The Random Version of Dvoretzky's Theorem in ℓ_{∞}^{n}

G. Schechtman ${ }^{\star}$
Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel gideon.schechtman@weizmann.ac.il

Summary. We show that with "high probability" a section of the ℓ_{∞}^{n} ball of dimension $k \leq c \varepsilon \log n(c>0$ a universal constant) is ε close to a multiple of the Euclidean ball in this section. We also show that, up to an absolute constant the estimate on k cannot be improved.

1 Introduction

Milman's version of Dvoretzky's theorem states that:
There is a function $c(\varepsilon)>0$ such that for all $k \leq c(\varepsilon) \log n, \ell_{2}^{k}(1+\varepsilon)$-embeds into any normed space of dimension n.

See [Dv] for the original theorem of Dvoretzky (in which the dependence of k on n is weaker), [Mi] for Milman's original work, and [MS] and [Pi] for expository outlets of the subject (there are many others). It would be important for us to notice that the proof(s) of the theorem above actually give more: The vast majority of subspaces of the stated dimension are $(1+\varepsilon)$ isomorphic to ℓ_{2}^{k}.

The dependence of k on n in the theorem above is known to be best possible (for ℓ_{∞}^{n}) but the dependence on ε is far from being understood. The best known estimate is $c(\varepsilon) \geq c \varepsilon /\left(\log \frac{1}{\varepsilon}\right)^{2}$ given in [Sc] (here and elsewhere in this paper c and C denote positive universal constants). However, the proof in [Sc] does not give the additional information that most subspaces are $(1+\varepsilon)$ isomorphic to ℓ_{2}^{k}. If one also want this requirement then the best estimate for $c(\varepsilon)$ that was known was $c(\varepsilon) \geq c \varepsilon^{2}([\mathrm{Go}])$.

As an upper bound for $c(\varepsilon)$ one gets $C / \log \frac{1}{\varepsilon}$ for some universal C. Indeed, if $\ell_{2}^{k}(1+\varepsilon)$ embed into ℓ_{∞}^{n} then $k \leq C \log n / \log \frac{1}{\varepsilon}$. This is also the right order of k in the ℓ_{∞} case: If $k \leq c \log n / \log \frac{1}{\varepsilon}$ then $\ell_{2}^{k}(1+\varepsilon)$ embed into ℓ_{∞}^{n}.

We show here that, in the ℓ_{∞} case, if one is interested in the probabilistic statement of Dvoretzky theorem (i.e, that the vast majority of subspaces of

[^0]ℓ_{∞}^{n} of a certain dimension are $(1+\varepsilon)$-isomorphic to Euclidean spaces) then the right estimate for $c(\varepsilon)$ is $c \varepsilon$.

Theorem 1. For $k<c \varepsilon \log n$, with probability $>1-e^{-c k}$, the ℓ_{∞}^{n} norm and a multiple of the ℓ_{2}^{n} norm are $1+\varepsilon$ equivalent on a k dimensional subspace. Moreover, this doesn't hold anymore for k of higher order. i.e., For every a there is an A such that if, with probability larger than $1-e^{-a k}, a k$ dimensional subspace satisfies that the ratio between the ℓ_{∞}^{n} norm and a multiple of the ℓ_{2}^{n} norm are $1+\varepsilon$ equivalent for all vectors in the subspace, then $k \leq A \varepsilon \log n$.

2 Computation of the Concentration of the Max Norm

Let g_{1}, g_{2}, \ldots be a sequence of standard independent Gaussian variables. fix n and let M be the median of $\left\|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right\|_{\infty}$. In this section we compute some fine estimates on the probability of deviation of $\left\|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right\|_{\infty}$ from M.

Claim 1.

$$
\begin{equation*}
\left(1-2^{-1 / n}\right) \frac{\sqrt{\pi} M}{\sqrt{2}} \leq e^{-M^{2} / 2} \leq\left(1-2^{-1 / n}\right) \frac{\sqrt{\pi}(M+1)}{\sqrt{2}\left(1-e^{-\frac{1}{2}} e^{-M}\right)} \tag{1}
\end{equation*}
$$

Proof.

$$
\frac{1}{2}=P\left(\max _{1 \leq i \leq n}\left|g_{i}\right|<M\right)=\left(1-\sqrt{\frac{2}{\pi}} \int_{M}^{\infty} e^{-s^{2} / 2} d s\right)^{n}
$$

Consequently,

$$
\begin{align*}
1-2^{-1 / n} & =\sqrt{\frac{2}{\pi}} \int_{M}^{\infty} e^{-s^{2} / 2} d s \geq \sqrt{\frac{2}{\pi}} \frac{1}{M+1} \int_{M}^{M+1} s e^{-s^{2} / 2} d s \tag{2}\\
& \geq \sqrt{\frac{2}{\pi}} \frac{1}{M+1} e^{-M^{2} / 2}\left(1-e^{-\frac{1}{2}} e^{-M}\right)
\end{align*}
$$

or

$$
\begin{equation*}
e^{-M^{2} / 2} \leq\left(1-2^{-1 / n}\right) \frac{\sqrt{\pi}(M+1)}{\sqrt{2}\left(1-e^{-\frac{1}{2}} e^{-M}\right)} \tag{3}
\end{equation*}
$$

Similarly,

$$
1-2^{-1 / n}=\sqrt{\frac{2}{\pi}} \int_{M}^{\infty} e^{-s^{2} / 2} d s \leq \sqrt{\frac{2}{\pi}} \frac{1}{M} \int_{M}^{\infty} s e^{-s^{2} / 2} d s \leq \sqrt{\frac{2}{\pi}} \frac{e^{-M^{2} / 2}}{M}
$$

or

$$
\begin{equation*}
e^{-M^{2} / 2} \geq\left(1-2^{-1 / n}\right) \frac{\sqrt{\pi} M}{\sqrt{2}} \tag{4}
\end{equation*}
$$

Claim 2.

$$
\begin{equation*}
\frac{\log 2}{4+\log 2} e^{-3 \varepsilon M^{2} / 2} \leq P\left(\max _{1 \leq i \leq n}\left|g_{i}\right|>(1+\varepsilon) M\right) \leq \log 2(1+o(1)) e^{-\varepsilon M^{2}} \tag{5}
\end{equation*}
$$

where $o(1)$ means $a(n)$ with $a(n) \rightarrow 0$ as $n \rightarrow \infty$ independently of ε.
Proof. (3) implies

$$
\begin{align*}
& P\left(\max _{1 \leq i \leq n}\left|g_{i}\right|>(1+\varepsilon) M\right) \\
\leq & \sqrt{\frac{2}{\pi}} \frac{n}{(1+\varepsilon) M} e^{-(1+\varepsilon)^{2} M^{2} / 2} \tag{6}\\
\leq & \frac{n}{(1+\varepsilon) M}\left(1-2^{-1 / n}\right) \frac{M+1}{1-e^{-\frac{1}{2}} e^{-M}} e^{-\varepsilon M^{2}} e^{-\varepsilon^{2} M^{2} / 2}
\end{align*}
$$

and, since M is of order $\sqrt{\log n}$, we get from this that

$$
\begin{equation*}
P\left(\max _{1 \leq i \leq n}\left|g_{i}\right|>(1+\varepsilon) M\right) \leq \log 2(1+o(1)) e^{-\varepsilon M^{2}} \tag{7}
\end{equation*}
$$

(For a fixed ε one can replace $\log 2(1+o(1))$ with a quantity tending to 0 with n.)

We now look for a lower bound on $P\left(\max _{1 \leq i \leq n}\left|g_{i}\right|>(1+\varepsilon) M\right)$. Since for iid X_{i}-s,

$$
\begin{align*}
& P\left(\max _{1 \leq i \leq n}\left(X_{i}>t\right)\right.=1-\left(1-P\left(X_{1}>t\right)\right)^{n} \geq 1-e^{-n P\left(X_{1}>t\right)} \\
& \geq 1-\frac{1}{1+n P\left(X_{1}>t\right)}=\frac{n P\left(X_{1}>t\right)}{1+n P\left(X_{1}>t\right)} \tag{8}\\
& P\left(\max _{1 \leq i \leq n}\left|g_{i}\right|>(1+\varepsilon) M\right) \geq \frac{n P\left(\left|g_{1}\right|>(1+\varepsilon) M\right)}{1+n P\left(\left|g_{1}\right|>(1+\varepsilon) M\right)} \tag{9}
\end{align*}
$$

The right hand side is an increasing function of $P\left(\left|g_{1}\right|>(1+\varepsilon) M\right)$ and, by (4),

$$
\begin{align*}
& P\left(\left|g_{1}\right|>(1+\varepsilon) M\right) \\
\geq & \sqrt{\frac{2}{\pi}} \frac{1}{(1+\varepsilon) M+1} e^{-(1+\varepsilon)^{2} M^{2} / 2}\left(1-e^{-\frac{1}{2}} e^{-(1+\varepsilon) M}\right) \\
= & \sqrt{\frac{2}{\pi}} \frac{1}{(1+\varepsilon) M+1} e^{-M^{2} / 2} e^{-\varepsilon M^{2}-\varepsilon^{2} M^{2} / 2}\left(1-e^{-\frac{1}{2}} e^{-(1+\varepsilon) M}\right) \\
\geq & \frac{M\left(1-2^{-1 / n}\right)}{(1+\varepsilon) M+1} e^{-\varepsilon M^{2}-\varepsilon^{2} M^{2} / 2}\left(1-e^{-\frac{1}{2}} e^{-(1+\varepsilon) M}\right) \\
\geq & \frac{\log 2}{4 n} e^{-\varepsilon M^{2}-\varepsilon^{2} M^{2} / 2} \geq \frac{\log 2}{4 n} e^{-3 \varepsilon M^{2} / 2} \tag{10}
\end{align*}
$$

for $\varepsilon \leq 1$ and n large enough (independently of ε). Using (9), we get

$$
\begin{equation*}
P\left(\max _{1 \leq i \leq n}\left|g_{i}\right|>(1+\varepsilon) M\right) \geq \frac{\frac{\log 2}{4} e^{-3 \varepsilon M^{2} / 2}}{1+\frac{\log 2}{4} e^{-3 \varepsilon M^{2} / 2}} \geq \frac{\log 2}{4+\log 2} e^{-3 \varepsilon M^{2} / 2} \tag{11}
\end{equation*}
$$

Claim 3. For some absolute positive constants c, C and for all $0<\varepsilon<1 / 2$,

$$
\begin{equation*}
\exp \left(-C e^{\varepsilon M^{2}}\right) \leq P\left(\max _{1 \leq i \leq n}\left|g_{i}\right|<(1-\varepsilon) M\right) \leq C \exp \left(-c e^{3 \varepsilon M^{2} / 4}\right) \tag{12}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& P\left(\max _{1 \leq i \leq n}\left|g_{i}\right|<(1-\varepsilon) M\right) \\
= & \left(1-\sqrt{\frac{2}{\pi}} \int_{(1-\varepsilon) M}^{\infty} e^{-s^{2} / 2}\right)^{n} \leq\left(1-\sqrt{\frac{2}{\pi}} \int_{(1-\varepsilon) M}^{M} e^{-s^{2} / 2}\right)^{n} \\
\leq & \left(1-\sqrt{\frac{2}{\pi}} \frac{1}{M} \int_{(1-\varepsilon) M}^{M} s e^{-s^{2} / 2}\right)^{n} \\
= & \left(1-\sqrt{\frac{2}{\pi}} \frac{1}{M}\left(e^{-(1-\varepsilon)^{2} M^{2} / 2}-e^{-M^{2} / 2}\right)\right)^{n} \\
= & \left(1-\sqrt{\frac{2}{\pi}} \frac{1}{M} e^{-M^{2} / 2}\left(e^{\varepsilon M^{2}-\varepsilon^{2} M^{2} / 2}-1\right)\right)^{n} \\
\leq & \left(1-\left(1-2^{-1 / n}\right)\left(e^{\varepsilon M^{2}-\varepsilon^{2} M^{2} / 2}-1\right)\right)^{n} \quad \text { by }(4) \\
\leq & \exp \left(-n\left(1-2^{-1 / n}\right)\left(e^{\varepsilon M^{2}-\varepsilon^{2} M^{2} / 2}-1\right)\right) \\
\leq & 2(1+o(1)) \exp \left(-\log 2(1+o(1)) e^{3 \varepsilon M^{2} / 4}\right)
\end{aligned}
$$

which proves the right hand side inequality in (12). As for the left hand side,

$$
\begin{aligned}
& P\left(\max _{1 \leq i \leq n}\left|g_{i}\right|<(1-\varepsilon) M\right) \\
= & \left(1-\sqrt{\frac{2}{\pi}} \int_{(1-\varepsilon) M}^{\infty} e^{-s^{2} / 2}\right)^{n} \geq\left(1-\sqrt{\frac{2}{\pi}} \frac{1}{(1-\varepsilon) M} \int_{(1-\varepsilon) M}^{\infty} s e^{-s^{2} / 2}\right)^{n} \\
= & \left(1-\sqrt{\frac{2}{\pi}} \frac{1}{(1-\varepsilon) M}\left(e^{-(1-\varepsilon)^{2} M^{2} / 2}\right)^{n}=\left(1-\sqrt{\frac{2}{\pi}} \frac{e^{-M^{2} / 2}}{(1-\varepsilon) M} e^{\varepsilon M^{2}-\varepsilon^{2} M^{2} / 2}\right)^{n}\right. \\
\geq & \exp \left(-\frac{2 n\left(1-2^{-1 / n}\right) M+1}{1-e^{-\frac{1}{2}-M}} \frac{M+}{M} e^{\varepsilon M^{2}-\varepsilon^{2} M^{2} / 2}\right) \text { by }(3) \\
\geq & \exp \left(-2 \log 2(1+o(1)) e^{\varepsilon M^{2}}\right) .
\end{aligned}
$$

We summarize Claims 2 and 3 in a form that will be useful for us later in the following Proposition.

Proposition 1. For some positive absolute constants c, C and for all $0<\varepsilon<1$ and $n \in \mathbb{N}$, denoting $g=\left(g_{1}, g_{2}, \ldots, g_{n}\right)$,

$$
\begin{aligned}
c e^{-C \varepsilon \log n} & \leq P\left(\|g\|_{\infty}<\frac{(1-\varepsilon) M}{\sqrt{n}}\|g\|_{2} \text { or }\|g\|_{\infty}>\frac{(1+\varepsilon) M}{\sqrt{n}}\|g\|_{2}\right) \\
& \leq C e^{-c \varepsilon \log n} .
\end{aligned}
$$

Proof. This follows easily from Claims 2 and 3 and the facts that $e^{x}>x$ for all x, M is of order $\sqrt{\log n}$ and

$$
P\left(\|g\|_{2}<(1-\varepsilon) \sqrt{n} \text { or }\|g\|_{2}>(1+\varepsilon) \sqrt{n}\right)<C e^{-\varepsilon^{2} n} .
$$

3 Proof of the Theorem

The first part of the Theorem follows easily from the, by now well exposed, proof of Milman's version of Dvoretzky's theorem (see e.g, [MS] or [Pi]) with the improved concentration estimate in (the right hand side of the inequality in) Proposition 1 replacing the classical estimates. For the proof of the second part we need:

Lemma 1. Let \mathcal{A} be a subset of $G_{n, k}$ of $\mu_{n, k}$ measure a. Put $U_{\mathcal{A}}=\bigcup_{E \in \mathcal{A}} E$, then

$$
P\left(\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in U_{\mathcal{A}}\right) \geq a^{1 / k}
$$

Proof. Let $X_{1}, X_{2}, \ldots, X_{k}$ be k independent random vectors distributed according to P, the canonical Gaussian measure on \mathbb{R}^{n}. Note that, since $\mu_{n, k}$ is the unique rotational invariant probability measure on $G_{n, k}$, the distribution of $\operatorname{span}\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}\right\}$ is $\mu_{n, k}$. Accordingly,

$$
\begin{aligned}
P\left(U_{\mathcal{A}}\right)^{k} & =P\left(X_{1}, X_{2}, \ldots, X_{k} \in U_{\mathcal{A}}\right) \\
& \geq P\left(\operatorname{span}\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{k}}\right\} \in \mathcal{A}\right) \\
& =\mu_{n, k}(\mathcal{A}) .
\end{aligned}
$$

Remark 1. As we'll see below we use only a weak form of Lemma 1. We actually believe there is a much stronger form of it.

Proof of the moreover part in Theorem 1. Let $\mathcal{A} \subset G_{n, k}$ be such that every $E \in \mathcal{A}$ there is an M_{E} such that

$$
M_{E}\|x\|_{2} \leq\|x\|_{\infty} \leq(1+\varepsilon) M_{E}\|x\|_{2}
$$

for all $x \in E$. Let \mathcal{B} be the subset of \mathcal{A} of all E for which $\frac{(1-3 \varepsilon) M}{\sqrt{n}} \leq M_{E} \leq$ $\frac{(1+\varepsilon) M}{\sqrt{n}}$, and let $\mathcal{C}=\mathcal{A} \backslash \mathcal{B}$. By Lemma 1 ,

$$
\begin{aligned}
& \mu_{n, k}(\mathcal{C})^{1 / k} \\
& \quad \leq P\left(\left\{x ;\|x\|_{\infty}<\frac{(1+\varepsilon)(1-3 \varepsilon) M}{\sqrt{n}}\|x\|_{2} \text { or }\|x\|_{\infty}>\frac{(1+\varepsilon) M}{\sqrt{n}}\|x\|_{2}\right\}\right)
\end{aligned}
$$

and, by Proposition 1, this last quantity is smaller than $C e^{-c \varepsilon \log n}$. It follows that

$$
\mu_{n, k}(\mathcal{B})>1-e^{-a k}-C e^{-c \varepsilon k \log n} .
$$

We may assume that $\varepsilon \log n$ is much larger than a so that the last term above is dominated by $e^{-a k}$. Applying Lemma 1 once more we get
$P\left(\left\{x ;\left(\frac{(1-3 \varepsilon) M}{\sqrt{n}}\|x\|_{2} \leq\|x\|_{\infty} \leq \frac{(1+\varepsilon)^{2} M}{\sqrt{n}}\|x\|_{2}\right\}\right) \geq \mu_{n, k}(\mathcal{B})>1-2 e^{-a k}\right.$.
Using now the other part of Proposition 1 we get that

$$
C \varepsilon \log n>a k .
$$

References

[Dv] Dvoretzky, A.: Some results on convex bodies and Banach spaces. Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) pp. 123-160. Jerusalem Academic Press, Jerusalem; Pergamon, Oxford (1961)
[Go] Gordon, Y.: Some inequalities for Gaussian processes and applications. Israel J. Math., 50, no. 4, 265-289 (1985)
[Mi] Milman, V.D.: A new proof of A. Dvoretzky's theorem on cross-sections of convex bodies. (Russian) Funkcional. Anal. i Priložen., 5, no. 4, 28-37 (1971)
[MS] Milman, V.D., Schechtman, G.: Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, 1200. Springer-Verlag, Berlin (1986)
[Pi] Pisier, G.: The volume of convex bodies and Banach space geometry. Cambridge Tracts in Mathematics, 94. Cambridge University Press, Cambridge (1989)
[Sc] Schechtman, G.: Two observations regarding embedding subsets of Euclidean spaces in normed spaces. Advances in Math., 200, no. 1, 125-135 (2006)

[^0]: * Supported by the Israel Science Foundation

