Computation of reconstruction kernels

This chapter is concerned with the computation of a reconstruction kernel associated with \bar{e}_{γ} , where the calculations are performed in detail for the mollifier given by (12.3), (12.5), (12.20) and (12.21). Our aim is to find a representation of

$$\bar{v}_{\gamma} = \mathsf{E}\bar{e}_{\gamma} \,. \tag{13.1}$$

The reconstruction kernel corresponding to $e_{\gamma}(x,y)=\mathcal{T}_{\mathrm{e},M}^{y}\bar{e}_{\gamma}(x)$ is then $v_{\gamma}(y)=\mathcal{G}_{\mathrm{r},M}^{y}\bar{v}_{\gamma}$ according to Corollary 11.7. From Lemma 11.5, we read that

$$\mathbf{F}\bar{v}_{\gamma}(\sigma,\varrho) = \mathbf{F}\,\mathsf{E}\bar{e}_{\gamma}(\sigma,\varrho) = \mathbf{F}\bar{e}_{\gamma}(\sigma,\sqrt{\varrho^{2} - \|\sigma\|^{2}})\,,\tag{13.2}$$

when $\varrho \geq ||\sigma||$, $\varrho \geq 0$ and $\sigma \in \mathbb{R}^n$. First, we have to calculate the Fourier transform of \bar{e}_{γ} .

Lemma 13.1. We have

$$\mathbf{F}\bar{e}_{\gamma}(\sigma,\varrho) = \hat{\bar{e}}_{\gamma}(\sigma,\varrho) = \hat{\bar{e}}_{\gamma}^{1}(\sigma)\,\hat{\bar{e}}_{\gamma}^{2}(\varrho) = \cos(\varrho)\,\mathrm{e}^{-\gamma^{2}\,\|\sigma\|^{2}/2}\,\mathrm{e}^{-\gamma^{4}\,\varrho^{4}}$$
(13.3)

for $\sigma \in \mathbb{R}^n$, $\varrho \in \mathbb{R}$.

Proof. Because of $\hat{e}_{\gamma}^{1}(\sigma) = e^{-\gamma^{2} \|\sigma\|^{2}/2}$ equation (13.3) follows from

$$\begin{split} \hat{\boldsymbol{e}}_{\gamma}^{2}(\varrho) &= \frac{1}{2\,\gamma} \int_{\mathbb{R}} \left\{ F\!\left(\frac{q+1}{\gamma}\right) + F\!\left(\frac{q-1}{\gamma}\right) \right\} \mathrm{e}^{-\imath\,q\,\varrho} \,\mathrm{d}q \\ &= \frac{1}{2} \left(\mathrm{e}^{\imath\,\varrho} + \mathrm{e}^{-\imath\,\varrho} \right) \int_{\mathbb{R}} F\!\left(q\right) \mathrm{e}^{-\imath\,\gamma\,q\,\varrho} \,\mathrm{d}q \\ &= \cos(\varrho) \,\mathrm{e}^{-(\gamma\,\varrho/2)^{4}} \,. \end{split}$$

For $\varrho \geq ||\sigma||$, we deduce

$$\mathbf{F}\bar{v}_{\gamma}(\sigma,\varrho) = \cos(\sqrt{\varrho^2 - \|\sigma\|^2}) e^{-\gamma^2 \|\sigma\|^2/2} e^{-\gamma^4 (\varrho^2 - \|\sigma\|^2)^2/16}.$$
 (13.4)

from Lemma 13.1 and (13.2). With the help of (13.4), we see that an extension of \hat{v}_{γ} to the whole of $\mathbb{R}^n \times [0, \infty)$ as a function from \mathcal{S}_r requires an extension of $\cos(\sqrt{\xi})$ for $\xi < 0$. Thus, we need a function $G \in \mathcal{C}^{\infty}(\mathbb{R})$ with $G(\xi) = \cos(\sqrt{\xi})$, if $\xi \geq 0$, such that

$$\mathbf{F}\bar{v}_{\gamma}(\sigma,\varrho) = G(\varrho^2 - \|\sigma\|^2) e^{-\gamma^2 \|\sigma\|^2/2} e^{-\gamma^4 (\varrho^2 - \|\sigma\|^2)^2/16}$$
(13.5)

is meaningfully defined for all $\sigma \in \mathbb{R}^n$, $\varrho \geq 0$ and additionally is a function in \mathcal{S}_r . The latter one implies that $\bar{v}_{\gamma} \in \mathcal{S}_r$.

The first idea to extend $\cos(\sqrt{\xi})$ is to use its power series expansion. For $\xi \geq 0$ we have

$$\cos(\sqrt{\xi}) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k!} \, \xi^k \,. \tag{13.6}$$

Using the power series (13.6) to extend $\cos(\sqrt{\xi})$ on $\xi < 0$ we obtain the function

$$G(\xi) = \begin{cases} \cos(\sqrt{\xi}), & \xi \ge 0, \\ \cosh(\sqrt{|\xi|}), & \xi < 0 \end{cases}$$

which obviously is in $\mathcal{C}^{\infty}(\mathbb{R})$, but unbounded. If we take into account that $G(\xi) = \mathcal{O}(\exp(\sqrt{|\xi|}))$ for $\xi \to -\infty$, then in fact we have that $\mathbf{F}\bar{v}_{\gamma} \in \mathcal{S}_{\mathrm{r}}$.

As outlined in Remark 11.9 the particular choice of the extension for $\mathbf{F}\bar{v}_{\gamma}$ on $0 \leq \varrho < \|\sigma\|$ has no impact to $\widetilde{\mathbf{M}}_{\gamma} \, \mathbf{M} f$, since supp $\mathbf{F} \, \mathbf{M} f \subset \{(\sigma, \varrho) : \varrho \geq \|\sigma\|\}$. In applications, we only have a finite number of data available as it was expressed by equation (11.23). This implies that the data are given on a bounded domain $(z, r) \in Z_N \times [0, R]$ only, where $Z_N \subset \mathbb{R}^n$ is bounded and R > 0. As a consequence, the specific extension of G actually has an influence to $\widetilde{\mathbf{M}}_{N,\gamma} \, \mathbf{M} f$. Numerical tests have shown that a bounded $G(\xi) \in \mathcal{C}(\mathbb{R})$ is desirable. To this end, we introduce a cut-off function $\chi \in \mathcal{C}^{\infty}(\mathbb{R})$ which is supposed to have the properties

$$\chi(\xi) = 1$$
, if $\xi \ge 0$,
 $\chi(\xi) = 0$, if $\xi < -1$,
 $\chi^{(k)}(-1) = \chi^{(k)}(0) = 0$, for all $k \ge 1$.

Such a function is explicitly given by

$$\chi(\xi) = \frac{u(\xi+1)}{u(\xi+1) + u(-\xi)},$$

where

$$u(\xi) = \begin{cases} e^{-1/\xi}, & \xi > 0, \\ 0, & \xi \le 0 \end{cases}$$

The bounded extension \widetilde{G} of $\cos(\sqrt{\xi})$ finally reads as

$$\widetilde{G}(\xi) = \begin{cases} \cos(\sqrt{\xi}), & \xi \ge 0, \\ \chi(\xi) \cosh(\sqrt{|\xi|}), & \xi < 0 \end{cases}$$
(13.7)

and is a bounded function in $\mathcal{C}^{\infty}(\mathbb{R})$. Plots of χ as well as of the extension \widetilde{G} are displayed in Figure 13.1.

Fig. 13.1. Plots of the cut-off function χ (left picture) and the extension \widetilde{G} (right picture). We have displayed $\widetilde{G}(\xi)$ only in the interval $\xi \in [-1,1]$ to emphasize the smoothness of the extension.

The reconstruction kernel \bar{v}_{γ} is now computed applying the inverse Fourier transform to (13.5).

Lemma 13.2. Let $\bar{e}_{\gamma} = \bar{e}_{\gamma}^1 \otimes \bar{e}_{\gamma}^2$ be given by (12.5), (12.20) and (12.21). Then a solution of

$$\mathbf{M}^* \bar{v}_{\gamma} = \bar{e}_{\gamma}$$

is represented by

$$\bar{v}_{\gamma}(z,r) = \frac{1}{2\pi^2} \int_{0}^{\infty} \int_{0}^{\infty} \left\{ \widetilde{G}(\varrho^2 - \sigma^2) e^{-\gamma^2 \left(\frac{\sigma^2}{2} + \gamma^2 \left(\varrho^2 - \sigma^2\right)^2 / 16\right)} \right.$$

$$\times \varrho \, J_0(\varrho \, r) \, \cos(\sigma \, z) \right\} d\varrho \, d\sigma \quad \text{for } n = 1 \,, \tag{13.8a}$$

$$\bar{v}_{\gamma}(z,r) = (2\pi)^{-n-\frac{1}{2}} r^{(1-n)/2} t^{(2-n)/2}$$

$$\times \int_{0}^{\infty} \int_{0}^{\infty} \left\{ \widetilde{G}(\varrho^{2} - \tau^{2}) e^{-\gamma^{2} (\frac{\tau^{2}}{2} + \gamma^{2} (\varrho^{2} - \tau^{2})^{2} / 16)} \right\}$$
(13.8b)

$$\times \varrho^{(n+1)/2} \tau^{(2-n)/2} J_{(n-1)/2}(\varrho r) J_{(n-2)/2}(\tau t) d\varrho d\tau \quad \text{for } n > 1.$$

Here r, t > 0, J_{ν} denotes the Bessel function of first kind of order ν and \widetilde{G} is defined as in (13.7). In (13.8b) we have t = ||z|| and $\tau = ||\sigma||$.

Proof. Formulas (13.8a), (13.8b) follow from (13.5) by an application of the (2n+1)-dimensional inverse Fourier transform and using identity (13.3) and spherical coordinates. The proof is completed with the help of

$$\int_{S^n} e^{i \varrho r \langle \omega, \theta \rangle} dS_n(\omega) = (2 \pi)^{(n+1)/2} (\varrho r)^{(1-n)/2} J_{(n-1)/2}(\varrho r),$$

which is found e.g. in FAWCETT [30].

Since the σ -variable is in \mathbb{R} if n=1, the introduction of spherical coordinates for the integration with respect to σ does not make sense in that case. That is why we wrote down the representation of $\bar{v}_{\gamma}(z,r)$ for n=1 separately. The kernel \bar{v}_{γ} is illustrated in Figure 13.2 for $\gamma=0.06$ and n=1, i.e. the two-dimensional setting. The integrals in (13.8a) were computed by numerical integration where we confined to values (σ, ϱ) for which the integrand is greater than or equal to 10^{-12} . The reconstruction kernel plotted in Figure 13.2 is associated with the mollifier \bar{e}_{γ} and also reaches its global maximum at (0,1). This again is compatible with the group structure which underlies the operators $\mathcal{G}^y_{r,M}$.

Fig. 13.2. The reconstruction kernel \bar{v}_{γ} given as in (13.8a) for $\gamma=0.06$ and n=1. A cross section through the z-axis again would show the similarity to the Shepp-Logan filter just as in Doppler tomography, compare Figure 7.35, whereas we have a smoothing with respect to the radius variable r.

The computation of the reconstruction kernel corresponding to the mollifier with compactly supported Fourier transform is done accordingly. **Corollary 13.3.** If the mollifier $\bar{e}_{\gamma} = \bar{e}_{\gamma}^1 \otimes \bar{e}_{\gamma}^2$ is defined by (12.4), (12.5), (12.22) and (12.23), then a corresponding reconstruction kernel can be written as

$$\begin{split} &\bar{v}_{\gamma}(z,r) = \\ &\frac{1}{2\pi^{2}} \Big\{ \int\limits_{0}^{\gamma^{-1}} \int\limits_{0}^{\gamma^{-1}} \eta \, J_{0}(\sqrt{\eta^{2} + \sigma^{2}} \, r) \, \cos \eta \, \mathrm{e}^{2 - \frac{\gamma^{2} \, (\sigma^{2} - \gamma^{2} \, \eta^{4})}{(1 - \gamma^{2} \, \sigma^{2}) \, (1 - \gamma^{4} \, \sigma^{4})}} \, \cos(\sigma \, z) \, \mathrm{d} \eta \, \mathrm{d} \sigma \\ &+ \int\limits_{0}^{\gamma^{-1}} \int\limits_{0}^{\sigma} \eta \, J_{0}(\sqrt{\sigma^{2} - \eta^{2}} \, r) \, \chi(-\eta^{2}) \, \cosh \eta \, \mathrm{e}^{2 - \frac{\gamma^{2} \, (\sigma^{2} - \gamma^{2} \, \eta^{4})}{(1 - \gamma^{2} \, \sigma^{2}) \, (1 - \gamma^{4} \, \sigma^{4})}} \, \cos(\sigma \, z) \, \mathrm{d} \eta \, \mathrm{d} \sigma \Big\} \\ &+ \int\limits_{0}^{\gamma^{-1}} \int\limits_{0}^{\sigma} \eta \, J_{0}(\sqrt{\sigma^{2} - \eta^{2}} \, r) \, \chi(-\eta^{2}) \, \cosh \eta \, \mathrm{e}^{2 - \frac{\gamma^{2} \, (\tau^{2} - \gamma^{2} \, \eta^{4})}{(1 - \gamma^{2} \, \tau^{2}) \, (1 - \gamma^{4} \, \sigma^{4})}} \, \cos(\sigma \, z) \, \mathrm{d} \eta \, \mathrm{d} \sigma \Big\} \\ &+ \int\limits_{0}^{\gamma^{-1}} \int\limits_{0}^{\gamma^{-1}} \eta \, J_{\frac{n-1}{2}}(\sqrt{\eta^{2} + \tau^{2}} \, r) \, \cos \eta \, \mathrm{e}^{2 - \frac{\gamma^{2} \, (\tau^{2} - \gamma^{2} \, \eta^{4})}{(1 - \gamma^{2} \, \tau^{2}) \, (1 - \gamma^{4} \, \tau^{4})}} \, J_{\frac{n-2}{2}}(\tau \, t) \, \mathrm{d} \eta \, \mathrm{d} \tau \, + \\ &+ \int\limits_{0}^{\gamma^{-1}} \int\limits_{0}^{\tau} \eta \, J_{\frac{n-1}{2}}(\sqrt{\tau^{2} - \eta^{2}} \, r) \, \chi(-\eta^{2}) \, \cosh \eta \, \mathrm{e}^{2 - \frac{\gamma^{2} \, (\tau^{2} - \gamma^{2} \, \eta^{4})}{(1 - \gamma^{2} \, \tau^{2}) \, (1 - \gamma^{4} \, \tau^{4})}} \, J_{\frac{n-2}{2}}(\tau \, t) \, \mathrm{d} \eta \, \mathrm{d} \tau \Big\} \\ &+ \int\limits_{0}^{\gamma^{-1}} \int\limits_{0}^{\tau} \eta \, J_{\frac{n-1}{2}}(\sqrt{\tau^{2} - \eta^{2}} \, r) \, \chi(-\eta^{2}) \, \cosh \eta \, \mathrm{e}^{2 - \frac{\gamma^{2} \, (\tau^{2} - \gamma^{2} \, \eta^{4})}{(1 - \gamma^{2} \, \tau^{2}) \, (1 - \gamma^{4} \, \tau^{4})}} \, J_{\frac{n-2}{2}}(\tau \, t) \, \mathrm{d} \eta \, \mathrm{d} \tau \Big\} \\ &+ \int\limits_{0}^{\gamma^{-1}} \int\limits_{0}^{\tau} \eta \, J_{\frac{n-1}{2}}(\sqrt{\tau^{2} - \eta^{2}} \, r) \, \chi(-\eta^{2}) \, \cosh \eta \, \mathrm{e}^{2 - \frac{\gamma^{2} \, (\tau^{2} - \gamma^{2} \, \eta^{4})}{(1 - \gamma^{2} \, \tau^{2}) \, (1 - \gamma^{4} \, \tau^{4})}} \, J_{\frac{n-2}{2}}(\tau \, t) \, \mathrm{d} \eta \, \mathrm{d} \tau \Big\} \\ &+ \int\limits_{0}^{\gamma^{-1}} \int\limits_{0}^{\tau} \eta \, J_{\frac{n-1}{2}}(\sqrt{\tau^{2} - \eta^{2}} \, r) \, \chi(-\eta^{2}) \, \mathrm{d} \eta \, \mathrm{d} \tau \Big\} \\ &+ \int\limits_{0}^{\gamma^{-1}} \int\limits_{0}^{\tau} \eta \, J_{\frac{n-1}{2}}(\sqrt{\tau^{2} - \eta^{2}} \, r) \, \chi(-\eta^{2}) \, \mathrm{d} \eta \, \mathrm{d} \tau \Big\} \\ &+ \int\limits_{0}^{\gamma^{-1}} \int\limits_{0}^{\tau} \eta \, J_{\frac{n-1}{2}}(\eta \, \eta^{2}) \, \mathrm{d} \eta \, \mathrm{d} \tau \Big\} \\ &+ \int\limits_{0}^{\gamma^{-1}} \int\limits_{0}^{\tau} \eta \, J_{\frac{n-1}{2}}(\eta \, \eta^{2}) \, \mathrm{d} \eta \, \mathrm{d} \tau \Big\} \Big\} \\ &+ \int\limits_{0}^{\gamma^{-1}} \int\limits_{0}^{\tau} \eta \, J_{\frac{n-1}{2}}(\eta \, \eta^{2}) \, \mathrm{d} \eta \,$$

In Corollary 13.3, we additionally applied substitutions $\varrho = \sqrt{\eta^2 + \sigma^2}$ and $\varrho = \sqrt{\sigma^2 - \eta^2}$. Note that we do not need to restrict the integration limits in order to apply numerical integration since they are finite.