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The spherical mean operator

After a short treatise about SONAR and SAR, we summarize in Section
11.2 the essential mathematical properties of the spherical mean operator
M. Though there are some similarities to the Radon transform R with
respect to its definition and inversion formula, we point out crucial differences
when the center set is given by {xn+1 = 0} ⊂ R

n+1, which causes difficulties
in the numerical treatment of that mapping. The most important difference
between the two transforms is the fact that M can neither be formulated as
continuous mapping between L2- nor between Sobolev spaces. Moreover, M is
meaningfully defined on certain spaces of tempered distributions only. Hence
to solve the inverse problem

Mf = g ,

we need the concepts presented in Chapter 4.

11.1 Spherical means in SONAR and SAR

To detect and visualize objects in the water, one emits ultrasound signals
from an antenna and measures reflections. In shallow water the assumption of
a constant speed of sound c(x) = c0 is reasonable. A signal U = U(t, x) being
emitted from a source a0 in a domain A ⊂ R

3 at time t = 0 hence generates a
spherical wave front. The reflected signal which is received at time t in a0 thus
contains information of all reflections located at a sphere with radius (t/2) c0
and center a0, see Figure 11.1. In Figure 11.1 the center set consists of the
line {x2 = 0}.

The measured signal is

Mf(a0, r) =
∫

S(a0,r)

f(x) dSrn(x) , r = (t/2) c0 , (11.1)

where S(a0, r) := {x ∈ R
3 : ‖x − a0‖ = r} and f(x) is the reflectivity. Here

dSrn denotes the n−1-dimensional surface measure on S(a0, r). The reflectivity
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Fig. 11.1. Measurement geometry of SONAR in two dimensions. The x1- and x2-
axes are switched to be consistent with the definitions in Section 11.2.

essentially depends on the speed of sound c(x), which gives information about
objects in the water. The problem to recover objects in water from ultra-
sound measurements is called SONAR (SOund NAvigation and Radiation).
In SONAR the centers a0 usually are located at the hyperplane {x3 = 0}. As
can be read in Louis, Quinto [74] the signal U(t, x) propagates according to
the acoustic wave equation

k2(x)Utt = ∆U + δ(t) δ(x− a0) , a0 ∈ A . (11.2)

Provided that there is no multiple scattering (Born approximation) which
means a linearization, then the determination of k2 from the back-scattered
signal is equivalent to the reconstruction of k2 from M(k2)(a0, r), see
Lavrientiev et al. [62] and Romanov [104]. Here, the refraction index k2

corresponds to the reflectivity f in (11.1).
We have a similar situation in SAR. Here, the aim is to determine objects

at the earth’s surface by ultrasound signals, where the antenna usually is
attached to the wing of an aircraft. To be exact, we would have to consider
Maxwell’s equations as mathematical model. But for the sake of simplicity,
one investigates equation (11.2) or the similar equation

Utt = ∆U + q(x)U + δ(t) δ(x− a0) , a0 ∈ A ,

where q(x) denotes the scatterer. Hellsten, Andersson [45] show, how the
measured data in SAR can be interpretated as spherical means of the ground
reflectivity. Cheney [15] explains how the signals which are measured at the
antenna can be expressed by spherical means of c−1(x) − c−1

0 when we take
equation (11.2) with k2(x) = −1/c2(x) as a starting point.
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11.2 Properties of the spherical mean operator

Let S(Rn) be the space of rapidly decreasing functions in R
n, i.e. the space

of all functions f ∈ C∞(Rn) for which the seminorms

pm(v) = sup
|α|≤m

sup
x∈Rn

(1 + ‖x‖2)m |Dαv(x)| <∞

are finite for all m ∈ N0. Here, α ∈ N
n
0 is a multiindex and Dα := ∂α1

x1
· . . . ·∂αnxn

is the differential operator of order |α| = α1 + . . . + αn. The system {pm}
induces a local convex topology which turns S(Rn) to a Fréchet space. Its
dual S ′(Rn) consists of all functionals which are linear and bounded on S(Rn).
That means that to each λ ∈ S ′(Rn) there exists a m ∈ N0 and a constant
Cm > 0 satisfying

|〈λ, v〉S′(Rn)×S(Rn)| ≤ Cm pm(v) for all v ∈ S(Rn) .

Thus, each λ ∈ S ′(Rn) is of finite order. The space S ′(Rn) is called the space
of tempered distributions. The following theorem, which can be found e.g. in
Constantinescu [17, Theorem 7.4], characterizes tempered distributions as
(weak) derivatives of slowly increasing functions.

Theorem 11.1. To each λ ∈ S ′(Rn) there exists a multiindex α ∈ N
n
0 and a

continuous function Pλ of at most polynomial growth, such that

〈λ, v〉S′(Rn)×S(Rn) = (−1)|α|
∫

Rn

Pλ(x)Dαv(x) dx (11.3)

for all v ∈ S(Rn).

Obviously, S(Rn) ⊂ S ′(Rn) and the embedding is dense. As a consequence,
the Fourier transform F can be extended continuously to an isomorphism on
S ′(Rn).

Following the lines in [5] we investigate the particular case where the cen-
ters a0 in (11.1) are located on the hyperplane {z ∈ R

n+1 : zn+1 = 0}. To
adapt this very situation we re-define M. The spherical mean operator M
now particularly assigns a function f ∈ S(Rn+1) to its mean values over all
spheres with radius r ≥ 0 centered about (z, 0)� ∈ R

n+1, z ∈ R
n,

Mf(z, r) =
1

|Sn|

∫

Sn
f(z + r ξ, r η) dSn(ξ, η) = g(z, r) . (11.4)

By |Sn| we denote the surface area of the n-dimensional unit sphere Sn =
{(ξ, η)� ∈ R

n+1 : ξ ∈ R
n , η ∈ R , ‖ξ‖2 + η2 = 1} ∈ R

n+1, dSn is the
surface measure on Sn. In contrast to the Radon transform R, the spherical
mean operator integrates over n-dimensional hyperspheres Sn instead of n-
dimensional planes. We often will use the notation x = (x′, xn+1)� for x ∈
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R
n+1, where x′ = (x1, . . . , xn)� contains the first n components of x and xn+1

is the (n+ 1)-st component.
Obviously, M is not injective, since Mf = 0 for each f ∈ S(Rn+1) being

odd with respect to the last variable. Courant and Hilbert [18] proved
that the null space of M consists of all those functions which are odd in
xn+1. Thus, it is reasonable to restrict the domain of M to the subspace
Se(Rn+1) ⊂ S(Rn+1) of all rapidly decreasing functions being even in xn+1,

Se(Rn+1) := {f ∈ S(Rn+1) : f(x′,−xn+1) = f(x′, xn+1)} .

Unfortunately, f ∈ Se(Rn+1) does not imply that Mf is again a rapidly de-
creasing function. Even worse: the image Mf in general is neither in L2(Rn+1),
nor in L1(Rn+1). This fact is emphasized in Example 11.2 in two dimesnions
(n = 1). The image of the characteristic function of two circles under M, that
means of a function with compact support, is not even integrable.

Example 11.2. Let n = 1 and χC ∈ L2(R2) be the characteristic function of
two disks which are reflected about the x2-axis

χC(x) = χC(x1, x2) =
{

2 , if ‖x− (4, 4)‖ ≤ 1 or ‖x− (4,−4)‖ ≤ 1 ,
0 , else .

(11.5)
Note that χC is even with respect to x2. The picture to the left in Figure
11.2 shows a plot of χC for x2 > 0. After some geometric considerations we
compute for z ∈ R and r > 0

MχC(z, r) =

{
8π−1 r arccos

(
r2+d2−1

2 r d

)
, d− 1 ≤ r ≤ d+ 1 ,

0 , else ,

where d = ‖(z, 0) − (4, 4)‖. We integrate over spheres with radius r > 0; the
center set is the line {(z, 0) : z ∈ R}. The picture to the right in Figure 11.2
displays MχC for (z, r) in [−35, 35] × [0, 50]. Obviously the support of MχC
is not bounded in R

2.

This is a crucial difference compared to the Radon transform. The question
arises on which spaces M can be defined meaningfully as a bounded operator.
To answer this question, we first introduce a subspace of S(R2n+1). Let

Sr(Rn × R
n+1) :={f ∈ S(R2n+1) : f(z, w) = f̌(z, ‖w‖) for f̌ ∈ Se(Rn+1)}.

The space Sr(Rn × R
n+1) contains all functions of S(R2n+1) being radially

symmetric in the last n+1 variables. Thus we will always understand functions
from Sr(Rn × R

n+1) as functions on R
n × R in virtue of the setting f(z, r) =

f(z, w), r = ‖w‖. The reason to use R
n+1 for the radial variable rather than R

is that we may apply the Fourier transform to a function from Sr(Rn×R
n+1).

This is important in view of Theorem 11.3. Of course the Fourier transform
again is radial in the last n+1 variables. In analogy to (S(Rn),S ′(Rn)) we may
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Fig. 11.2. Left picture: Plot of the object function χC consisting of two disks
reflected about the x2-axis. Only the part for x2 > 0 is shown. Right picture: Plot
of MχC in [−35, 35] × [0, 50].

also consider the dual pairings (Se(Rn+1),S ′
e(R

n+1)), (Sr(Rn×R
n+1),S ′

r(R
n×

R
n+1)). For the sake of a better readability, we set Se := Se(Rn+1) and Sr :=

Sr(Rn×R
n+1), the notations S ′

e, S ′
r are respectively. As a consequence of the

considerations made before, we cannot expect that Mf ∈ Sr, when f ∈ Se.
But it is easy to show that Mf ∈ S ′

r for all f ∈ Se. Since Se ↪→ S ′
e is dense,

we even have Mf ∈ S ′
r whenever f ∈ S ′

e. Further properties are summarized
in the following theorem whose proof can be found in Andersson [5] and
Klein [59].

Theorem 11.3. The spherical mean operator M : S ′
e → S ′

r is a linear, con-
tinuous mapping which is one-to-one. The range R(M) can be characterized
by

R(M) = S ′
r,cone :=

{
g ∈ S ′

r : supp ĝ ⊂ {(σ, �) ∈ R
n× [0,∞) : � ≥ ‖σ‖}

}
⊂ S ′

r.

(11.6)
If the Fourier transform of f ∈ S ′

e is equal to an integrable function f̂(σ, �),
then the inversion formula

f̂(σ, �) = cn |�| (‖σ‖2 + �2)(n−1)/2 ĝ(σ,
√

‖σ‖2 + �2) (11.7)

holds true with cn = |Sn|/(2 (2π)n) and g = Mf .
The adjoint operator M∗ : Sr → Se has dense range and is given by

M∗g(x′, xn+1) =
∫

Rn

g
(
z,
√

‖z − x′‖2 + x2n+1

)
dz . (11.8)

We further have
FM∗g(σ, �) = ĝ(σ,

√
‖σ‖2 + �2) . (11.9)

Note that the function ĝ on the right-hand side of equation (11.7) is a
Fourier transform of a function on R

2n+1, which is radially symmetric with
respect to the last n + 1 variables, and so is ĝ. In the entire Part III, we
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define the Fourier transform without the normalizing factor (2π)−n/2 to be
consistent with Andersson’s article [5].

Remark 11.4. The adjoint operator M∗ integrates a function g ∈ Sr over all
spheres containing the point x = (x′, xn+1)�. That is why M∗ is called back-
projection just as in case of the Radon transform R. But in contrast to R∗,
the adjoint M∗ maps rapidly decreasing functions to rapidly decreasing func-
tions.
We further remark that it is not possible to formulate the spherical mean
operator as linear, bounded mapping between Sobolev spaces of negative or-
der. This becomes clear by Figure 11.2 showing that a function, which is not
continuous, has a range of large local smoothness or by the estimate

‖f‖Hα(Rn+1) ≤
√

|Sn|
2

‖Mf‖Hα+1/2(R2n+1) (11.10)

and its proof which can be read in [5, Theorem 3.1]. Note that the Sobolev
norm at the right-hand side of the estimate does not need to be finite.
Defining the operator K : Hα(Rn+1) ∩ S ′

r,cone → Hα+n(R2n+1) ∩ S ′
r via

FKg(σ, �) =
√
�2 − ‖σ‖2 �n−1 ĝ(σ, �), the inversion formula (11.7) has the

representation
f = cnM∗ KMf

and hence a structure which is according to the inversion formula (2.19) of R.

We aim to transfer the concepts of Chapter 4 to the problem of solving

Mf = g . (11.11)

To compute reconstruction kernels, we need a solution of

M∗υγ(y) = eγ(y) , eγ(y) ∈ Se . (11.12)

Theorem 11.3 tells us that we have the situation described in part b) of
Remark 4.3: if eγ(y) ∈ R(M∗), then υγ(y) lies in Sr. Against this background,
the extension lemma [5, Lemma 2.4] is of great importance.

Lemma 11.5. There exists a linear and continuous mapping E : Se → Sr

satisfying
M∗ E = 1Se , (11.13)

where 1Se denotes the identity on Se, 1Se(f) = f , f ∈ Se. For � ≥ ‖σ‖ the
mapping E is characterized by the Fourier transform

FEf(σ, �) = f̂(σ,
√
�2 − ‖σ‖2) , σ ∈ R

n , � ≥ 0 . (11.14)

Identity (11.13) can easily be deduced from (11.14) with the help of rep-
resentation (11.9). The crucial difficulty of proving Lemma 11.5 is to extend
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FE for � < ‖σ‖. Andersson uses in [5] an extension theorem contained in
the book of Stein [123]. Since this theorem does not provide an explicit rep-
resentation of FE, we will use another technique to obtain an extension in
Chapter 12.

To increase the efficiency of the inversion method, we used the existence of
invariances in case of an operator between Hilbert spaces. Lemma 4.5 promises
an improvement in efficiency in the distributional case, too, as long as an
intertwining property applies to the adjoint M∗, since M is one-to-one on S ′

e.
Lemma 11.6 will show that such an intertwining in fact does exist. But first,
we introduce some notations.

For real M > 1 we distinguish certain open subsets of R
n+1. We define

HM := HM (Rn+1) = {y = (y′, yn+1)� ∈ R
n+1 : 1/M < |yn+1|} ,

HM,M := HM,M (Rn+1) = {y = (y′, yn+1)� ∈ R
n+1 : 1/M < |yn+1| < M} .

Since the invariances in (11.15), (11.16) use dilations in yn+1, the reconstruc-
tion points y must be contained in the complement of the hyperplane yn+1 = 0.
That is why we introduced the set HM . To state convergence results as in
Corollary 11.7 we even have to postulate that yn+1 is bounded. That is the
reason to define HM,M . For an open subset U ⊂ R

n+1 we denote

Se(U) := {v ∈ Se : supp v ⊂ U} ,
S ′

e(U) := {λ ∈ S ′
e : supp λ ⊂ U} ,

E ′
e(U) := {λ ∈ S ′

e : supp λ ⊂ U is compact} .

Note that in general S ′
e(U) represents a proper subspace of Se(U)′. Finally,

let mappings T y
e,M : Se → Se and Gyr,M : Sr → Sr be defined by

T y
e,Mv(x) =

{
|yn+1|−n−1 v

(
x′−y′
|yn+1| ,

xn+1
|yn+1|

)
, y ∈ HM (Rn+1) ,

0 , y �∈ HM (Rn+1) ,
(11.15)

Gyr,Mw(z, r) =

{
|yn+1|−2n−1 w

(
z−y′
|yn+1| ,

r
|yn+1|

)
, y ∈ HM (Rn+1) ,

0 , y �∈ HM (Rn+1) .
(11.16)

Obviously, T y
e,M and Gyr,M are linear and bounded as compositions of transla-

tions and dilations. But nevertheless T y
e,Mv as well as Gyr,Mw may be discon-

tinuous in y for yn+1 = ±1/M . Both mappings fulfill the desired intertwining
property with respect to M∗.

Lemma 11.6. Let T y
e,M : Se → Se and Gyr,M : Sr → Sr be given as in (11.15),

(11.16) respectively. Then

T y
e,M M∗ = M∗ Gyr,M , y ∈ R

n+1 . (11.17)

Proof. When y �∈ HM (Rn+1), then there is nothing to show, since both sides
of (11.17) are equal to zero.
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Let y ∈ HM (Rn+1). Using representation (11.8) and appropriate substitutions
yield

M∗ Gyr,Mw(x′, xn+1) =

= |yn+1|−2n−1

∫

Rn

w
( z − y′
|yn+1|

, |yn+1|−1
√

‖z − x′‖2 + x2n+1

)
dz

= |yn+1|−n−1

∫

Rn

w
(
z − |yn+1|−1 y′,

√
‖z − |yn+1|−1 x′‖2 + |yn+1|−2 x2n+1

)
dz

= |yn+1|−n−1

∫

Rn

w
(
z,
√
‖z − |yn+1|−1 (x′ − y′)‖2 + |yn+1|−2 x2n+1

)
dz

= T y
e,M M∗w(x′, xn+1) ,

where w ∈ Sr. This completes the proof. ��

Lemma 11.6 allows for solving equation (11.12) for a single y ∈ R
n+1 only.

We conclude this section by remarking that the transform T y
e,∞ :=

limM→∞ T y
e,M is a representation of the group (Rn,+) × ((0,+∞), ·). The

identity element of that group is (0, . . . , 0, 1)� which is exactly that point for
which equation (11.12) is to be solved. Thus, the invariances are adjusted to
the given measurement geometry.

11.3 Approximate inverse for M

We give an outline how to transfer the abstract framework of distributional
approximate inverse from Chapter 4 to the spherical mean operator M. We
identify A = M, V = Se, W = Sr, T y

1 = T y
e,M and T y

2 = Gyr,M and consider
first the continuous problem (11.11). At the end of this section, we briefly
deal with the semi-discrete setting which is necessary for the implementation
of the method in Chapter 14.

Assume that we have an eγ(y) at hand which is in Se for every y ∈ R
n+1

and satisfies the requirements to be a mollifier according to Definition 4.1.
The reconstruction kernel υγ(y) associated with eγ(y) solves equation (11.12)
and is an element of Sr for every y ∈ R

n+1 due to part b) from Remark 4.3
and Theorem 11.3. Applying Lemma 11.5, we immediately see that

υγ(y) = Eeγ(y) (11.18)

fulfills (11.12). The intertwining property (11.17) enables us to solve equation
(11.18) for y = (0, . . . , 0, 1) ∈ R

n+1 only.

Corollary 11.7. For all γ > 0 let ēγ ∈ Se(Rn+1) and eγ(y) ∈ Se(Rn+1) be
generated for fixed M > 1 by the transform T y

e,M ,

eγ(y) = T y
e,M ēγ , y ∈ R

n+1 . (11.19)
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Assume that eγ is a mollifier for M according to Definition 4.1. Then all
corresponding reconstruction kernels υγ(y) are obtained by

ῡγ = Eēγ (11.20)

and
υγ(y) = υγ(y)(z, r) = Gyr,M ῡγ(z, r) . (11.21)

If eγ is a (E ′
e(HM,M ),Se(HM,M ))-mollifier according to Definition 4.1, then

M̃γ Mf := 〈Mf, υγ(·)〉S′
r×Sr → f as γ → 0

for all f ∈ E ′
e(HM,M ). That means

lim
γ→0

〈〈Mf, υγ(·)〉S′
r×Sr , β〉E′

e(HM,M )×Se(HM,M ) = 〈f, β〉E′
e(HM,M )×Se(HM,M )

whenever β ∈ Se(HM,M ).

Proof. Obviously, ῡ = Eēγ satisfies M∗ῡ = ēγ . Lemma 11.6 then gives the
identities

eγ(x, y) = T y
e,M ēγ(x) = T y

e,M M∗ῡγ = M∗ Gyr,M ῡγ(x) = M∗{υγ(y)}(x) .

Taking into account that M∗υγ(y) = eγ(y), the convergences are conclusions
from Definition 4.1. ��

Remark 11.8. The fact that eγ(y) is generated by T y
e,M implies that

supp M̃γ Mf ⊂ HM .

As a consequence we can only recover objects f(y) whose support has a dis-
tance greater than 1/M from the plane {yn+1 = 0}. This is not a restriction
for applications in SONAR and SAR, since the objects to be detected always
have a positive distance from the measure plane {yn+1 = 0}. Thus, the objects
always are supported in HM (Rn+1) for sufficiently large M .
We will present a criterion for ēγ which guarantees that (11.19) generates
a (E ′

e(HM,M ),Se(HM,M ))-mollifier in Chapter 12. Essentially, it is sufficient
for ēγ to have mean value 1. Note that Corollary 11.7 says that using a
(E ′

e(HM,M ),Se(HM,M ))-mollifier we have (weak) convergence of M̃γ Mf for
distributions f with support in HM,M (Rn+1) only. But again, M may be
arbitrarily large.

Besides the translation invariance M has a dilation invariance, too. We
have

M∗ Dγg(x) = γ−n−1 M∗g(γ−1 x)

with Dγg(z, r) = γ−2n−1 g(z/γ, r/γ). Thus, it would preferable to transfer
this property to the mollifier eγ(y) by eγ(x, y) := γ−n−1 T y

e,M ē1(x/γ). But
unfortunately, such an eγ does not fulfill the mollifier property of Definition
4.1 anymore.
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We summarize the method of approximate inverse for solving Mf = g,
f ∈ E ′

e(HM,M ).

• Choose ēγ ∈ Se(Rn+1) such that

eγ(x, y) = T y
e,M ēγ(x)

is a mollifier.
• Compute ῡγ = Eēγ .
• Evaluate

M̃γg(y) = 〈g,Gyr,M ῡγ〉S′
r×Sr (11.22)

for y ∈ HM,M (Rn+1).

The crucial task in applying this algorithm is the computation of ῡγ = Eēγ .
Representation (11.14) of FEg is valid only for � ≥ ‖σ‖. To calculate ῡγ , we
need FEēγ for all � ≥ 0. This fact has to be taken into account when designing
an appropriate mollifier.

Remark 11.9. By means of Parseval’s identity M̃γg can be expressed by

M̃γg(y) = (2π)−2n−1 〈Fg,FGyr,M ῡγ〉S′
r×Sr .

From (11.6) we see that

supp Fg = supp FMf ⊂ {(σ, �) ∈ R
n × [0,∞) : � ≥ ‖σ‖} .

Hence, it seems sufficient to have knowledge of ῡγ for � ≥ ‖σ‖ only. But then
it would be necessary to calculate the Fourier transform of the measured data,
which ought to be avoided for two reasons. A discrete Fourier transform would
extend the data periodically, which are known in a bounded domain only,
leading to artifacts. On the other hand, we would have to calculate a three-
dimensional Fourier transform in the 2D case (n = 1) and a Fourier transform
in five dimensions for the 3D case (n = 2) which would decrease efficiency of
the method significantly, since we could not use the radial symmetry in the
last n+ 1 variables of Mf .

We conclude the chapter by dealing with the semi-discrete setting which
is of great importance from a practical point of view. To this end, let f ∈
E ′
e(HM,M ) be such that Mf can be identified with a continuous function

which does not need to be integrable. If the measured data Mf are given for
p+ 1 centers zk ∈ R

n, k = 0, . . . , p and for q + 1 radii rl, r0 < r1 < . . . < rq,
then we have to solve

ΨN Mf = gN , gN ∈ R
N , N = (p+ 1)(q + 1) . (11.23)

The observation operator ΨN : C(Rn × R
+
0 ) → R

N is defined by

(ΨNw)k,l = w(zk, rl) , k = 0, . . . , p , l = 0, . . . , q .



11.3 Approximate inverse for M 121

As we do not have a rigorous convergence theory as in the case of Hilbert
spaces, we have to define the semi-discrete approximate inverse in another way.
Since we have only a finite number of data and Mf is a continuous function,
the dual pairing on the right-hand side of (11.22) is a double integral with
a bounded domain of integration. This suggests the application of numerical
integration leading to

M̃N,γgN (y) := 〈gN ,QN ΨN Gyr,M ῡγ〉RN . (11.24)

The weights from numerical integration are contained in the matrix QN ∈
R
N×N . The continuity of Mf(z, r)Gyr,M ῡγ(z, r) yields pointwise convergence

lim
N→∞

M̃N,γΨN Mf(y) = 〈Mf,Gyr,M , ῡγ〉L2(ch∞×[0,r∞)) , (11.25)

where ch∞ and r∞ are defined via

ch∞ :=
∞⋃

p=1

ch
(
{zk}pk=0

)
, r∞ := lim

q→∞ rq

and ch({zk}) denotes the convex hull of the centers {zk}, k = 0, . . . , p, in
R
n. The right-hand side of (11.25) equals 〈f, eγ(y)〉S′

e×Se , if ch∞ = R
n and

r∞ = +∞. For γ → 0, we obtain then (weak) convergence to f .
It is an open question, whether this is possible or not, and how the three

parameters γ → 0, p, q → ∞ must be coupled to get convergence as in
Corollary 8.4.




