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Summary. We show that with “high probability” a section of the ¢35, ball of
dimension k& < celogn (¢ > 0 a universal constant) is € close to a multiple of
the Euclidean ball in this section. We also show that, up to an absolute constant
the estimate on k cannot be improved.

1 Introduction

Milman’s version of Dvoretzky’s theorem states that:
There is a function c(¢) > 0 such that for all k < c(e)logn, €5 (1+ ¢)-embeds
into any normed space of dimension n.

See [Dv] for the original theorem of Dvoretzky (in which the dependence
of k on n is weaker), [Mi] for Milman’s original work, and [MS] and [Pi]
for expository outlets of the subject (there are many others). It would be
important for us to notice that the proof(s) of the theorem above actually
give more: The vast majority of subspaces of the stated dimension are (1+¢)-
isomorphic to ¢5.

The dependence of k£ on n in the theorem above is known to be best
possible (for ¢) but the dependence on ¢ is far from being understood. The
best known estimate is c(¢) > ce/(log 1)? given in [Sc] (here and elsewhere in
this paper ¢ and C' denote positive universal constants). However, the proof in
[Sc] does not give the additional information that most subspaces are (1 + ¢)-
isomorphic to £5. If one also want this requirement then the best estimate for
c(¢) that was known was c(g) > cg? ([Go]).

As an upper bound for c(e) one gets C/log L for some universal C. Indeed,
if /5 (1+¢) embed into £ then k < C'logn/log . This is also the right order
of k in the {5 case: If k < clogn/log L then ¢§ (1 + ¢) embed into (7.

We show here that, in the £, case, if one is interested in the probabilistic
statement of Dvoretzky theorem (i.e, that the vast majority of subspaces of
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07 of a certain dimension are (1 + ¢)-isomorphic to Euclidean spaces) then
the right estimate for c(e) is ce.

Theorem 1. For k < celogn, with probability > 1 — e~F the {7, norm and
a multiple of the £5 norm are 1 + € equivalent on a k dimensional subspace.
Moreover, this doesn’t hold anymore for k of higher order. i.e., For every a
there is an A such that if, with probability larger than 1—e=%  a k dimensional
subspace satisfies that the ratio between the £ norm and a multiple of the (5
norm are 1 + € equivalent for all vectors in the subspace, then k < Aelogn.

2 Computation of the Concentration of the Max Norm

Let g1,92,... be a sequence of standard independent Gaussian variables. fix
n and let M be the median of ||(g1,92,---,9n)|lco. In this section we com-
pute some fine estimates on the probability of deviation of ||(g1, 92, - - -, gn)llco
from M.

Claim 1.
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Claim 2.

IOgZ 735]Wz/2 —eM?

where o(1) means a(n) with a(n) — 0 as n — oo independently of e.
Proof. (3) implies

P(llg%xn lg:| > (1 +5)M)

2 n 2072
< JE_ T —(+e)M?)2 6
= \/;(1+5)Me (6)

_ 2—1/n)&6—5M26—52N12/2

< L(l
T (14+e)M 1—e 3¢ M

and, since M is of order /logn, we get from this that

. < —EM2.
P( max |gil > (1+€)M) < log2(1 +o0(1))e (7)

(For a fixed ¢ one can replace log2(1 + o(1)) with a quantity tending to 0
with n.)

We now look for a lower bound on P(maxi<;<p |gi| > (1+¢)M). Since for
iid X;-s,

P( max (X; > t) —1-(1-P(Xy >1)" >1— e P>
1<i<n (8)
1 TLP(Xl > t)
>1-— =
- 1+nP(X;>t) 1+4+nP(X;>1t)

nP(|lgi| > (1+¢e)M)
P( max o > (1L +2)M) 2 { gy e cusyys S

The right hand side is an increasing function of P(|g1| > (1 + ¢)M) and,
by (4),

P(lg1| > (1 +e)M)
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for € <1 and n large enough (independently of €). Using (9), we get

log2 —3eM?/2
4 €

log 2 2
P( il > M) = o
ax loil > (1+e)M) = 1+ log2o—aenz/2 = 1+log2° -

O
Claim 3. For some absolute positive constants ¢, C' and for all 0 < e < 1/2,
exp (— Ce® ) < P( max \gl| <(1l-e)M ) < Cexp (- ce3EM2/4). (12)
Proof.

P( max |g;| < (1 —e)M)

1<i<n

SR RS I CRIEY
R
(e e oy
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< (1= (=2 (e == ) by ()

< exp ( — n(l _ 271/”)(€6M2752M2/2 _ 1))
= 2(1 + 0(1)) exp ( - log2(1 + 0(1))6351\42/4)

which proves the right hand side inequality in (12). As for the left hand side,

P( max lg:| < (1 —E)M)
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2exp(—210g2(1—|—0(1))e€M2). O

We summarize Claims 2 and 3 in a form that will be useful for us later in
the following Proposition.
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Proposition 1. For some positive absolute constants c¢,C and for all 0<e<1
and n € N, denoting g = (91,92, -, 9n),

B 1—e)M
ce Celogn < P(”g”oo < QHQ”Q or HgHoo >

(1+e)M
= |g|2)

NG

< (Ce~c logn

Proof. This follows easily from Claims 2 and 3 and the facts that e* > z for
all x, M is of order v/logn and

P(llgls < (1= or flglls > (1+e)vn) < Ce =™,

3 Proof of the Theorem

The first part of the Theorem follows easily from the, by now well exposed,
proof of Milman’s version of Dvoretzky’s theorem (see e.g, [MS] or [Pi]) with
the improved concentration estimate in (the right hand side of the inequality
in) Proposition 1 replacing the classical estimates. For the proof of the second
part we need:

Lemma 1. Let A be a subset of Gy, i, of pin i measure a. Put Uy = UEGA E,
then
P((glaQQa s 7971) € UA) 2 al/k-

Proof. Let X1, Xs,..., X, be k independent random vectors distributed
according to P, the canonical Gaussian measure on R™. Note that, since p,, 1, is
the unique rotational invariant probability measure on Gy, , the distribution
of span{Xy, ..., Xk} is k. Accordingly,
P(UA)k: = P(X17X27 M Xk e U-A)
> P(span{Xy,Xa,..., Xk} € A)
= ,unyk(A). O

Remark 1. As we’ll see below we use only a weak form of Lemma 1. We actu-
ally believe there is a much stronger form of it.

Proof of the moreover part in Theorem 1. Let A C Gy, be such that every
E € A there is an Mg such that

Mgllz|2 < (2]l < (1+&)MEl|z[l2
for all z € E. Let B be the subset of A of all E for which % < Mg <

%, and let C = A\ B. By Lemma 1,
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,un,k(c)l/k
< p({i ol < I o or o, > LED )

and, by Proposition 1, this last quantity is smaller than Ce=¢1°8™ It follows
that

N'n,k(B) >1— efak _ Cefcsklogn.

We may assume that € logn is much larger than a so that the last term above
is dominated by e~**. Applying Lemma 1 once more we get

P({os 2 ol < el < S ol ) 2 () > 12070

Using now the other part of Proposition 1 we get that

Celogn > ak.
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