13

Computation of reconstruction kernels

This chapter is concerned with the computation of a reconstruction kernel associated with \bar{e}_{γ}, where the calculations are performed in detail for the mollifier given by (12.3), (12.5), (12.20) and (12.21). Our aim is to find a representation of

$$
\begin{equation*}
\bar{v}_{\gamma}=\mathrm{E} \bar{e}_{\gamma} . \tag{13.1}
\end{equation*}
$$

The reconstruction kernel corresponding to $e_{\gamma}(x, y)=\mathcal{T}_{\mathrm{e}, M}^{y} \bar{e}_{\gamma}(x)$ is then $v_{\gamma}(y)=\mathcal{G}_{\mathrm{r}, M}^{y} \bar{v}_{\gamma}$ according to Corollary 11.7. From Lemma 11.5, we read that

$$
\begin{equation*}
\mathbf{F} \bar{v}_{\gamma}(\sigma, \varrho)=\mathbf{F} \mathrm{E} \bar{e}_{\gamma}(\sigma, \varrho)=\mathbf{F} \bar{e}_{\gamma}\left(\sigma, \sqrt{\varrho^{2}-\|\sigma\|^{2}}\right), \tag{13.2}
\end{equation*}
$$

when $\varrho \geq\|\sigma\|, \varrho \geq 0$ and $\sigma \in \mathbb{R}^{n}$. First, we have to calculate the Fourier transform of \bar{e}_{γ}.

Lemma 13.1. We have

$$
\begin{equation*}
\mathbf{F} \bar{e}_{\gamma}(\sigma, \varrho)=\hat{e}_{\gamma}(\sigma, \varrho)=\hat{e}_{\gamma}^{1}(\sigma) \hat{\bar{e}}_{\gamma}^{2}(\varrho)=\cos (\varrho) \mathrm{e}^{-\gamma^{2}\|\sigma\|^{2} / 2} \mathrm{e}^{-\gamma^{4} \varrho^{4}} \tag{13.3}
\end{equation*}
$$

for $\sigma \in \mathbb{R}^{n}, \varrho \in \mathbb{R}$.
Proof. Because of $\hat{\bar{e}}_{\gamma}^{1}(\sigma)=\mathrm{e}^{-\gamma^{2}\|\sigma\|^{2} / 2}$ equation (13.3) follows from

$$
\begin{aligned}
\hat{\bar{e}}_{\gamma}^{2}(\varrho) & =\frac{1}{2 \gamma} \int_{\mathbb{R}}\left\{F\left(\frac{q+1}{\gamma}\right)+F\left(\frac{q-1}{\gamma}\right)\right\} \mathrm{e}^{-\imath q \varrho} \mathrm{~d} q \\
& =\frac{1}{2}\left(\mathrm{e}^{\imath \varrho}+\mathrm{e}^{-\imath \varrho}\right) \int_{\mathbb{R}} F(q) \mathrm{e}^{-\imath \gamma q \varrho} \mathrm{~d} q \\
& =\cos (\varrho) \mathrm{e}^{-(\gamma \varrho / 2)^{4}} .
\end{aligned}
$$

For $\varrho \geq\|\sigma\|$, we deduce

$$
\begin{equation*}
\mathbf{F} \bar{v}_{\gamma}(\sigma, \varrho)=\cos \left(\sqrt{\varrho^{2}-\|\sigma\|^{2}}\right) \mathrm{e}^{-\gamma^{2}\|\sigma\|^{2} / 2} \mathrm{e}^{-\gamma^{4}\left(\varrho^{2}-\|\sigma\|^{2}\right)^{2} / 16} \tag{13.4}
\end{equation*}
$$

from Lemma 13.1 and (13.2). With the help of (13.4), we see that an extension of $\hat{\bar{v}}_{\gamma}$ to the whole of $\mathbb{R}^{n} \times[0, \infty)$ as a function from \mathcal{S}_{r} requires an extension of $\cos (\sqrt{\xi})$ for $\xi<0$. Thus, we need a function $G \in \mathcal{C}^{\infty}(\mathbb{R})$ with $G(\xi)=\cos (\sqrt{\xi})$, if $\xi \geq 0$, such that

$$
\begin{equation*}
\mathbf{F} \bar{v}_{\gamma}(\sigma, \varrho)=G\left(\varrho^{2}-\|\sigma\|^{2}\right) \mathrm{e}^{-\gamma^{2}\|\sigma\|^{2} / 2} \mathrm{e}^{-\gamma^{4}\left(\varrho^{2}-\|\sigma\|^{2}\right)^{2} / 16} \tag{13.5}
\end{equation*}
$$

is meaningfully defined for all $\sigma \in \mathbb{R}^{n}, \varrho \geq 0$ and additionally is a function in \mathcal{S}_{r}. The latter one implies that $\bar{v}_{\gamma} \in \mathcal{S}_{\mathrm{r}}$.

The first idea to extend $\cos (\sqrt{\xi})$ is to use its power series expansion. For $\xi \geq 0$ we have

$$
\begin{equation*}
\cos (\sqrt{\xi})=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k!} \xi^{k} \tag{13.6}
\end{equation*}
$$

Using the power series (13.6) to extend $\cos (\sqrt{\xi})$ on $\xi<0$ we obtain the function

$$
G(\xi)=\left\{\begin{aligned}
\cos (\sqrt{\xi}), & \xi \geq 0 \\
\cosh (\sqrt{|\xi|}), & \xi<0
\end{aligned}\right.
$$

which obviously is in $\mathcal{C}^{\infty}(\mathbb{R})$, but unbounded. If we take into account that $G(\xi)=\mathcal{O}(\exp (\sqrt{|\xi|}))$ for $\xi \rightarrow-\infty$, then in fact we have that $\mathbf{F} \bar{v}_{\gamma} \in \mathcal{S}_{\mathrm{r}}$.

As outlined in Remark 11.9 the particular choice of the extension for $\mathbf{F} \bar{v}_{\gamma}$ on $0 \leq \varrho<\|\sigma\|$ has no impact to $\widetilde{\mathbf{M}}_{\gamma} \mathbf{M} f$, since supp $\mathbf{F} \mathbf{M} f \subset\{(\sigma, \varrho): \varrho \geq$ $\|\sigma\|\}$. In applications, we only have a finite number of data available as it was expressed by equation (11.23). This implies that the data are given on a bounded domain $(z, r) \in Z_{N} \times[0, R]$ only, where $Z_{N} \subset \mathbb{R}^{n}$ is bounded and $R>0$. As a consequence, the specific extension of G actually has an influence to $\widetilde{\mathbf{M}}_{N, \gamma} \mathbf{M} f$. Numerical tests have shown that a bounded $G(\xi) \in \mathcal{C}(\mathbb{R})$ is desirable. To this end, we introduce a cut-off function $\chi \in \mathcal{C}^{\infty}(\mathbb{R})$ which is supposed to have the properties

$$
\begin{aligned}
\chi(\xi) & =1, \quad \text { if } \xi \geq 0 \\
\chi(\xi) & =0, \quad \text { if } \xi<-1 \\
\chi^{(k)}(-1) & =\chi^{(k)}(0)=0, \quad \text { for all } k \geq 1
\end{aligned}
$$

Such a function is explicitly given by

$$
\chi(\xi)=\frac{u(\xi+1)}{u(\xi+1)+u(-\xi)}
$$

where

$$
u(\xi)=\left\{\begin{aligned}
\mathrm{e}^{-1 / \xi}, & \xi>0 \\
0, & \xi \leq 0
\end{aligned}\right.
$$

The bounded extension \widetilde{G} of $\cos (\sqrt{\xi})$ finally reads as

$$
\widetilde{G}(\xi)=\left\{\begin{align*}
\cos (\sqrt{\xi}), & \xi \geq 0 \tag{13.7}\\
\chi(\xi) \cosh (\sqrt{|\xi|}), & \xi<0
\end{align*}\right.
$$

and is a bounded function in $\mathcal{C}^{\infty}(\mathbb{R})$. Plots of χ as well as of the extension \widetilde{G} are displayed in Figure 13.1.

Fig. 13.1. Plots of the cut-off function χ (left picture) and the extension \widetilde{G} (right picture). We have displayed $\widetilde{G}(\xi)$ only in the interval $\xi \in[-1,1]$ to emphasize the smoothness of the extension.

The reconstruction kernel \bar{v}_{γ} is now computed applying the inverse Fourier transform to (13.5).

Lemma 13.2. Let $\bar{e}_{\gamma}=\bar{e}_{\gamma}^{1} \otimes \bar{e}_{\gamma}^{2}$ be given by (12.5), (12.20) and (12.21). Then a solution of

$$
\mathbf{M}^{*} \bar{v}_{\gamma}=\bar{e}_{\gamma}
$$

is represented by

$$
\begin{align*}
\bar{v}_{\gamma}(z, r)= & \frac{1}{2 \pi^{2}} \int_{0}^{\infty} \int_{0}^{\infty}\left\{\widetilde{G}\left(\varrho^{2}-\sigma^{2}\right) \mathrm{e}^{-\gamma^{2}\left(\frac{\sigma^{2}}{2}+\gamma^{2}\left(\varrho^{2}-\sigma^{2}\right)^{2} / 16\right)}\right. \\
& \left.\times \varrho \mathrm{J}_{0}(\varrho r) \cos (\sigma z)\right\} \mathrm{d} \varrho \mathrm{~d} \sigma \quad \text { for } n=1 \tag{13.8a}\\
\bar{v}_{\gamma}(z, r)= & (2 \pi)^{-n-\frac{1}{2}} r^{(1-n) / 2} t^{(2-n) / 2} \\
& \times \int_{0}^{\infty} \int_{0}^{\infty}\left\{\widetilde{G}\left(\varrho^{2}-\tau^{2}\right) \mathrm{e}^{-\gamma^{2}\left(\frac{\tau^{2}}{2}+\gamma^{2}\left(\varrho^{2}-\tau^{2}\right)^{2} / 16\right)}\right. \tag{13.8b}\\
& \left.\times \varrho^{(n+1) / 2} \tau^{(2-n) / 2} \mathrm{~J}_{(n-1) / 2}(\varrho r) \mathrm{J}_{(n-2) / 2}(\tau t)\right\} \mathrm{d} \varrho \mathrm{~d} \tau \quad \text { for } n>1
\end{align*}
$$

Here $r, t>0, \mathrm{~J}_{\nu}$ denotes the Bessel function of first kind of order ν and \widetilde{G} is defined as in (13.7). In (13.8b) we have $t=\|z\|$ and $\tau=\|\sigma\|$.

Proof. Formulas (13.8a), (13.8b) follow from (13.5) by an application of the $(2 n+1)$-dimensional inverse Fourier transform and using identity (13.3) and spherical coordinates. The proof is completed with the help of

$$
\int_{S^{n}} \mathrm{e}^{\imath \varrho r\langle\omega, \theta\rangle} \mathrm{d} S_{n}(\omega)=(2 \pi)^{(n+1) / 2}(\varrho r)^{(1-n) / 2} \mathrm{~J}_{(n-1) / 2}(\varrho r),
$$

which is found e.g. in Fawcett [30].
Since the σ-variable is in \mathbb{R} if $n=1$, the introduction of spherical coordinates for the integration with respect to σ does not make sense in that case. That is why we wrote down the representation of $\bar{v}_{\gamma}(z, r)$ for $n=1$ separately. The kernel \bar{v}_{γ} is illustrated in Figure 13.2 for $\gamma=0.06$ and $n=1$, i.e. the two-dimensional setting. The integrals in (13.8a) were computed by numerical integration where we confined to values (σ, ϱ) for which the integrand is greater than or equal to 10^{-12}. The reconstruction kernel plotted in Figure 13.2 is associated with the mollifier \bar{e}_{γ} and also reaches its global maximum at $(0,1)$. This again is compatible with the group structure which underlies the operators $\mathcal{G}_{\mathrm{r}, M}^{y}$.

Fig. 13.2. The reconstruction kernel \bar{v}_{γ} given as in (13.8a) for $\gamma=0.06$ and $n=1$. A cross section through the z-axis again would show the similarity to the SheppLogan filter just as in Doppler tomography, compare Figure 7.35, whereas we have a smoothing with respect to the radius variable r.

The computation of the reconstruction kernel corresponding to the mollifier with compactly supported Fourier transform is done accordingly.

Corollary 13.3. If the mollifier $\bar{e}_{\gamma}=\bar{e}_{\gamma}^{1} \otimes \bar{e}_{\gamma}^{2}$ is defined by (12.4), (12.5), (12.22) and (12.23), then a corresponding reconstruction kernel can be written as

$$
\begin{aligned}
& \bar{v}_{\gamma}(z, r)= \\
& \frac{1}{2 \pi^{2}}\left\{\int_{0}^{\gamma^{-1}} \int_{0}^{\gamma^{-1}} \eta \mathrm{~J}_{0}\left(\sqrt{\eta^{2}+\sigma^{2}} r\right) \cos \eta \mathrm{e}^{2-\frac{\gamma^{2}\left(\sigma^{2}-\gamma^{2} \eta^{4}\right)}{\left(1-\gamma^{2} \sigma^{2}\right)\left(1-\gamma^{4} \sigma^{4}\right)}} \cos (\sigma z) \mathrm{d} \eta \mathrm{~d} \sigma\right. \\
& \left.+\int_{0}^{\gamma^{-1}} \int_{0}^{\sigma} \eta \mathrm{J}_{0}\left(\sqrt{\sigma^{2}-\eta^{2}} r\right) \chi\left(-\eta^{2}\right) \cosh \eta \mathrm{e}^{2-\frac{\gamma^{2}\left(\sigma^{2}-\gamma^{2} \eta^{4}\right)}{\left(1-\gamma^{2} \sigma^{2}\right)\left(1-\gamma^{4} \sigma^{4}\right)}} \cos (\sigma z) \mathrm{d} \eta \mathrm{~d} \sigma\right\}
\end{aligned}
$$

for $n=1, z \in \mathbb{R}, r \geq 0$ and

$$
\bar{v}_{\gamma}(z, r)=(2 \pi)^{-n-\frac{1}{2}} r^{(1-n) / 2} t^{(2-n) / 2}
$$

$$
\times\left\{\int_{0}^{\gamma^{-1}} \int_{0}^{\gamma^{-1}} \eta \mathrm{~J}_{\frac{n-1}{2}}\left(\sqrt{\eta^{2}+\tau^{2}} r\right) \cos \eta \mathrm{e}^{2-\frac{\gamma^{2}\left(\tau^{2}-\gamma^{2} \eta^{4}\right)}{\left(1-\gamma^{2} \tau^{2}\right)\left(1-\gamma^{4} \tau^{4}\right)}} \mathrm{J}_{\frac{n-2}{2}}(\tau t) \mathrm{d} \eta \mathrm{~d} \tau+\right.
$$

$$
\left.+\int_{0}^{\gamma} \int_{0}^{\tau} \eta \mathrm{J}_{\frac{n-1}{2}}\left(\sqrt{\tau^{2}-\eta^{2}} r\right) \chi\left(-\eta^{2}\right) \cosh \eta \mathrm{e}^{2-\frac{\gamma^{2}\left(\tau^{2}-\gamma^{2} \eta^{4}\right)}{\left(1-\gamma^{2} \tau^{2}\right)\left(1-\gamma^{4} \tau^{4}\right)}} \mathrm{J}_{\frac{n-2}{2}}(\tau t) \mathrm{d} \eta \mathrm{~d} \tau\right\}
$$

for $n>1, t=\|z\|, \tau=\|\sigma\|$, and $r \geq 0$.
In Corollary 13.3 , we additionally applied substitutions $\varrho=\sqrt{\eta^{2}+\sigma^{2}}$ and $\varrho=\sqrt{\sigma^{2}-\eta^{2}}$. Note that we do not need to restrict the integration limits in order to apply numerical integration since they are finite.

