll sometimes write

S =
(
SH

SP

)

, (4.51)

where each block is of size 2m.
Let

UHj
= UHj+ + UHj− (4.52)

where the terms on the right have obvious meanings in view of (4.48). The
Sj are constructed so that S = S∗, with interior estimates

(Re SGBUP , UP ) ≥ C|UP |22
(Re SGBUHj

, UHj
) ≥ (γ + ρ2)|UHj

|22,
(4.53)

as well as boundary estimates

(a) (SUP , UP ) ≥ c|UP+ |2 − |UP− |2

(b) (SUHj
, UHj

) ≥ c|UHj+ |2 − |UHj− |2
(4.54)

both holding uniformly near the basepoint.
Note that SP can be taken to be simply

SP =
(
cI

−I

)

(4.55)
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for some large c > 0, where the blocks are of sizes m − 1 and m + 1. Details
of the construction of SH are the same as for the case of Dirichlet boundary
layers and are given in [MZ].

Since Γ ′ satisfies the uniform Lopatinski condition at (q, ζ̂, 0) we have

|U−|2 ≤ C|Γ ′U−|2 ≤ C(|Γ ′U |2 + |U+|2) (4.56)

at (q, ζ̂, 0) and in fact uniformly near the basepoint by continuity.
We are now in a position to argue precisely as we did in the MF regime.

From (4.54) and (4.56) we find as before

S + C1(Γ ′)∗Γ ′ ≥ I on z = 0 (4.57)

for some C1 > 0 provided c was big enough. Continuing we obtain the SF
estimate

(|UP |22 + (γ + ρ2)|UH |22) + |U |2 ≤

C

(

|FP |22 +
1

(γ + ρ2)
|FH |22

)

+ C|Γ ′U |2,
(4.58)

uniformly near (q, ζ̂, 0). Here we’ve written F = FH + FP in the obvious way
and used

|(SF,U)| ≤ (Cδ|FP |22 + δ|UP |22) +
(

Cδ

(γ + ρ2)
|FH |22 + δ(γ + ρ2)|UH |22

)

(4.59)

to absorb terms from the right.

4.7 The HF Regime

In HF the spectrum of G(q, z, ζ) stays well away from the imaginary axis, so
the argument here is similar to the one for MF, except for the extra difficulty
that the set of frequencies is noncompact. However, since the parabolic part
of the linearized operator is dominant in HF, we can use the natural parabolic
homogeneity to reduce to a compact set of parameters. This argument is given
in Appendix F.

4.8 Summary of Estimates

We recall that our goal, established in Lecture 2, has been to prove L2 esti-
mates for the fully linearized transmission problem (2.24)

Lu(q, z, ζ, ∂z)v + Lψ(q, z, ζ)φ = f

[v] = 0, [∂zv] = 0, p(ζ)φ− l · v = 0 on z = 0,
(4.60)
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which was reformulated as a first order system for the unknowns U = (v, vz)
and φ in (2.29):

∂zU −G(q, z, ζ)U = F +
(

0
−(B0(q))−1Lψ(q, z, ζ)φ)

)

[U ] = 0, p(ζ)φ− l(q) · v = 0 on z = 0
(4.61)

In Lecture 3 we defined a good unknown for the problem (4.61), namely
U � = U − Pφ, which allows us to reduce the study of (4.61) in MF and HF
to the study of (3.35):

∂zU
� −G(q, z, ζ)U � = F, [U �] = 0. (4.62)

In SF the good unknown is U 	 = U −Rφ, and we showed that this allows
us to reduce the study of (4.61) to that of (3.43):

∂zU
	 −G(q, z, ζ)U 	 = F

π(q, ζ̂, ρ)[U 	] = 0, l(q) · u	
+ = 0.

(4.63)

Tracing back through the conjugations, the estimates (4.58) in SF, (4.20)
in MF, and (11.25) in HF imply the following estimates for U � = (v�, v�

z) and
U 	 = (u	, u	

z). We define

h(ζ) =

{
(γ + ρ2)1/2, ρ ≤ 1
〈ζ〉, ρ > 1

, (4.64)

where

〈ζ〉 := (τ2 + γ2 + η4)1/4 ∼ |τ, γ|1/2 + |η|. (4.65)

Noting that the forcing term F in the above first order systems satisfies

|F |2 ≤ C|f |2, (4.66)

for f as in (4.60)
We have

(a)h2|u	|2 + h|u	
z|2 + h|U 	| ≤ C|f |2 in SF

(b)|v�|2 + |v�
z|2 + |U �| ≤ C|f |2 in MF

(c)〈ζ〉2|v�|2 + 〈ζ〉|v�
z|2 + 〈ζ〉3/2|v�| + 〈ζ〉1/2|v�

z| ≤ C|f |2 in HF.

(4.67)

From (3.36) we deduce

〈ζ〉2|φ| ≤ |v�| in MF and HF (4.68)

and from (3.41)(b) and the nonvanishing of [R̂] we get
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|ρφ| ≤ C|U 	|. (4.69)

In view of (4.68) and (4.69), the three estimates above immediately imply
the following estimates for the solution (v, φ) to the fully linearized transmis-
sion problem (4.60):

(a)h2|v|2 + h|vz|2 + h|v, vz| + hρ|φ| ≤ C|f |2 in SF
(b)|v|2 + |vz|2 + |v, vz| + |φ| ≤ C|f |2 in MF

(c)〈ζ〉2|v|2 + 〈ζ〉|vz|2 + 〈ζ〉3/2|v| + 〈ζ〉1/2|vz| + 〈ζ〉7/2|φ| ≤ C|f |2 in HF.
(4.70)

Finally, let’s summarize all three estimates in a single estimate. First define

h1(ζ) =

{
ρ, ρ ≤ 1
〈ζ〉2, ρ > 1

. (4.71)

Then for all ζ we have

h2|v|2 + h|vz|2 + h(1 + 〈ζ〉)1/2|v| + h(1 + 〈ζ〉)−1/2|vz| + h(1 + 〈ζ〉)1/2h1|φ|
≤ C|f |2.

(4.72)

5 Lecture Five: Long Time Stability via Degenerate
Symmetrizers

In this lecture we focus mainly on obtaining linearized estimates via sym-
metrizers. Details of the nonlinear endgame are given in [GMWZ1]. There is
much overlap with the earlier results of [Z] obtained by construction of Green’s
functions. However, as described in [GMWZ1] each approach seems to yield
some results inaccessible to the other. The symmetrizer approach has the ad-
vantage, as we saw in the first four lectures, of applying to curved shocks as
well as planar shocks. We note that the nonlinear endgame for Theorem 5.1
is inspired by that in [KK], while the one for Theorem 5.2 is essentially that
of [Z]. A brief discussion of these arguments is given at the end of this Lecture.

Consider the m×m system of viscous conservation laws

ut + f(u)x + g(u)y −�u = 0, (5.1)

where now y ∈ R
d−1, d ≥ 2, but we continue to use 2D notation as in (4.35).

We are given a stationary inviscid shock x = 0 with constant states W±
and a stationary solution W (x) (the profile) of (5.1) satisfying

Wx = f(W ) − f(W−)
lim

x→±∞
W (x) = W±.

(5.2)
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5.1 Nonlinear Stability

We wish to understand the stability of the profile W (x) under multidimen-
sional perturbations. Let A denote some set of admissible perturbations to be
specified later.

Definition 5.1 (1) For v0 ∈ A let u(x, t, y) be the solution to the system
(5.1) with initial data at t = 0 given by

u0(x, y) = W (x) + δv0(x, y). (5.3)

We say that W is nonlinearly stable with respect to perturbations in A if
there exists a δ0 > 0 (depending on |v0|A) such that for δ ≤ δ0, the solution
u(x, t, y) exists for all time and

|u(x, t, y) −W (x)|L∞(x,y) → 0 as t → ∞. (5.4)

(2) We refer to v0 as a zero mass perturbation if it has the form v0 = div V0

for some V0. General perturbations not necessarily of this form are called
nonzero mass perturbations.

We look for u of the form

u(x, t, y) = W (x) + δz(x, t, y). (5.5)

To obtain a problem with zero initial data we take

z(x, t, y) = v(x, t, y) + e−tv0(x, y) (5.6)

and after a short computation we obtain the following error problem for v,
where we set A = f ′:

vt+(A(W (x))v)x+g′(W (x))vy+δdivx,y(B(x, t, y)v)+δdivx,y(h(x, t, y, v))−�v=f

v|t=0 = 0,

(5.7)

where h(x, t, y, v) = O(|v|2).
The main step is to prove appropriate estimates for the corresponding

linearized problem

ut + (A(W (x))u)x + g′(W (x))uy −�u = f

u|t=0 = 0.
(5.8)

We’ll derive these by studying instead the eigenvalue equation, obtained by
Fourier-Laplace transform of (5.8) after extending f and u by zero in t < 0:

ûxx − (A(W (x))û)x − s(x, ζ)û = f on Rx, where

s(x, ζ) = g′(W (x))iη + (iτ + γ + η2)I.
(5.9)
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Dropping the hat on u we set U = (u, ux) and

G(x, ζ) =
(

0 I
M A(W ))

)

, where

M(x, ζ) = s(x, ζ) + A′(W ) ·Wx.

(5.10)

Next replace (5.9) by the equivalent 4m× 4m doubled boundary problem on
x ≥ 0

Ux − G(x, ζ)U = F on x ≥ 0, ΓU = 0, (5.11)

where now U = (U+, Ũ−) (recall (3.15)) and

G =
(
G 0
0 −G̃

)

, ΓU = U+(0) − Ũ−(0). (5.12)

The final preparatory step is to conjugate to block structure via a conju-
gator ZY TcTB just as in Lecture 4:

Ux − GB(ζ̂, ρ)U = F, ΓZY TcTBU := Γ#U = 0. (5.13)

The only difference is that here we retain the degenerate boundary condition
ΓU = 0 in the SF region.

5.2 L1 − L2 Estimates

The main step is to establish L1 − L2 estimates in SF for (5.13), assuming
now the auxiliary Assumption 4.1 (or (H4)). That is, we assume that branch
singularities of characteristic roots ξ (considered as functions of (τ, η)) are
confined to a finite union of smooth surfaces τ = τj(η) on which the singularity
has constant order equal to sj , the multiplicity of the corresponding root ξ.

In MF and HF we can use the estimates established in Lecture 4. The
following Proposition is proved in the next few subsections.

Proposition 5.1 Fix a basepoint X0 = (ζ̂, 0). Assume (H1),(H2),(H3),(H4),
and

−θρ(τ̂2 + η̂2) ≤ γ̂ ≤ Cρ (5.14)

for some C > 0 and small enough θ > 0.
Then, for F ∈ L1 and ρ > 0 sufficiently small, the solution of the conju-

gated doubled boundary problem (5.13) satisfies

|U |2L2(x) ≤
Cβ2|F |2L1(x)

ρ2
(5.15)

for some C > 0 uniformly near the basepoint X0, where
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β(ζ̂ , ρ) := max
j≥0

βj , (5.16)

with β0 := 1 and

βj := (|τ̂ − τj(η̂)| + ρ + γ̂)1/sj−1. (5.17)

(Note that β = 1 if the glancing set G is empty, in particular for d = 1.)

From (5.15) together with the MF and HF estimates from Lecture 4, we
obtain readily the following linear estimate. This estimate leads directly to a
proof of long time stability for nonzero mass perturbations in space dimensions
d ≥ 3.

Corollary 5.1 Assume (H1), (H2), (H3), and (H4). Then, for d ≥ 3, the
solution of the linear problem (5.8) (nonzero mass) satisfies

|u, uy, ut|L2(x,t,y) + |ux|L2(x,t,y) ≤ C(|f |L1(x,t,y) + |f |L2(x,t,y)). (5.18)

Proof. We’ll write |F |L1(x) = |F |1.
Define V and H by U = V̂ (x, τ, γ, η), F = Ĥ, where 0 < γ ≤ Cρ2, and

suppose now that U and F are supported in ρ < δ.
(5.15) gives

|U |22 ≤ Cβ2

|τ, η|2 |F |21. (5.19)

Integrate (5.19) dτdη (dimension of (τ, η) space is ≥ 3) to get

|e−γtV |2L2(x,t,y) ≤
∫

Cβ2

|τ, η|2 |Ĥ(x, τ, γ, η)|2L1(x)dτdη. (5.20)

But

|Ĥ(x, τ, γ, η)| ≤ C|H(x, t, y)|L1(t,y), (5.21)

so

|Ĥ(x, τ, γ, η)|L1(x) ≤ C|H(x, t, y)|L1(x,t,y). (5.22)

Plug this into (5.20) to get

|e−γtV |2L2(x,t,y) ≤
∫

|τ,η|<δ

Cβ2

|τ, η|2 |H|2L1(x,t,y)dτdη ≤ C|H|2L1(x,t,y). (5.23)

Here we used the fact that for d ≥ 3
∫

|τ,η|<δ

β2

|τ, η|2 dτdη < ∞. (5.24)
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We note that a little care is needed in showing this since β is singular.
Finally, let γ → 0 to get

|V |2L2(x,t,y) ≤ C|H|2L1(x,t,y). (5.25)

For U and F supported in MF or HF, the results of Lecture 4 yield esti-
mates with only the L2 norm of H on the right. The corollary follows.

•
Note that (5.24) fails for d = 1, 2 and some different ideas are needed. For

d = 1 we refer to [ZH]. For d = 2 we need L1 − Lp estimates for (5.13).
In what follows we’ll occasionally interpolate between L2 and L∞ using

the following elementary inequalities:

|u|Lp ≤ |u|1−
2
p

L∞ |u|
2
p

L2 ≤ |u|L∞ + |u|L2 . (5.26)

From (5.15) we obtain readily the following L1 → Lp bounds.

Corollary 5.2 Assume (H1), (H2), (H3), (H4), and (5.14). Then, for F ∈
L1 and ρ > 0 sufficiently small, the solution of the conjugated doubled bound-
ary problem (5.13) satisfies

|u|Lp ≤ Cβ|F |L1

ρ
(5.27)

for all 2 ≤ p ≤ ∞, for some C > 0 uniformly near the basepoint X0, where β
is defined as in Proposition 5.1.

Proof. Recall that |U | bounds both |u| and |ux|. Thus, the result for p = ∞
follows from the standard one-dimensional Sobolev inequality

|f |∞ ≤ |f |1/2
2 |fx|1/2

2 , (5.28)

and the general result 2 ≤ p ≤ ∞ by interpolation between L2 and L∞ norms.
•

5.3 Proof of Proposition 5.1.

Our strategy in proving Proposition 5.1 will be to establish an L2 → L∞

bound for the adjoint problem, then appeal to duality. In deriving adjoint
L2 → L∞ bounds, we use duality in a second way, to first conclude adjoint
L2 → L2 bounds from the L2 → L2 bounds of the forward equation (slightly
refined). From the adjoint L2 bounds, L2 → L∞ bounds are then readily
obtained by a standard energy estimate/integration by parts.
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Remark 5.1 It is worth noting that we do not in this argument apply degen-
erate symmetrizers to the adjoint equation. Indeed, because of an asymmetry
between forward vs. dual equations, our standard degenerate symmetrizer esti-
mate would not recover the sharp bound available by duality. (Specifically, the
degeneracy in the boundary condition for the dual equation occurs in hyperbolic
modes, though we shall not show it here.)

5.4 The Dual Problem

Consider a general boundary problem

LU := Ux −G(x, ζ)U = F

ΓU = 0 on x = 0.
(5.29)

The dual problem is then defined via L2 inner product on R
+ as

L∗V := −Vx −G∗(x, ζ)U = G

Γ ∗V = 0 on x = 0,
(5.30)

where the kernel of Γ ∗ is the orthogonal complement of the kernel of Γ , i.e.,
by the property that

〈LU, V 〉 = 〈U,L∗V 〉 (5.31)

for ΓU(0) = Γ ∗V (0) = 0.
A formality is to first establish well-posedness of both problems.

Proposition 5.2 For ρ > 0, both forward and dual problems have a unique
H1 solution for any data in L2.

Proof. It is sufficient to prove uniqueness, which follows in both cases from
the standard (nondegenerate) symmetrizer construction carried out for fixed
ρ �= 0. The interior estimates thereby obtained feature constants that may
blow up arbitrarily fast in ρ as ρ → 0; however, this is of no consequence for
the present purpose. •
Corollary 5.3 The bound of Proposition 5.1 is equivalent to the dual bound

|V |2L∞ ≤ Cβ2

ρ2
|G|22 (5.32)

for solutions of the dual conjugated boundary problem, for G ∈ L2.

Proof. We have

|U |L2 = sup
|G|L2=1

〈U,G〉 = 〈U,L∗V 〉 = 〈LU, V 〉 = 〈F, V 〉 ≤ |F |L1 |V |L∞ , (5.33)

from which we obtain the forward direction

|U |L2/|F |L1 ≤ |V |L∞/|G|L2 . (5.34)

A reverse calculation yields the backward direction. •
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5.5 Decomposition of UH±

To establish (5.32), we will need to sharpen the basic L2 → L2 estimate for
the forward equation. To do this, we shall need to decompose the hyperbolic
modes UH in decomposition (4.49) as the sum UH = UH+ + UH− , where

UH± = UHh± + UHe± + UHg± . (5.35)

Each vector appearing in (5.35) has 4m components, and the decomposition
depends on (ζ̂ , ρ). While UH here is the same as the vector UH appearing in
(4.49), to avoid confusion it is important to note that the definitions of UH±

are different now as we explain below.
We shall write

UHh
= UHh+ + UHh−

and do similarly for e and g. The hyperbolic mode UHh± has nonvanishing
components corresponding (only) to the blocks Qk in (4.27) which are 1 × 1
with real part vanishing at the base point, but with real part > 0 (resp.< 0)
when ρ > 0. The elliptic mode UHe± has nonvanishing components corre-
sponding to blocks with �Qk positive or negative definite at the base point.
Finally, the glancing mode UHg

has nonvanishing components corresponding
to blocks of size larger than 1×1 which are purely imaginary at the base point
(glancing blocks).

Further, we shall diagonalize the glancing blocks by a 4m × 4m matrix
THg

(ζ̂ , ρ):

U ′
Hg

:= T−1
Hg

UHg
, (5.36)

where UHg
:= UHg+ +UHg− . Here UHg± are defined as the projections of UHg

onto the growing (resp. decaying) eigenspaces of ĤB in (4.27) corresponding
to glancing blocks. Call these subspaces Hg±. Clearly, THg

also has a block
structure and we may construct it so that in any given block corresponding to
a glancing block Qj , the first columns are eigenvectors of Qj associated (for
ρ > 0) to eigenvalues with �µ < 0. The remaining blocks of THg

are identity
matrices.

We denote by

U ′ := T−1
Hg

U (5.37)

the full variable with UHg
diagonalized, and all other components unchanged.

By calculations similar to those in [Z], we obtain the following estimates.

Lemma 5.1 The diagonalizing transformation THg
may be chosen so that

|THg
| ≤ C, (5.38)

|T−1
Hg

| ≤ Cβ, (5.39)
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and

|T−1
Hg |Hg−

| ≤ Cα, (5.40)

where β := maxj βj, α := maxj αj, with

βj := θ
1−sj

j , αj := θ
1−[(sj+1)/2]
j , (5.41)

θj := (|τ̂ − τj(η̂)| + γ̂ + ρ)1/sj , (5.42)

and T−1
Hg |Hg−

denotes the restriction of T−1
Hg

to subspace Hg−. In particular,

βα−2 ≥ 1. (5.43)

Remark 5.2 The quantities β and α, and their sharp estimation, we regard
as a key to the analysis of long-time stability in multidimensions.

Proof. Clearly, it is sufficient to establish for a single block Qj of size sj

that there exist diagonalizing matrices whose inverses are bounded by βj , αj ,
respectively. Let µ denote the multiple pure imaginary eigenvalue appearing
in Qj evaluated at the basepoint (τ̂ , η̂). From here on, we drop the j subscript.

Set σ = |τ̂ − τ(η̂)|+ γ̂ so θ = (σ + ρ)1/s. By a classic matrix perturbation
argument (e.g., [Z], Lemma 4.8) the eigenvalue µ splits for σ + ρ > 0 small
into s eigenvalues.

µk = µ + πk + o(|σ, ρ|1/s), k = 1, . . . , s (5.44)

Here

πk = εki(pσ − iqρ)1/s with

ε = 11/s,

p(η̂) and q(η̂) are real and ∼ 1, and sgn p = sgn q.

(5.45)

Moreover, correponding eigenvectors are given in appropriate coordinates by

(1, πk, π
2
k, . . . , π

s−1
k ) + o(|σ, ρ|1/s). (5.46)

Thus, there exists a matrix THg
of eigenvectors of the s× s block Q that

is approximately given by a vandermonde matrix with generators distance at
least θ apart related by s roots of unity.

By Kramer’s rule, we may therefore estimate β as the quotient of two
vandermonde determinants, the numerator of size s− 1 and the denominator
of size s, taken from the same set of equally spaced generators. The standard
formula for vandermonde determinants gives then
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β ∼ θ

(
s− 1

2

)
−

(
s
2

)

= θ1−s (5.47)

as claimed.
Denoting by

(
t1
t2

)

(5.48)

the matrix consisting of the k ≤ [(s + 1)/2] stable eigenvectors of Q, i.e.,
the first k columns of THg

, and noting that t1 as a vandermonde matrix is
invertible, we find that Hg− consists of vectors of form

(
w

t2t
−1
1 w

)

=
(
t1
t2

)

t−1
1 w, (5.49)

where w ∈ C
k is arbitrary.

From |(w, t2t−1
1 w)| ≥ |w| and the computation

∣
∣
∣T−1

Hg

(
w

t2t
−1
1 w

) ∣
∣
∣ =
∣
∣
∣

(
t1 ∗
t2 ∗

)−1(
t1
t2

)

t−1
1 w

∣
∣
∣

=
∣
∣
∣

(
Ik

0

)

t−1
1 w

∣
∣
∣

= |t−1
1 w|

(5.50)

we thus obtain that |T−1
Hg |Hg−

| ≤ |t−1
1 |.

Observing that t1 is a k × k vandermonde matrix with generators taken
from the same equally spaced set, and applying Kramer’s rule similarly as
before, we obtain

|t−1
1 | ≤ Cθ1−[(s+1)/2], (5.51)

and thus α = θ1−[(s+1)/2] as claimed. •
We define similar decompositions on the dual variable V , and also the

forcing terms F and G.

5.6 Interior Estimates

We begin by carrying out a basic degenerate symmetrizer estimate for the
diagonalized forward problem. Note that the treatment of glancing modes is
considerably simpler in diagonalized coordinates, and indeed has nothing to
do with that of the original Kreiss construction.

Lemma 5.2 For the forward diagonalized problem, we have the interior
bound

|U ′|2L2 ≤ C
|F ′|2L2

ρ2(γ + ρ2)
. (5.52)
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Proof. In diagonalized coordinates, we must deal with a new degeneracy of
order α−1 in the glancing modes of the diagonalized boundary condition Γ ′ :=
ΓTHg

for the forward problem, as may be seen by the calculation

|Γ ′U ′
Hg− | = |ΓUHg− | ≥ C−1|UHg− | ≥

C−1|U ′
Hg−

|
|T−1

Hg |Hg−
|
. (5.53)

On the other hand, there are no coalescing modes, and so we may dispense
with the usual Kreiss construction, treating glancing modes in the same way
as hyperbolic and elliptic modes. Precisely, in each SH block except for those
corresponding to glancing modes, we make the same choice of nondegener-
ate symmetrizer as in Lecture 4, while for each glancing blocks we choose a
degenerate symmetrizer

SHg
= diag(SHg+ , SHg−) := diag(C,−α−2) (5.54)

(recall, α−1 → 0 as σ + ρ → 0).
In view of the glancing degeneracy (5.53) and the translational degeneracy

(which we have not removed in the long time problem), there holds

|Γ ′U ′
−| ≥ C(δ|U ′

Hh− | + δ|U ′
He− | + α−1|U ′

Hg− | + ρ|U ′
P−|). (5.55)

So if we take the SP also to be degenerate

SP =
(
cI 0
0 −ρ2

)

, (5.56)

we again obtain good trace terms in the resulting symmetrizer estimate.
It remains to check that we retain good interior (L2) bounds. Let µk±

denote the eigenvalue associated with the kth mode of U ′
Hg

. Taylor expanding
the expression (5.45) for πk about ρ/σ = 0 yields,

|�µk±| ≥ C−1ρ2β, (5.57)

whence we obtain from the fact that βα−2 ≥ 1 the lower bound

|�µk±| ≥ C−1α2ρ2, (5.58)

and thereby the key interior estimate

(Re SG′
B(∞)U ′

Hg
, U ′

Hg
) ≥ α2ρ2|U ′

Hg+
|22 + ρ2|U ′

Hg− |
2
2. (5.59)

That is, we still find that �SG′
B(∞) ≥ ρ2, and therefore the rest of the

symmetrizer argument goes through as before to give the claimed estimate.
•
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Remark 5.3 Since THg
diagonalizes the forward problem, T−1∗

Hg
diagonalizes

the dual problem.

By duality, this yields

Corollary 5.4 For the dual diagonalized problem, we have the interior bound

|V ′|2L2 ≤ C|G′|2L2

(γ + ρ2)ρ2
. (5.60)

In fact, the above estimates can be somewhat refined. Let U ′
Hg±,j

de-
notes the jth growing/decaying glancing mode, and µj± the associated
growth/decay rate (eigenvalue of GB).

Lemma 5.3 For the forward diagonalized problem, we have the refined inte-
rior bounds

|U ′|22 ≤ C
|FP |22 + (γ + ρ2)−1|FHh

|22 + ρ−1|FHe
|22 +

∑
j,± |�µj±|−1|FHg±,j

|22
ρ2

.

(5.61)

Proof. Parabolic modes have growth/decay rates with real part bounded in
absolute value above and below by order one; elliptic modes have growth/decay
rates bounded above and below by order ρ; hyperbolic modes have growth/
decay rates bounded above and below by order (γ + ρ2). Glancing modes are
treated individually in the diagonalized coordinates, and have growth/decay
rates with absolute value of real part |�µj±|. Using this sharp information
in the degenerate symmetrizer estimate described just above, specifically in
the application of Young’s inequality to estimate |(SF ′, U ′)| we obtain the
claimed bound. •

Corollary 5.5 For the dual diagonalized problem, we have the interior bounds

|V ′
P |2L2 + (γ + ρ2)|V ′

Hh
|2L2 + ρ|V ′

He
|2L2 +

∑

j±
|�νj±||V ′

Hg±,j
|2L2) ≤

C|G′|2L2

ρ2
,

(5.62)

where νj± = −µ∗
j∓ denote growth/decay rates for the dual problem (eigenval-

ues of −G∗
B).

Proof. Integration by parts, exactly as in the proof of Corollary 5.3, but mode
by mode. For example, to obtain the bound

ρ|V ′
He

|2L2 ≤ C|G′|2L2

ρ2
, (5.63)

we begin with bound
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ρ|U ′|2L2 ≤ Cρ−2|F ′
He

|2L2 (5.64)

for the forward problem L′U ′ = F ′
He

, and calculate

|V ′
He

|L2 = sup
|F ′

He
|=1

〈V ′
He

, F ′
He

〉 = sup〈V ′, L′U ′〉 = sup〈L′∗V ′, U ′〉 (5.65)

= sup |G′|L2 |U ′|L2 ≤ |G′|L2Cρ−3/2|F ′
He

|L2 = Cρ−3/2|G′|L2 . (5.66)

•

5.7 L∞ Estimates

With these preparations, L∞ estimates are now easily obtained.

Lemma 5.4 For the dual problem, we have the bounds

|V ′|2∞ ≤ C|G′|2L2

ρ2
, |V |2∞ ≤ Cβ2|G|2L2

ρ2
. (5.67)

Proof. Working in diagonalized coordinates, we may take the real part of the
L2 inner product of V ′ with equation (L′)∗V ′ = G′ from x0 ≥ 0 to plus
infinity to obtain after integration by parts the estimate

|V ′(x0)|2 ≤ C(|V ′
P |22 + (γ + ρ2)|V ′

Hh
|22 + ρ|V ′

He
|22 +

∑

j±
|�νj ||V ′

Hg±,j
|22)

+ C|V ′|2|G′|2.
(5.68)

Bounding the first term on the righthand side using Corollary 5.5 and the
second term using Corollary 5.4, we obtain the first asserted bound. The
second asserted bound then follows by change of coordinates and the Jacobian
bounds of Lemma 5.1. •

This completes the proof of Proposition 5.1.

5.8 Nonlinear Stability Results

Recall from Definition 5.1 the definition of nonlinear stability with respect to
a given family of perturbations A. Define

Ap = {v0(x, y) : v0 ∈ W p+2,2 ∩W 2,1}
A∞ = {v0(x, y) : v0 ∈ L∞ ∩ L1},

(5.69)

where W k,s is the standard Sobolev space (k is order of differentiation; s is
the Ls exponent).
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Theorem 5.1 (nonzero mass, d ≥ 3)
Assume (H1),(H2),(H3),(H4) and p > d

2 , where the number of space dimen-
sions is d ≥ 3. Then the viscous profile W (x) is nonlinearly stable with respect
to Ap.

This theorem follows from the linear estimate of Corollary 5.1 and the
nonlinear endgame of [KK]. The idea is to use the linear estimate together
with standard Sobolev and Moser inequalites to show that the perturbation
v as in (5.7) satisfies

|v|W p+1,2(T ) + |vt|W p,2(T ) ≤ E (5.70)

for a fixed E independent of [0, T ]. This implies that |v|L∞(x,y) decays to zero
as t → ∞.

The proof of Corollary 5.1 does not work when d = 2 since β2/ρ2 is not
integrable then. This reflects the underlying fact that the linearized response
to nonzero mass L1 initial data in general decays in Lp, p ≥ 2 no faster than
a d−dimensional heat kernel.

The endgame in dimension 2 seems to require a special argument similar
to the one in [Z]. The corresponding nonlinear stability result is Theorem
5.2. Here, the inverse Laplace transform of the solution to the linearized error
problem is estimated via an integral on a parabolic contour γ = −θ|τ, η|2
rather than the flat contour γ = 0, to take into account the additional decay
due to diffusion in the parabolic case. The main ingredient for this argument
is the L1 − Lp estimate of Corollary 5.2.

Theorem 5.2 (nonzero mass, d ≥ 2)
Assume (H1),(H2),(H3), and (H4), where the number of space dimensions
is d ≥ 2. Then the viscous profile W (x) is nonlinearly stable with respect to
A∞. Moreover, the perturbation v decays in Lp, p ≥ 2 at the rate |v|p(t) ≤
C(p, d)(1 + t)−

d−1
2 (1− 1

p ) of a (d− 1)-dimensional heat kernel, where C(p, d) is
monotone increasing in p, finite for p < ∞, and uniformly bounded for d ≥ 3.

6 Appendix A: The Uniform Stability Determinant

Consider the homogeneous version of the linearized inviscid shock problem

∂tv + Aν(U0, dψ0)∂xv + g′(U0)∂yv = 0 in ± x ≥ 0

φt[U0] + φy[g(U0)] − [Aν(U0, dψ0)v] = 0 on x = 0.
(6.1)

We’ve already encountered this problem (with nonzero forcing) in the con-
struction of higher profiles (1.29). To obtain a stability condition we freeze
q = (t, y) in (U0(0, t, y), ψ0(t, y)), Fourier-Laplace transform in t and Fourier
transform in y to get (with ζ = (τ, γ, η), γ ≥ 0)
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(iτ + γ)v̂ + Aν∂xv̂ + g′(U0)iηv̂ = 0

(iτ + γ)φ̂[U0] + iηφ̂[g(U0)] − [Aν v̂] = 0,
(6.2)

or, rearranging a little,

∂xv̂ − H(q, ζ)v̂ = 0 in ± x ≥ 0

φ̂
(
(iτ + γ)[U0] + iη[g(U0)]

)
− [Aν v̂] = 0 on x = 0, where

H±(q, ζ) := −Aν(U0
±, dψ

0)−1
(
(iτ + γ)I + iηg′(U0

±)
)
.

(6.3)

For γ > 0 the negative (resp. positive) generalized eigenspace of H± has di-
mension k (resp. l), varies smoothly with (q, ζ), and extends continuously to
γ ≥ 0 in {ζ �= 0}. Here negative/positive refers to �µ. To see the dimensions
are correct use (H1), set (τ, η) = 0, and note the minus sign in the defin-
ition of H. Continuous extensions of decaying eigenspaces are discussed in
Appendix B.

Thus, we may choose bases {r1
+(q, ζ), . . . , rk

+} and {r1
−(q, ζ), . . . , rl

−} for
these spaces, where the rj

± are homogeneous of degree zero in ζ and have
the same regularity (as the spaces) in (q, ζ) for ζ �= 0. Clearly, there will be
unstable modes growing exponentially with time if for some γ > 0 the m
vectors

(iτ + γ)[U0] + iη[g(U0)], Aν(U0
+, dψ

0)rs
+, Aν(U0

−, dψ
0)rt

−
(s = 1, . . . , k; t = 1, . . . , l) (6.4)

are linearly dependent.
As before we let S2

+ = {ζ̂ : |ζ̂| = 1, γ̂ ≥ 0}. The inviscid shock
(U0(0, q), ψ0(q)) is uniformly stable if for all q the m×m determinant

∆(q, ζ̂) :=

det
(
(iτ̂ + γ̂)[U0] + iη̂[g(U0)], Aν(U0

+, dψ
0)r(s)

+ (q, ζ̂), Aν(U0
−, dψ

0)r(t)
− (q, ζ̂)

)

(6.5)

is nonvanishing (here (s) indicates k columns).
In [M2] Majda showed that uniform stability implies optimal L2 estimates

for the linearized problem. In [M3] he used those estimates to construct curved
multiD shocks.

7 Appendix B: Continuity of Decaying Eigenspaces

In Lecture 3 we defined

E(q, ζ̂, ρ) := E+(q, ζ̂, ρ) × E−(q, ζ̂, ρ), (7.1)

the decaying generalized eigenspace for Uz − G(q, z, ζ)U = 0 on z ≥ 0.
We know that E± are C∞ functions of their arguments in γ̂ + ρ > 0. Here we
show
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Proposition 7.1 E±(q, ζ̂, ρ) extend continuously to the corner γ̂ + ρ = 0.

Proof. 1. We work near a basepoint X = (q, ζ̂, 0). In Lecture 4 we saw that the
change of variables U = ZY TcTBV reduces the study of Uz − G(q, z, ζ)U = 0
near X to that of V −GB(q, ζ̂, ρ)V = 0, where GB(q, ζ̂, ρ) is the block structure
matrix:

GB(q, ζ̂, ρ) =

⎛

⎝
HB(q, ζ̂, ρ) 0 0

0 Pg(q, ζ) 0
0 0 Pd(q, ζ)

⎞

⎠ with

ĤB(q, ζ̂, ρ) =

⎡

⎢
⎣

Q1 · · · 0
...

. . .
...

0 · · · Qs

⎤

⎥
⎦

(7.2)

for Qj as in (4.27). We’ll show that E extends continuously to the corner, but
the same block by block argument shows the individual factors E± extend
continuously as well.

2. Let F(q, ζ̂, ρ) be the decaying generalized eigenspace for GB in γ̂+ρ > 0.
It suffices to obtain a continuous extension of F to the corner. In the obvious
way we write

F(q, ζ̂, ρ) = (⊕s
j=1Fj) ⊕ Fg ⊕ Fd, (7.3)

where, for example, Fg = {0} and Fd = C
m+1 in γ̂ + ρ > 0, each having a

smooth extension to the corner.
If Qj is a block of size νj satisfying ±�Qj > 0, we have Fj = {0} (resp.

C
νj ) in γ̂ + ρ > 0, so again there is a smooth extension to the corner.

If νj = 1 we use the sign condition to see that Fj = {0} or C in γ̂ + ρ > 0,
depending on whether the common sign of ∂γ̂�Qj and ∂ρ�Qj is positive or
negative. Here too we have a smooth extension.

3. There remains the case of a glancing block Qj(X) of size νj > 1,
where X = (q, ζ̂, ρ) and Qj(X) has the Jordan form (4.28). Here we follow an
argument in Chapter 7 of [CP].

Setting Qj = Q, Fj = F−, iαj = iα, and νj = ν, for γ̂ + ρ > 0 we may
write

det(ξ −Q(X)) =
∏

�µk>0

(ξ − µk)βk+
∏

�µk<0

(ξ − µk)βk− := p+(ξ,X)p−(ξ,X),

(7.4)

where again the sign condition implies the numbers

β± =
∑

k

βk± (7.5)

are independent of X for X close to X and γ̂ + ρ > 0. Note that



Multi-D Viscous Shocks 215

F−(X) = ⊕�µk<0 ker(Q(X) − µk)βk− (7.6)

and define

F+(X) = ⊕�µk>0 ker(Q(X) − µk)βk+ , (7.7)

so

F+(X) ⊕ F−(X) = C
ν for γ̂ + ρ > 0. (7.8)

If we define matrices P±(X) = p±(Q(X),X), we have in view of the decom-
position (7.8)

F± = kerP±, rank P± = dim F∓. (7.9)

The Cayley-Hamilton theorem implies P−P+ = 0, so

range P+(X) ⊂ kerP−(X) = F−(X). (7.10)

Thus, F−(X) = image P+(X) for γ̂ + ρ > 0.
4. To define a continuous extension of F− we first use continuity of eigen-

values to extend P+(X) continuously to P+(X) by defining

P+(X) = (Q(X) − iα)β+ = (Q(X) − iα)ν−β− . (7.11)

We then define F−(X) = image P+(X), and to see this extension is continuous
we just need to check that the rank doesn’t drop. But the image of (Q(X) −
iα)ν−β− is clearly spanned by the first β− standard basis vectors of C

ν , so we
are done. •

Remark 7.1 1. The same argument shows F+(X) = image P−(X) extends
continuously to X with F+(X) the span of the first β+ standard basis vectors
of C

ν .
2. The result of this appendix extends to much more general viscosities by

a different argument. See [MZ2].

8 Appendix C: Limits as z → ±∞ of Slow Modes
at Zero Frequency

We’ve allotted this separate short appendix to the proof of Proposition 3.3
because of its central importance for understanding the connection between
viscous and inviscid stability. The result is used in the proof of the Zumbrun-
Serre theorem, and also in the propositions of Lecture 3 that remove the
translational degeneracy in the SF regime.
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Proof (Proof of Proposition 3.3.). We may write elements of KĤ(q, ζ̂, ρ) as
(w±, 0), so slow modes can be expressed as

U± = Z±Y±

(
ezH±w±

0

)

. (8.1)

Recalling properties of Z±(q, z, ζ) (2.37) and Y±(q, ζ) (2.43) we compute

lim
z→±∞

Z±(q, z, 0)Y±(q, 0) =
(
I 0
0 I

)(
I A−1

±∞(q, 0)
0 I

)

. (8.2)

Since H±(q, 0) = 0 we obtain

lim
z→±∞

U±(q, z, ζ̂, 0) =
(
w±(q, ζ̂, 0)

0

)

∈ KĤ(q, ζ̂, 0.) (8.3)

•

9 Appendix D: Evans ⇒ Transversality + Uniform
Stability

In this section we prove the Zumbrun-Serre result, Theorem 3.1. We’ll make
use of the discussion of slow and fast modes in Lecture 3.

The curvature of the inviscid shock plays no role here, so it’s enough to
consider an m×m system of viscous conservation laws

ut + f1(u)x + f2(u)y −�u = ut + A1(u)ux + A2(u)uy −�u = 0, (9.1)

a planar inviscid shock (x = 0, U±), and a stationary solution W (x) (the
profile) of (9.1) satisfying the integrated profile equation

W ′ = f1(W ) − f1(U−) and
W (x) → U± as x → ±∞.

(9.2)

Linearize (9.1) about W , Fourier-Laplace transform in t, and Fourier trans-
form in y to get the eigenvalue equation

(iτ + γ)w + (A1(W )w)′ + iηA2(W )w − w′′ + η2w = 0. (9.3)

Let ζ = (τ, γ, η) = ρζ̂, where γ ≥ 0, 0 ≤ ρ ≤ ρ0. For ρ > 0 let
{w±

1 (x, ζ̂, ρ), . . . , w±
m} be a basis for the decaying solutions of (9.3) in ±x ≥ 0.

By the result of Appendix B these functions can be chosen to be smooth
in ρ > 0 with continuous extensions to ρ = 0. The Evans function is the
wronskian

D(ζ̂ , ρ) = det
(
w1

+ . . . wm
+ w1

− . . . wm
−

w1′

+ . . . wm′

+ w1′

− . . . wm′

−

)

|x=0. (9.4)
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Note that when ρ = 0 equation (9.3) becomes the linearized profile
equation

w′′ − (A1(W )w)′ = 0. (9.5)

Since W ′ satisfies (9.5) on the whole line, we have D(ζ̂ , 0) = 0. We want to
show

D(ζ̂, ρ) = ρβ∆(ζ̂) + o(ρ) as ρ → 0, (9.6)

where β is a transversality constant defined below and ∆(ζ̂) is the uniform
stability determinant (6.5).

Suppose A1(U+) has k positive eigenvalues and A1(U−) has l negative
eigenvalues. The inviscid shock is a Lax shock, so k + l = m − 1, and hence
(m− k) + (m− l) = m+ 1. There are m− k exponentially decaying solutions
of (9.5) in x ≥ 0, and m − l in x ≤ 0. Calling these w1

+(x), . . . , wm−k
+ and

w1
−(x), . . . , wm−l

− respectively, we may arrange so that the similarly labeled
elements wj

±(x, ζ̂, ρ) in the bases chosen above are smooth extensions of the
wj

±(x) to small nonzero frequencies; so wj
±(x, ζ̂, 0) = wj

±(x) (see (10.5) for
this kind of extension). These extensions decay exponentially to zero in x for
ρ ≥ 0. We call these the fast modes. The vectors given by the wj

±(0) (a total
of m+ 1 vectors) span the tangent spaces to the stable/unstable manifolds of
(9.2) at W (0) for the rest points U±. Moreover, we may suppose the wj

± are
chosen so that w1

+(x) = w1
−(x) = W ′(x). The connection is transversal ⇔ the

m×m determinant

det(w1
+(0), . . . , wm−k

+ (0), w2
−(0), . . . , wm−l

− (0)) = β (9.7)

is not zero.
Note that the limiting versions of (9.5), namely

w′′ −A1(U±)w′ = 0 in ± x ≥ 0 (9.8)

also have constant solutions. The remaining k+ l = m−1 basis elements used
in defining D (called the slow modes)

wj
±(x, ζ̂, ρ), j = m− k + 1, . . . ,m (+case); j = m− l + 1, . . . ,m (−case)

(9.9)

have the property that wj
±(x, ζ̂, 0) decay to nonzero constant vectors as x →

±∞. Recalling (3.31) we see that we can choose the slow modes so that

lim
x→±∞

wj
±(x, ζ̂, 0) = rj

±(ζ̂), (9.10)

where the rj
±(ζ̂) are the vectors appearing in the definition of ∆(ζ̂) (6.5) with

indices relabeled.
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Now we begin the computation of D(ζ̂, ρ). Set z±(x) = ∂ρw
1
±(x, ζ̂, 0).

Using the special property of w1
± we may write

(
w1

+

w1′

+

)

−
(
w1

−
w1′

−

)

= ρ

(
z+ − z−
z′+ − z′−

)

+ o(ρ). (9.11)

Use the column operation given by the left side of (9.11) to replace the w1
−

column in (9.4) by the right side of (9.11).
Since (9.5) implies that w′ −A1(W )w is constant, this suggests using the

row operation w′−A1w to simplify the determinant, provided we can identify
the constants.

Integrate (9.5) from ±∞ to x in ±x ≥ 0 to get

w′ −A1(W )w = −(A1(W )w)|x=±∞ = −A1(U±)w(±∞, ζ̂, 0). (9.12)

There are three cases. First, for fast modes the right side of (9.12) is
clearly 0.
Second, by (9.10) for slow modes wj

± the right side of (9.12) is −A1(U±)rj
±(ζ̂)

for rj
± as above.

The third case is z+−z−. Recall that w1
± satisfy (9.3) on ±x ≥ 0. Write the

frequencies in (9.3) in polar coordinates, substitute in w1
±(x, ζ̂, ρ), differentiate

with respect to ρ, and evaluate at ρ = 0 to get

(iτ̂ + γ̂)W ′ + (A1(W )z±)′ + iη̂A2(W )W ′ − z′′± = 0 (9.13)

(recall w1
±(x, ζ̂, 0) = W ′(x). Integrate from ±∞ to x in ±x ≥ 0 to get

(iτ̂ + γ̂)W + A1(W )z± + iη̂f2(W ) − z′± − {(iτ̂ + γ̂)U± + iη̂f2(U±)} = 0
(9.14)

(we used z±(±∞, ζ̂, 0) = 0). Finally, subtract the (−) equation from the (+)
equation to get

(z− − z+)′ −A1(z− − z+) = (iτ̂ + γ̂)[U ] + iη̂[f(U)]. (9.15)

So in cases 1,2,3 the row operation w′ − A1w produces the results 0,
−A1(U±)rj

±(ζ̂), and (iτ̂ + γ̂)[U ] + iη̂[f(U)] respectively. Apply the row op-
eration to get (up to a sign)

ρ det

(
wj

±(0) (m fast) ∗ ∗
0 A1(U±)rj

±(ζ̂) (m − 1 slow) (iτ̂ + γ̂)[U ] + iη̂[f(U)]

)
+ o(ρ).

(9.16)

The upper left m ×m determinant is β, the transversality constant. The
lower right m×m determinant is ∆(ζ̂), the Majda uniform stability determi-
nant, so up to a sign we have (9.6). We can redefine β to correct the sign if
necessary.
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10 Appendix E: Proofs in Lecture 3

10.1 Construction of R

To construct R as in (3.39) we must find (for ρ small) an exponentially de-
caying function, vanishing at ρ = 0 which satisfies

Rz −GR = B in ± z ≥ 0, l(q) · r± = −p(ζ) where

B = (B0)−1
(
0, (iτ + γ + η2)Wz + iηg′(W )Wz + 2iηψ0

yWzz

)
.

(10.1)

First find an exponentially decaying function R1 = (r1, r2) such that R1
z −

GR1 = B with

R1 = (B0)−1
(
(iτ + γ + η2)R11 + iηR12 + 2iηψ0

yR
13
)
, (10.2)

where R1j , j = 1, 2, 3 satisfy R1j
z −GR1j = F , with

F = (0,Wz), (0, g′(W )Wz), (0,Wzz) (10.3)

respectively. This is easy after MZ conjugation which replaces G by G±∞,
whose spectrum is described at the beginning of Lecture 3.

Next we must add a correction to arrange the boundary condition. Recall
that P(q, z) = (Wz,Wzz) is a fast decaying solution of Pz −G(q, z, 0)P = 0.
Using the correspondence with GHP± form, this means that

P(q, z) = Z±(q, z, 0)Y±(q, 0)
(

0
ezP±(q,0)c±(q)

)

, (10.4)

for some c±(q) in the negative (resp., positive) eigenspace of P±(q, 0). Thus,
we can construct smooth extensions to nonzero frequency P±(q, z, ζ) satisfying
Pz −GP = 0 in ±z ≥ 0 by taking

P(q, z, ζ) = Z±(q, z, ζ)Y±(q, ζ)
(

0
ezP±(q,0)π±(q, ζ)c±(q)

)

(10.5)

where π±(q, ζ) projects onto the negative (resp., positive) eigenspace of P±.
Writing P = (p1, p2) we have

l(q) · p1
±(q, 0, ζ) = d±(q, ζ) ∼ 1 for ρ small. (10.6)

So if we define

R = R1 − α(q, ζ)P, where

α± =
(
l(q) · r1

±(q, 0, ζ) + p(ζ)
)
· 1
d±(q, ζ)

,
(10.7)

then R has all the required properties.
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10.2 Propositions 3.4 and 3.5

Proof (Proof of Proposition 3.4). From (3.39) we obtain

∂zR̂−G(q, z, 0)R̂ = B̂ or equivalently,

Lu(q, z, ζ̂, 0, ∂z)r̂ = −Lψ(q, z, ζ̂, 0) = (iτ̂ + γ̂)Wz + iη̂g′(W )Wz + iη̂2ψ0
yWzz.

(10.8)

In turn this is the same as

−B0∂2
z r̂± + ∂z(Aν(W,dψ0)r̂) = ∂zβ̂, (10.9)

where β̂ is a primitive of −Lψ. Integrating
∫ z

±∞ in ±z ≥ 0 gives

−B0∂z r̂± + Aν r̂± = β̂(z) −
(
(iτ̂ + γ̂)U0

± + iη̂g(U0
±)
)
. (10.10)

Finally, subtract the + equation from the − equation and evaluate at z = 0
to find

[B0∂z r̂ −Aν r̂] = (iτ̂ + γ̂)[U0] + iη̂[g(U0)] �= 0, (10.11)

since the uniform stability determinant ∆(q, ζ̂) �= 0 (see (6.5)). The Proposi-
tion follows immediately from (10.11).

•

Proof (Proof of Proposition 3.5). Suppose the intersection

ker Γ̃ ∩ (E+(q, ζ̂, 0) ×E−(q, ζ̂, 0))

is nontrivial. Then there exist U±(q, z, ζ̂, 0) satisfying Uz − G(q, ζ, 0)U = 0
in ±z ≥ 0 with initial data in E+(q, ζ̂, 0) × E−(q, ζ̂, 0) such that (with U =
(u, uz))

[U ](q, 0, ζ̂, 0) = c[R̂](q, 0, ζ̂, 0) for some c and l(q) · u+ = 0. (10.12)

In Remark 3.2 we ruled out the possibility c = 0. So suppose c �= 0 and
define U = (µ, µz) by

U± = cR̂±(q, z, ζ̂, 0) − U±(q, z, ζ̂, 0). (10.13)

Then

∂zU −G(q, z, 0)U = cB̂(q, 0, ζ̂, 0) and [U ] = 0 (10.14)

or equivalently



Multi-D Viscous Shocks 221

Lu(q, z, ζ̂, 0, ∂z)µ± = −cLψ(q, z, ζ̂, 0) =

= c
(
(iτ̂ + γ̂)Wz + iη̂g′(W )Wz + iη̂2ψ0

yWzz

)
,

[µ] = [µz] = 0.

(10.15)

Note that by (8.3)

lim
z→±∞

µ±(q, z, ζ̂, 0) = − lim
z→±∞

u± ∈ span{rj
±(q, ζ̂)}

lim
z→±∞

∂zµ± = 0
(10.16)

for rj
±(q, ζ̂) as in (6.5) (or (3.31)).

Next integrate (10.15)
∫ z

±∞ in ±z ≥ 0 to get with β as in (10.9)

−B0∂zµ± + Aνµ± −Aνµ±(±∞) = cβ̂(z) − c
(
(iτ̂ + γ)U0

± + iη̂g(U0
±)
)
.

(10.17)

Because of (10.16), if we set z = 0 and subtract the + equation from the
− equation, we can find a nontrivial linear combination (since c �= 0) of the
vectors

Aνr
j
±(q, ζ̂) and (iτ̂ + γ̂)[U0] + iη̂[g(U0)] (10.18)

that vanishes. This contradicts uniform stability of the inviscid shock.

•

11 Appendix F: The HF Estimate

The first step is to understand the spectrum of G(q, z, ζ) for large |ζ|.
We’ll set

〈ζ〉 = (τ2 + γ2 + η4)1/4, (11.1)

reflecting the parabolic quasihomogeneity where τ and γ have weight two, and
η has weight one.

Proposition 11.1 For C large enough and |ζ| ≥ C, G(q, z, ζ) has 2m eigen-
values in �µ > 0 and 2m eigenvalues in �µ < 0 with

|�µ| > C〈ζ〉. (11.2)

Proof. Consider the block

G+(q, z, ζ) =
(

0 I
M A

)

(11.3)
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(recall (2.31)).
Define

λ =
1
〈ζ〉 , ζ̌ = (τ̌ , γ̌, η̌) =

(
τ

〈ζ〉2 ,
γ

〈ζ〉2 ,
η

〈ζ〉

)

, (11.4)

and note that 〈ζ〉 = 1, so ζ̌ ∈ Š2
+, the parabolic unit half sphere in γ̌ ≥ 0. One

might call these “parabolic polar coordinates at ∞”.
Write

M(q, z, ζ) = 〈ζ〉2M̌(q, z, ζ̌, λ)

A(q, z, ζ) = 〈ζ〉Ǎ(q, z, ζ̌, λ),
(11.5)

where

M̌(q, z, ζ̌, λ) = (B0)−1
(
(iτ̌ + γ̌ + η̌2)I

)
+ O(λ) = M̌0(q, z, ζ̌) + O(λ)

Ǎ(q, z, ζ̌, λ) = (B0)−12ψ0
yiη̌I + O(λ) = Ǎ0(q, z, ζ̌) + O(λ).

(11.6)

We have
(
〈ζ〉I 0
0 I

)(
0 I
M A

)(
〈ζ〉−1I 0

0 I

)

= 〈ζ〉
(

0 I
M̌ Ǎ

)

= 〈ζ〉
(

0 I
M̌0 Ǎ0

)

+ O(1).

(11.7)

Since (q, z) dependence enters only through W (q, z), we see that

Ǧ0 =
(

0 I
M̌0 Ǎ0

)

(11.8)

depends on a compact set of parameters. We claim Ǧ0 has no eigenvalues
on the imaginary axis. Then, setting (τ̌ , η̌) = 0 easily yields a count of m
eigenvalues in each of the regions ±�µ > 0, thus completing the proof.

To prove the claim, suppose iξ̌ is a pure imaginary eigenvalue of Ǧ0 asso-
ciated to the eigenvector (u, v). A short computation shows

(
B0ξ̌2 + η̌2 − 2ψ0

y η̌ξ̌ + (iτ̌ + γ̌
)
)u = 0. (11.9)

Since

B0ξ̌2 + η̌2 − 2ψ0
y η̌ξ̌ ≥ C|ξ̌, η̌|2 (11.10)

for some C > 0, we conclude γ̌ ≤ −C|ξ̌, η̌|2. Hence |ξ̌, η̌| = 0 which implies
|τ̌ , γ̌| = 0, and this contradicts 〈ζ̌〉 = 1.

•
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Remark 11.1 This proof makes precise the sense in which the parabolic part
of the operator is “dominant” in the HF regime.

11.1 Block Stucture

First we rewrite the 2m× 2m transmission problem

Uz −G(q, z, ζ)U = F in ± z ≥ 0, [U ] = 0. (11.11)

With U = (u, v) set

U1 = (u1, v1), with u1 = 〈ζ〉u, v1 = v. (11.12)

Then (11.11) is the same as

∂zU1 − 〈ζ〉Ǧ(q, z, ζ̌, λ)U1 = F in ± z ≥ 0, [U1] = 0, (11.13)

where

Ǧ =
(

0 I
M̌ Ǎ

)

. (11.14)

Next, with doubling notation as in (3.17) we rewrite the problem as the
4m× 4m system on z ≥ 0

∂zU1 − 〈ζ〉ǦU1 = F , ΓU1 = 0 (11.15)

where

Ǧ(q, z, ζ̌, λ) =
(
Ǧ(z) 0

0 −Ǧ(−z)

)

. (11.16)

The spectral separation proved in Proposition 11.1 implies for |ζ| large
that there exists a smooth conjugator T (q, z, ζ̌, λ) such that

T−1ǦT =
(
Pg(q, z, ζ̌, λ) 0

0 Pd

)

:= Ǧgd, (11.17)

where �Pg > CI, �Pd < −CI with the spectrum of Pg, Pd contained in a
compact subset of ±�µ > 0 respectively.

11.2 Symmetrizer and Estimate

Setting U1 = TU2 and noting that T has z dependence, we reduce (11.15) to

∂zU2 − 〈ζ〉ǦgdU2 = T−1F − T−1TzU2 := F ′,

ΓTU2 := Γ ′(q, ζ̌, λ)U2 = 0.
(11.18)
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Let F
∞(q, ζ̌, λ) be the 2m dimensional generalized eigenspace of Ǧ(q, 0, ζ̌, λ)

corresponding to eigenvalues with negative real part. Clearly,

F
∞(q, ζ̌, λ) = T (q, 0, ζ̌, λ)F (11.19)

where F = {(0, a) : a ∈ C
2m} as before (see (4.8)), and

kerΓ ′(q, ζ̌, λ) ∩ F = {0} ⇔ kerΓ ∩ F
∞(q, ζ̌, λ) = {0}. (11.20)

In view of Proposition 11.1 and (11.16), the second equality in (11.20)
holds for λ small, since a vector w is in the negative invariant space of Ǧ(0)
if and only if it is in the positive invariant space of −Ǧ(0).

We can now finish by arguing just as in the MF case (4.10)–(4.20). In view
of the block structure of (11.18) we set U = Ug + Ud as before and take S of
the form

S =
(
cI 0
0 −I

)

. (11.21)

For c large enough we have

�(SǦgd) ≥ I in z ≥ 0
S + C(Γ ′)∗Γ ′ ≥ I on z = 0

(11.22)

for some C > 0. This implies

〈ζ〉|U2|22 + |U2|2 ≤ C
|F ′|22
〈ζ〉 , or

〈ζ〉|U2|2 + 〈ζ〉1/2|U2| ≤ C|F ′|2.
(11.23)

Recall the definition of F ′, take |ζ| large to absorb the T−1TzU2 term, and
replace U2 by U1 to get

〈ζ〉|U1|2 + 〈ζ〉1/2|U1| ≤ C|F|2. (11.24)

Since u1 = 〈ζ〉u, v1 = v for U = (u, v) as in (11.11), when the forcing F has
the form F = (0, f) we obtain

〈ζ〉2|u|2 + 〈ζ〉|uz|2 + 〈ζ〉3/2|u| + 〈ζ〉1/2|uz| ≤ C|f |2. (11.25)

This finishes the proof of the estimate (4.67)(c) quoted in Lecture 4.

Remark 11.2 Note that we have not used the Evans assumption in HF at
all. Instead we were able to use the positive definiteness of the viscosity to
deduce that the Evans condition (11.20) holds uniformly for large |ζ|.
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12 Appendix G: Transition to PDE Estimates

In this appendix we try to give a brief indication of how the same matrix
symbols we’ve constructed here in the course of proving uniform estimates
for systems of ODEs depending on frequencies as parameters can be used to
prove estimates for the original linearized system of PDEs. For details we refer
to the appendix of [GMWZ2].

For purposes of illustration it is simplest to work with smooth matrix
symbols a(q, ζ) supported in MF, the midfrequency region. First, remember
that ζ here is really ζ̃ = εζ = ε(τ, γ, η) (recall (2.22)). Starting with a(q, ζ̃) we
unfreeze q = (t, y) and replace ζ̃ by εζ:

a(q, ζ̃) → a(q, εζ) → a(t, y, εζ). (12.1)

Next we associate a semiclassical pseudodifferential operator aD to a(t, y, εζ)
whose action on a function u(t, y) is given by

(aDu)(t, y) =
∫

eitτ+iyηa(t, y, ετ, εγ, εη)û(τ, η)dτdη. (12.2)

Note that the Fourier inversion formula implies that semiclassical differential
operators are special cases of the operators defined by (12.2).

It is not hard using basic properties of the Fourier transform to show that

aD : L2 → L2. (12.3)

If b(q, ζ̃) is another such symbol, consider the composite operator aDbD.
It is not immediately obvious that the composition is an operator of the same
type. Ideally, one would have a relationship like aDbD = (ab)D, where ab is
the ordinary matrix product of the symbols a and b. Instead, one has

aDbD = (ab)D + εRD, where RD : L2 → L2. (12.4)

In other words the ideal relationship does hold, modulo an error with L2 norm
that can be taken arbitrarily small. Such errors are often negligible in energy
estimates proved using the pseudodifferential calculus.

There is a similar relationship for adjoints

(aD)∗ = (a∗)D + εRD (12.5)

for RD as above. The main point here is that pseudodifferential operators
behave just like their symbols under the operations of composition and taking
adjoints, except for errors that are often negligible.

Suppose next that we have symbols S(q, ζ̃), G(q, ζ̃), and χ(ζ̃) such that

Re S(q, ζ̃)G(q, ζ̃) ≥ CI for ζ̃ ∈ supp χ (12.6)
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(recall for example the MF estimate in Lecture 4). Then Garding’s inequality,
which can easily be proved using the calculus outlined above, implies

Re (SDGDχDu, χDu) ≥ C(|χDu|2L2 − ε2|u|2L2). (12.7)

Of course, this is the PDE analogue of the estimate on �(SGgdU,U) that
we used in (4.17), (4.18).
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