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Summary. Recently Anttila, Ball and Perissinaki proved that the squares of
coordinate functions in lnp are negatively correlated. This paper extends their results
to balls in generalized Orlicz norms on R

n. From this, the concentration of the
Euclidean norm and a form of the Central Limit Theorem for the generalized Orlicz
balls is deduced. Also, a counterexample for the square negative correlation hypoth-
esis for 1-symmetric bodies is given.

1 Introduction

Given a convex, central-symmetric body K ⊂ R
n of volume 1, consider the

random variable X = (X1,X2, . . . , Xn), uniformly distributed on K. We are
interested in determining whether the vector has the square negative correla-
tion, i.e. if

cov(X2
i ,X

2
j ) := E(X2

iX
2
j )− EX2

i EX2
j ≤ 0.

We assume that K is in isotropic position, i.e. that

EXi = 0 and EXi ·Xj = L2
Kδij ,

where δij is the Kronecker delta and LK is a positive constant. Since any
convex body not supported on an affine subspace has an affine image which
is in isotropic position, this is not a restrictive assumption.

The motivation in studying this problem comes from the so-called cen-
tral limit problem for convex bodies, which is to show that most of the
one-dimensional projections of the uniform measure on a convex body are
approximately normal. It turns out that the bounds on the square correlation
can be crucial to estimating the distance between the one-dimensional projec-
tions and the normal distribution (see for instance [ABP], [MM]). A related
problem is to provide bounds for the quantity σK , defined by

σ2
K =

Var(|X|2)
nL4

K

=
nVar(|X|2)
(E|X|2)2

,
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where X is uniformly distributed on K. It is conjectured (see for instance
[BK]) that σK is bounded by a universal constant for any convex symmetric
isotropic body. Recently Anttila, Ball and Perissinaki (see [ABP]) observed
that for K = lnp the covariances of X2

i and X2
j are negative for i = j, and

from this deduced a bound on σK in this class.
In this paper we shall study the covariances of X2

i and X2
j (or, more gener-

ally, of any functions depending on a single variable) on a convex, symmetric
and isotropic body. We will show a general formula to calculate the covari-
ance for given functions and K, and from this formula deduce the covariance
of any increasing functions of different variables, in particular of the functions
X2
i and X2

j , has to be negative on generalized Orlicz balls. Then we follow
[ABP] to arrive at a concentration property and [MM] to get a Central Limit
Theorem variant for generalized Orlicz balls.

The layout of this paper is as follows. First we define notations which
will be used throughout the paper. In Section 2 we transform the formula for
the square correlation into a form which will be used further on. In Section
3 we use the formula and the Brunn–Minkowski inequality to arrive at the
square negative correlation property for generalized Orlicz balls. In Section 4
we show the corollaries, in particular a central-limit theorem for generalized
Orlicz balls. Section 5 contains another application of the formula from Section
2, a simple counterexample for the square negative correlation hypothesis for
1-symmetric bodies.

Notation

Throughout the paper K ⊂ R
n will be a convex central-symmetric body

of volume 1 in isotropic position. Recall that by isotropic position we mean
that for any vector θ ∈ Sn−1 we have

∫
K
〈θ, x〉2 dx = L2

K for some constant
LK . For A ⊂ R

n by |A| we will denote the Lebesgue volume of A. For x ∈
R
n, |x| will mean the Euclidean norm of x. We assume that R

n is equipped
with the standard Euclidean structure and with the canonic orthonormal base
(e1, . . . , en). For x ∈ R

n by xi we shall denote the ith coordinate of x, i.e.
〈ei, x〉. We will consider K as a probability space with the Lebesgue measure
restricted to K as the probability measure. If there is any danger of confusion,
then PK will denote the probability with respect to this measure, EK will
denote the expected value with respect to PK , and so on. By X we will
usually denote the n-dimensional random vector equidistributed on K, while
Xi will denote its ith coordinate. By the covariance cov(Y,Z) for real random
variables Y , Z we mean E(Y Z) − EY EZ. By an 1-symmetric body K we
mean one that is invariant under reflections in the coordinate hyperplanes, or
equivalently, such a body that (x1, x2, . . . , xn) ∈ X⇐⇒(ε1x1, ε2x2, . . . , εnxn ∈
X) for any choice of εi ∈ {−1, 1}. The parameter σK , as in [BK], will be
defined by

σ2
K =

Var(|X|2)
nL4

K

=
nVar(|X|2)
(E|X|2)2

.
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For any n ≥ 1 and convex increasing functions fi : [0,∞)→[0,∞),
i = 1, . . . , n satisfying fi(0) = 0 (called the Young functions) we define the
generalized Orlicz ball K ⊂ R

n to be the set of points x = (x1, . . . , xn) satis-
fying

n∑

i=1

fi(|xi|) ≤ 1.

This is easily proven to be convex, symmetric and bounded, thus

‖x‖ = inf{λ : x ∈ λK}

defines a norm on R
n. In the case of equal functions fi the norm is called

an Orlicz norm, in the general case a generalized Orlicz norm. Examples of
Orlicz norms include the lp norms for any p ≥ 1 with f(t) = |t|p being the
Young functions. The generalized Orlicz spaces are also referred to as modular
sequence spaces (I thank the referee for pointing this out to me).

2 The General Formula

We wish to calculate cov(f(Xi), g(Xj)), where f and g are univariate func-
tions, i = j and Xi,Xj are the coordinates of the random vector X, equidis-
tributed on a convex, symmetric and isotropic body K. For simplicity we will
assume i = 1, j = 2 and denote X1 by Y and X2 by Z. For any (y, z) ∈ R

2

let m(y, z) be equal to the n − 2-dimensional Lebesgue measure of the set
({(y, z)} × R

n−2) ∩K. We set out to prove:

Theorem 2.1. For any symmetric, convex body K in isotropic position and
any functions f , g we have

cov
(
f(Y ), g(Z)

)
=

∫

R4,|y|>|ȳ|,|z|>|z̄|

(
m(y, z)m(ȳ, z̄)−m(y, z̄)m(ȳ, z)

)(
f(y)−f(ȳ)

)(
g(z)−g(z̄)

)
.

Furthermore, for 1-symmetric bodies and symmetric functions we will have
the following corollary:

Corollary 2.2. For any symmetric, convex, unconditional body K in isotropic
position and symmetric functions f , g we have

cov
(
f(Y ), g(Z)

)
=

16
∫

R4,y>ȳ>0,z>z̄>0

(
m(y, z)m(ȳ, z̄)−m(y, z̄)m(ȳ, z)

)(
f(y)−f(ȳ)

)(
g(z)−g(z̄)

)
.

The corollary is a simple consequence of the fact that for symmetric func-
tions f and g and an 1-symmetric body K the integrand is invariant under
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the change of the sign of any of the variables, so we may assume all of them
are positive.

As concerns the sign of cov(f, g), which is what we set out to determine,
we have the following simple corollary:

Corollary 2.3. For any central-symmetric, convex, 1-symmetric body K in
isotropic position and symmetric functions f , g that are non-decreasing on
[0,∞) if for all y > ȳ > 0, z > z̄ > 0 we have

m(y, z̄)m(ȳ, z) ≥ m(y, z)m(ȳ, z̄), (1)

then
cov(f, g) ≤ 0.

Similarly, if the opposite inequality is satisfied for all y > ȳ > 0 and z > z̄ > 0,
then the covariance is non-negative.

Proof. The second and third bracket of the integrand in Corollary 2.2 is
positive under the assumptions of Corollary 2.3. Thus if we assume the first
bracket is negative, then the whole integrand is negative, which implies the
integral is negative, and vice-versa. ��

Proof of Theorem 2.1. We have

cov
(
f(Y ), g(Z)

)
= Ef(Y )g(Z)− Ef(Y )Eg(Z).

From the Fubini theorem we have

Ef(Y )g(Z) =
∫

R2
m(y, z)f(y)g(z),

and similar equations for Ef(Y ) and Eg(Z).
For any function h of two variables a, b ∈ A we can write

∫
A2 h(a, b) =∫

A2 h(b, a) = 1
2

∫
A2 h(a, b)+h(b, a). We shall repeatedly use this trick to trans-

form the formula for the covariance of f and g into the required form:

Ef(Y )Eg(Z) =
∫

R2
m(y, z)f(y)

∫

R2
m(ȳ, z̄)g(z̄)

=
∫

R4
m(y, z)m(ȳ, z̄)f(y)g(z̄) =

∫

R4
m(ȳ, z̄)m(y, z)f(ȳ)g(z)

=
1
2

∫

R4
m(ȳ, z̄)m(y, z)

(
f(ȳ)g(z) + f(y)g(z̄)

)
.

We repeat this trick, exchanging z and z̄ (and leaving y and ȳ unchanged):

Ef(Y )Eg(Z) =
1
4

∫

R4
m(ȳ, z̄)m(y, z)

(
f(y)g(z̄) + f(ȳ)g(z)

)

+m(ȳ, z)m(y, z̄)
(
f(y)g(z) + f(ȳ)g(z̄)

)
.
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We perform the same operations on the second part of the covariance. To
get a integral over R

4 we multiply by an E1 factor (this in effect will free us
from the assumption that the body’s volume is 1):

Ef(Y )g(Z)E1 =
∫

R4
m(y, z)m(ȳ, z̄)f(y)g(z)

=
1
4

∫

R4
m(y, z)m(ȳ, z̄)

(
f(y)g(z)

+ f(ȳ)g(z̄)
)

+m(y, z̄)m(ȳ, z)
(
f(y)g(z̄) + f(ȳ)g(z)

)
.

Thus:

cov
(
f(Y ), g(Z)

)
= E(f(Y )g(Z))E1− Ef(Y )Eg(Z)

=
1
4

(∫

R4
m(y, z)m(ȳ, z̄)

(
f(y)g(z) + f(ȳ)g(z̄)

)

+m(y, z̄)m(ȳ, z)
(
f(y)g(z̄) + f(ȳ)g(z)

)

−m(ȳ, z̄)m(y, z)
(
f(y)g(z̄) + f(ȳ)g(z)

)

−m(ȳ, z)m(y, z̄)
(
f(y)g(z) + f(ȳ)g(z̄)

)
)

=
1
4

∫

R4

((
m(y, z̄)m(ȳ, z)−m(y, z)m(ȳ, z̄)

)(
f(y)g(z̄) + f(ȳ)g(z)

)

+
(
m(y, z)m(ȳ, z̄)−m(ȳ, z)m(y, z̄)

)(
f(y)g(z) + f(ȳ)g(z̄)

))

=
1
4

∫

R4

(
m(y, z̄)m(ȳ, z)−m(y, z)m(ȳ, z̄)

)

·
(
f(y)g(z̄) + f(ȳ)g(z)− f(y)g(z)− f(ȳ)g(z̄)

)

=
1
4

∫

R4

(
m(y, z̄)m(ȳ, z)−m(y, z)m(ȳ, z̄)

)(
f(y)− f(ȳ)

)(
g(z̄)− g(z)

)
.

Finally, notice that if we exchange y and ȳ in the above formula, then the
formula’s value will not change — the first and second bracket will change
signs, and the third will remain unchanged. The same applies to exchanging
z and z̄. Thus

cov(f, g) =
∫

R4,|y|>|ȳ|,|z|>|z̄|

(
m(y, z)m(ȳ, z̄)−m(y, z̄)m(ȳ, z)

)(
f(y)−f(ȳ)

)(
g(z)−g(z̄)

)
.

��

3 Generalized Orlicz Spaces

Now we will concentrate on the case of symmetric, non-decreasing functions
on generalized Orlicz spaces. We will prove the inequality (1):
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Theorem 3.1. If K is a ball in an generalized Orlicz norm on R
n, then for

any y > ȳ > 0 and z > z̄ > 0 we have

m(y, z̄)m(ȳ, z) ≥ m(y, z)m(ȳ, z̄). (2)

From this Theorem and Corollary 2.3 we get

Corollary 3.2. If K is a ball in an generalized Orlicz norm on R
n and f, g are

symmetric functions that are non-decreasing on [0,∞), then covK(f, g) ≤ 0.

It now remains to prove the inequality (2).

Proof of Theorem 3.1. Let fi denote the Young functions of K. Let us consider
the ball K ′ ⊂ R

n−1, being an generalized Orlicz ball defined by the Young
functions Φ1, Φ2, . . . , Φn−1, where Φi(t) = fi+1(t) for i > 1 and Φ1(t) = t —
that is, we replace the first two Young functions of K by a single identity
function.

For any x ∈ R let Px be the set ({x} × R
n−2) ∩ K ′, and |Px| be its

n− 2-dimensional Lebesgue measure. K ′ is a convex set, thus, by the Brunn–
Minkowski inequality (see for instance [G]) the function x �→ |Px| is a logarith-
mically concave function. This means that x �→ log |Px| is a concave function,
or equivalently that

|Ptx+(1−t)y| ≥ |Px|t · |Py|1−t.

In particular, for given real positive numbers a, b, c we have

|Pa+c| ≥ |Pa|b/(b+c)|Pa+b+c|c/(b+c),

|Pa+b| ≥ |Pa|c/(b+c)|Pa+b+c|b/(b+c),
and as a consequence when we multiply the two inequalities,

|Pa+b| · |Pa+c| ≥ |Pa| · |Pa+b+c|. (3)

Now let us consider the ball K. Let us take any y > ȳ > 0 and z > z̄ > 0.
Let a = f1(ȳ) + f2(z̄), b = f1(y)− f1(ȳ), and c = f2(z)− f2(z̄). The numbers
a, b and c are positive from the assumptions on y, z, ȳ and z̄ and because the
Young functions are increasing. Then m(ȳ, z̄) is equal to the measure of the
set
{

x3, x4, . . . , xn : f1(ȳ) + f2(z̄) +
n∑

i=3

fi(xi) ≤ 1
}

=
{

x3, x4, . . . , xn : a+
n∑

i=2

Φi(xi) ≤ 1
}

= Pa .

Similarly m(y, z̄) = |Pa+b|, m(ȳ, z) = |Pa+c| i m(y, z) = |Pa+b+c|.
Substituting those values into the inequality (3) we get the thesis:

m(y, z̄)m(ȳ, z) ≥ m(y, z)m(ȳ, z̄) . ��
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4 The Consequences

For the consequences we will take f(t) = g(t) = t2. The first simple con-
sequence is the concentration property for generalized Orlicz balls. Here, we
follow the argument of [ABP] for lp balls.

Theorem 4.1. For every generalized Orlicz ball K ⊂ R
n we have

σK ≤
√

5.

Proof. From the Cauchy-Schwartz inequality we have

n2L4
K =

( n∑

i=1

EKX
2
i

)2

=
(
EK |X|2

)2 ≤ EK |X|4.

On the other hand from Corollary 3.2 we have

EK |X|4 = EK

( n∑

i=1

X2
i

)2

=
n∑

i=1

EKX
4
i +
∑

i�=j
EKX

2
iX

2
j

≤
n∑

i=1

EKX
4
i +
∑

i�=j
EKX

2
i EKX

2
j

=
n∑

i=1

EKX
4
i + n(n− 1)L4

K .

As for 1-symmetric bodies the density of Xi is symmetric and log-concave,
we know (see e.g. [KLO], Section 2, Remark 5)

EKX
4
i ≤ 6

(
EKX

2
i

)2 = 6L4
K ,

thence
n2L4

K ≤ EK |X|4 ≤ (n2 + 5n)L4
K .

This gives us
Var(|X|2) = EK |X|4 − n2L4

K ≤ 5nL4
K ,

and thus

σ2
K =

Var|X|2
nL4

K

≤ 5. ��

Corollary 4.2. For every generalized Orlicz ball K ⊂ R
n and for every t > 0

we have

PK

(∣
∣
∣
∣
|X|2
n

− L2
K

∣
∣
∣
∣ ≥ t

)

≤ 5L4
K

nt2

and

PK

(∣
∣
∣
∣
|X|√
n
− LK

∣
∣
∣
∣ ≥ t

)

≤ 5L2
K

nt2
.
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Proof. From the estimate on the variance of |X|2 and Chebyshev’s inequality
we get

t2PK

(∣
∣
∣
∣
|X|2
n

− L2
K

∣
∣
∣
∣ ≥ t

)

≤ EK

(
|X|2
n

− L2
K

)2

≤ 1
n2

Var(|X|2) ≤ 5
n
L4
K .

For the second part let t > 0. We have

PK

(
|X| −

√
nLK | ≥ t

√
n
)
≤ PK

(
|X|2 − nL2

K | ≥ tnLK
)

≤ 5L4
K

t2nL2
K

=
5L2

K

t2n
. ��

This result confirms the so-called concentration hypothesis for generalized
Orlicz balls. The hypothesis, see e.g. [BK], states that the Euclidean norm
concentrates near the value

√
nLK as a function on K. More precisely, for a

given ε > 0 we say that K satisfies the ε-concentration hypothesis if

PK

(∣
∣
∣
∣
|X|√
n
− LK

∣
∣
∣
∣ ≥ εLK

)

≤ ε.

From Corollary 4.2 we get that the class of generalized Orlicz balls satisfies
the ε-concentration hypothesis with ε =

√
5n−1/3.

A more complex consequence is the Central Limit Property for generalized
Orlicz balls. For θ ∈ Sn−1 let gθ(t) be the density of the random variable
〈X, θ〉. Let g be the density of N (0, L2

K). Then for most θ the density gθ is
very close to g. More precisely, by part 2 of Corollary 4 in [MM] we get

Corollary 4.3. There exists an absolute constant c such that

sup
t∈R

∣
∣
∣
∣

∫ t

−∞

(
gθ(s)− g(s)

)
ds

∣
∣
∣
∣ ≤ c‖θ‖

3/2
3 .

5 The Counterexample for 1-Symmetric Bodies

It is generally known that the negative square correlation hypothesis does not
hold in general in the class of 1-symmetric bodies. However, the formula from
section 2 allows us to give a counterexample without any tedious calculations.
Let K ⊂ R

3 be the ball of the norm defined by

‖(x, y, z)‖ = |x|+ max{|y|, |z|}.

The quantity m(y, z) considered in Corollary 2.3, defined as the volume of the
cross-section (R×{y, z})∩K is equal to 2(1−max{|y|, |z|}) for |y|, |z| ≤ 1 and
0 for greater |y| or |z|. To check the inequality (1) for y > ȳ > 0 and z > z̄ > 0
we may assume without loss of generality that y ≥ z (as K is invariant under
the exchange of y and z). We have
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m(y, z̄)m(ȳ, z)−m(y, z)m(ȳ, z̄)
= 4
(
1−max{y, z̄}

)(
1−max{ȳ, z}

)
− 4
(
1−max{y, z}

)(
1−max{ȳ, z̄}

)

= 4(1− y)
(
1−max{ȳ, z}

)
− 4(1− y)

(
1−max{ȳ, z̄}

)

= 4(1− y)
(

max{ȳ, z̄} −max{ȳ, z}
)
.

As y ≤ 1 all we have to consider is the sign of the third bracket. However,
as z > z̄, the third bracket is never positive, and is negative when z > ȳ.
Thus from Corollary 2.3 the covariance cov(f, g) is positive for any increasing
symmetric functions f(Y ) and g(Z), in particular for f(Y ) = Y 2 and g(Z) =
Z2.
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