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Computation of reconstruction kernels

This chapter is concerned with the computation of a reconstruction kernel
associated with ēγ , where the calculations are performed in detail for the
mollifier given by (12.3), (12.5), (12.20) and (12.21). Our aim is to find a
representation of

ῡγ = Eēγ . (13.1)

The reconstruction kernel corresponding to eγ(x, y) = T y
e,M ēγ(x) is then

υγ(y) = Gyr,M ῡγ according to Corollary 11.7. From Lemma 11.5, we read that

Fῡγ(σ, �) = FEēγ(σ, �) = Fēγ(σ,
√
�2 − ‖σ‖2) , (13.2)

when � ≥ ‖σ‖, � ≥ 0 and σ ∈ R
n. First, we have to calculate the Fourier

transform of ēγ .

Lemma 13.1. We have

Fēγ(σ, �) = ˆ̄eγ(σ, �) = ˆ̄e1γ(σ) ˆ̄e2γ(�) = cos(�) e−γ
2 ‖σ‖2/2 e−γ

4 �4 (13.3)

for σ ∈ R
n, � ∈ R.

Proof. Because of ˆ̄e1γ(σ) = e−γ
2 ‖σ‖2/2 equation (13.3) follows from

ˆ̄e2γ(�) =
1

2 γ

∫

R

{
F
(q + 1
γ

)
+ F
(q − 1
γ

)}
e−ı q � dq

=
1
2

(eı � + e−ı �)
∫

R

F (q) e−ı γ q � dq

= cos(�) e−(γ �/2)4 .

��

For � ≥ ‖σ‖, we deduce

Fῡγ(σ, �) = cos(
√
�2 − ‖σ‖2) e−γ

2 ‖σ‖2/2 e−γ
4 (�2−‖σ‖2)2/16 . (13.4)
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from Lemma 13.1 and (13.2). With the help of (13.4), we see that an extension
of ˆ̄υγ to the whole of R

n×[0,∞) as a function from Sr requires an extension of
cos(

√
ξ) for ξ < 0. Thus, we need a function G ∈ C∞(R) with G(ξ) = cos(

√
ξ),

if ξ ≥ 0, such that

Fῡγ(σ, �) = G(�2 − ‖σ‖2) e−γ
2 ‖σ‖2/2e−γ

4 (�2−‖σ‖2)2/16 (13.5)

is meaningfully defined for all σ ∈ R
n, � ≥ 0 and additionally is a function in

Sr. The latter one implies that ῡγ ∈ Sr.
The first idea to extend cos(

√
ξ) is to use its power series expansion. For

ξ ≥ 0 we have

cos(
√
ξ) =

∞∑

k=0

(−1)k

2 k!
ξk . (13.6)

Using the power series (13.6) to extend cos(
√
ξ) on ξ < 0 we obtain the

function

G(ξ) =

{
cos(

√
ξ) , ξ ≥ 0 ,

cosh(
√

|ξ|) , ξ < 0

which obviously is in C∞(R), but unbounded. If we take into account that
G(ξ) = O(exp(

√
|ξ|)) for ξ → −∞, then in fact we have that Fῡγ ∈ Sr.

As outlined in Remark 11.9 the particular choice of the extension for Fῡγ
on 0 ≤ � < ‖σ‖ has no impact to M̃γ Mf , since supp FMf ⊂ {(σ, �) : � ≥
‖σ‖}. In applications, we only have a finite number of data available as it
was expressed by equation (11.23). This implies that the data are given on a
bounded domain (z, r) ∈ ZN × [0, R] only, where ZN ⊂ R

n is bounded and
R > 0. As a consequence, the specific extension of G actually has an influence
to M̃N,γ Mf . Numerical tests have shown that a bounded G(ξ) ∈ C(R) is
desirable. To this end, we introduce a cut-off function χ ∈ C∞(R) which is
supposed to have the properties

χ(ξ) = 1 , if ξ ≥ 0 ,
χ(ξ) = 0 , if ξ < −1 ,

χ(k)(−1) = χ(k)(0) = 0 , for all k ≥ 1 .

Such a function is explicitly given by

χ(ξ) =
u(ξ + 1)

u(ξ + 1) + u(−ξ) ,

where

u(ξ) =
{

e−1/ξ , ξ > 0 ,
0 , ξ ≤ 0

The bounded extension G̃ of cos(
√
ξ) finally reads as
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G̃(ξ) =

{
cos(

√
ξ) , ξ ≥ 0 ,

χ(ξ) cosh(
√

|ξ|) , ξ < 0
(13.7)

and is a bounded function in C∞(R). Plots of χ as well as of the extension G̃
are displayed in Figure 13.1.
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Fig. 13.1. Plots of the cut-off function χ (left picture) and the extension G̃ (right

picture). We have displayed G̃(ξ) only in the interval ξ ∈ [−1, 1] to emphasize the
smoothness of the extension.

The reconstruction kernel ῡγ is now computed applying the inverse Fourier
transform to (13.5).

Lemma 13.2. Let ēγ = ē1γ ⊗ ē2γ be given by (12.5), (12.20) and (12.21). Then
a solution of

M∗ῡγ = ēγ

is represented by

ῡγ(z, r) =
1

2π2

∞∫

0

∞∫

0

{
G̃(�2 − σ2) e−γ

2 (σ
2
2 +γ2 (�2−σ2)2/16)

×� J0(� r) cos(σ z)
}

d�dσ for n = 1 , (13.8a)

ῡγ(z, r) = (2π)−n−
1
2 r(1−n)/2 t(2−n)/2

×
∞∫

0

∞∫

0

{
G̃(�2 − τ2) e−γ

2 ( τ
2
2 +γ2 (�2−τ2)2/16) (13.8b)

×�(n+1)/2 τ (2−n)/2 J(n−1)/2(� r) J(n−2)/2(τ t)
}

d�dτ for n > 1 .

Here r, t > 0, Jν denotes the Bessel function of first kind of order ν and G̃ is
defined as in (13.7). In (13.8b) we have t = ‖z‖ and τ = ‖σ‖.
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Proof. Formulas (13.8a), (13.8b) follow from (13.5) by an application of the
(2n+ 1)-dimensional inverse Fourier transform and using identity (13.3) and
spherical coordinates. The proof is completed with the help of

∫

Sn
eı � r 〈ω,θ〉 dSn(ω) = (2π)(n+1)/2 (� r)(1−n)/2 J(n−1)/2(� r) ,

which is found e.g. in Fawcett [30]. ��

Since the σ-variable is in R if n = 1, the introduction of spherical coordi-
nates for the integration with respect to σ does not make sense in that case.
That is why we wrote down the representation of ῡγ(z, r) for n = 1 separately.
The kernel ῡγ is illustrated in Figure 13.2 for γ = 0.06 and n = 1, i.e. the
two-dimensional setting. The integrals in (13.8a) were computed by numeri-
cal integration where we confined to values (σ, �) for which the integrand is
greater than or equal to 10−12. The reconstruction kernel plotted in Figure
13.2 is associated with the mollifier ēγ and also reaches its global maximum
at (0, 1). This again is compatible with the group structure which underlies
the operators Gyr,M .
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Fig. 13.2. The reconstruction kernel ῡγ given as in (13.8a) for γ = 0.06 and n = 1.
A cross section through the z-axis again would show the similarity to the Shepp-
Logan filter just as in Doppler tomography, compare Figure 7.35, whereas we have
a smoothing with respect to the radius variable r.

The computation of the reconstruction kernel corresponding to the molli-
fier with compactly supported Fourier transform is done accordingly.



13 Computation of reconstruction kernels 137

Corollary 13.3. If the mollifier ēγ = ē1γ ⊗ ē2γ is defined by (12.4), (12.5),
(12.22) and (12.23), then a corresponding reconstruction kernel can be written
as

ῡγ(z, r) =

1
2π2

{ γ−1∫

0

γ−1∫

0

η J0(
√
η2 + σ2 r) cos η e2− γ2 (σ2−γ2 η4)

(1−γ2 σ2) (1−γ4 σ4) cos(σ z) dη dσ

+

γ−1∫

0

σ∫

0

η J0(
√
σ2 − η2 r)χ(−η2) cosh η e2− γ2 (σ2−γ2 η4)

(1−γ2 σ2) (1−γ4 σ4) cos(σ z) dη dσ
}

for n = 1, z ∈ R, r ≥ 0 and

ῡγ(z, r) = (2π)−n−
1
2 r(1−n)/2 t(2−n)/2

×
{ γ−1∫

0

γ−1∫

0

η Jn−1
2

(
√
η2 + τ2 r) cos η e2− γ2 (τ2−γ2 η4)

(1−γ2 τ2) (1−γ4 τ4) Jn−2
2

(τ t) dη dτ +

+

γ−1∫

0

τ∫

0

η Jn−1
2

(
√
τ2 − η2 r)χ(−η2) cosh η e2− γ2 (τ2−γ2 η4)

(1−γ2 τ2) (1−γ4 τ4) Jn−2
2

(τ t) dη dτ
}

for n > 1, t = ‖z‖, τ = ‖σ‖, and r ≥ 0.

In Corollary 13.3, we additionally applied substitutions � =
√
η2 + σ2 and

� =
√
σ2 − η2. Note that we do not need to restrict the integration limits in

order to apply numerical integration since they are finite.




