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Summary. We show that with “high probability” a section of the �n∞ ball of
dimension k ≤ cε logn (c > 0 a universal constant) is ε close to a multiple of
the Euclidean ball in this section. We also show that, up to an absolute constant
the estimate on k cannot be improved.

1 Introduction

Milman’s version of Dvoretzky’s theorem states that:
There is a function c(ε) > 0 such that for all k ≤ c(ε) log n, �k2 (1 + ε)-embeds
into any normed space of dimension n.

See [Dv] for the original theorem of Dvoretzky (in which the dependence
of k on n is weaker), [Mi] for Milman’s original work, and [MS] and [Pi]
for expository outlets of the subject (there are many others). It would be
important for us to notice that the proof(s) of the theorem above actually
give more: The vast majority of subspaces of the stated dimension are (1+ε)-
isomorphic to �k2 .

The dependence of k on n in the theorem above is known to be best
possible (for �n∞) but the dependence on ε is far from being understood. The
best known estimate is c(ε) ≥ cε/(log 1

ε )2 given in [Sc] (here and elsewhere in
this paper c and C denote positive universal constants). However, the proof in
[Sc] does not give the additional information that most subspaces are (1 + ε)-
isomorphic to �k2 . If one also want this requirement then the best estimate for
c(ε) that was known was c(ε) ≥ cε2 ([Go]).

As an upper bound for c(ε) one gets C/ log 1
ε for some universal C. Indeed,

if �k2 (1+ε) embed into �n∞ then k ≤ C log n/ log 1
ε . This is also the right order

of k in the �∞ case: If k ≤ c log n/ log 1
ε then �k2 (1 + ε) embed into �n∞.

We show here that, in the �∞ case, if one is interested in the probabilistic
statement of Dvoretzky theorem (i.e, that the vast majority of subspaces of
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�n∞ of a certain dimension are (1 + ε)-isomorphic to Euclidean spaces) then
the right estimate for c(ε) is cε.

Theorem 1. For k < cε log n, with probability > 1− e−ck, the �n∞ norm and
a multiple of the �n2 norm are 1 + ε equivalent on a k dimensional subspace.
Moreover, this doesn’t hold anymore for k of higher order. i.e., For every a
there is an A such that if, with probability larger than 1−e−ak, a k dimensional
subspace satisfies that the ratio between the �n∞ norm and a multiple of the �n2
norm are 1 + ε equivalent for all vectors in the subspace, then k ≤ Aε log n.

2 Computation of the Concentration of the Max Norm

Let g1, g2, . . . be a sequence of standard independent Gaussian variables. fix
n and let M be the median of ‖(g1, g2, . . . , gn)‖∞. In this section we com-
pute some fine estimates on the probability of deviation of ‖(g1, g2, . . . , gn)‖∞
from M .
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Claim 2.

log 2
4 + log 2

e−3εM2/2 ≤ P
(

max
1≤i≤n

|gi| > (1 + ε)M) ≤ log 2(1 + o(1)
)
e−εM

2
(5)

where o(1) means a(n) with a(n) → 0 as n→∞ independently of ε.
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(For a fixed ε one can replace log 2(1 + o(1)) with a quantity tending to 0
with n.)

We now look for a lower bound on P (max1≤i≤n |gi| > (1 + ε)M). Since for
iid Xi-s,
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for ε ≤ 1 and n large enough (independently of ε). Using (9), we get
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Claim 3. For some absolute positive constants c, C and for all 0 < ε < 1/2,
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which proves the right hand side inequality in (12). As for the left hand side,
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We summarize Claims 2 and 3 in a form that will be useful for us later in
the following Proposition.
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Proposition 1. For some positive absolute constants c, C and for all 0<ε<1
and n ∈ N, denoting g = (g1, g2, . . . , gn),
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Proof. This follows easily from Claims 2 and 3 and the facts that ex > x for
all x, M is of order

√
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√
n
)
< Ce−ε

2n.

3 Proof of the Theorem

The first part of the Theorem follows easily from the, by now well exposed,
proof of Milman’s version of Dvoretzky’s theorem (see e.g, [MS] or [Pi]) with
the improved concentration estimate in (the right hand side of the inequality
in) Proposition 1 replacing the classical estimates. For the proof of the second
part we need:

Lemma 1. Let A be a subset of Gn,k of µn,k measure a. Put UA =
⋃
E∈AE,

then
P
(
(g1, g2, . . . , gn) ∈ UA

)
≥ a1/k.

Proof. Let X1,X2, . . . , Xk be k independent random vectors distributed
according to P , the canonical Gaussian measure on R

n. Note that, since µn,k is
the unique rotational invariant probability measure on Gn,k, the distribution
of span{X1, . . . ,Xk} is µn,k. Accordingly,

P (UA)k = P (X1,X2, . . . , Xk ∈ UA)
≥ P

(
span{X1,X2, . . . ,Xk} ∈ A

)

= µn,k(A). ��

Remark 1. As we’ll see below we use only a weak form of Lemma 1. We actu-
ally believe there is a much stronger form of it.

Proof of the moreover part in Theorem 1. Let A ⊂ Gn,k be such that every
E ∈ A there is an ME such that

ME‖x‖2 ≤ ‖x‖∞ ≤ (1 + ε)ME‖x‖2

for all x ∈ E. Let B be the subset of A of all E for which (1−3ε)M√
n

≤ ME ≤
(1+ε)M√

n
, and let C = A \ B. By Lemma 1,
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µn,k(C)1/k
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and, by Proposition 1, this last quantity is smaller than Ce−cε logn. It follows
that

µn,k(B) > 1− e−ak − Ce−cεk logn.

We may assume that ε log n is much larger than a so that the last term above
is dominated by e−ak. Applying Lemma 1 once more we get

P
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Using now the other part of Proposition 1 we get that

Cε log n > ak.
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