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175 rue du Chevaleret, 75013 Paris, France
e-mail: chyb@ccr.jussieu.fr

Summary. This note presents some properties of positive càdlàg local martin-
gales which are not martingales – strict local martingales – extending the results
from [MY06] to local martingales with jumps. Some new examples of strict local
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Markov processes.
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1 Main results

Let (Ω,F ,Ft,P) be a filtered probability space. On Ω × R+ we denote by O
and P respectively – the optional and predictable sigma fields and by B (R)
the Borel sigma field. Consider (St)t�0 – an R+ valued local martingale with
respect to the filtration (Ft)t�0. For the definitions of local time for discon-
tinuous local martingales we follow ([TL78], pages 17–22; see also [Mey76]
and [Pro05]). For each a ∈ R there exists a continuous increasing process
(La

t , t � 0), such that Tanaka’s formula holds:

(St − a)+ = (S0 − a)+ +
∫ t

0+

1{Su−>a}dSu

+
∑

0<u�t

[
1{Su−>a} (Su − a)− + 1{Su−�a} (Su − a)+

]
+

1
2
La

t , (1)
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which we write equivalently:

(St − a)+ = (S0 − a)+ +
∫ t

0+

1{Su−>a}dSu +
1
2
La

t .

Furthermore, there exists a B (R) × O measurable version of L, a.s. càdlàg
in t, and a B (R) × P measurable version of L, which is a.s. continuous in t.
We will only consider such versions. Also note that for any f � 0, Borel,

∫ t

0

f (Su) d 〈Sc, Sc〉u =
∫ +∞

−∞
f (a)La

t da.

We shall say that T is a (Ft) stopping time which reduces the local mar-
tingale S if (St∧T ) is a uniformly integrable martingale. We shall say that a
process X is in class (D) if the family {Xτ , τ - a.s. finite (Ft) stopping time}
is uniformly integrable.

The following Theorem is a straightforward generalization of Theorem 1
in [MY06].

Theorem 1. Let τ be an (Ft) stopping time such that τ < +∞ a.s. and
K � 0. Then there is the following identity

E (Sτ −K)+ = E (S0 −K)+ + EJK
τ +

1
2

ELK
τ − cS (τ) , (2)

where cS (τ) := E (S0 − Sτ ),

JK
τ :=

∑

0<u�τ

1{Su−>K} (Su −K)− +
∑

0<u�τ

1{Su−�K} (Su −K)+ (3)

=
1
2
(
LK

τ − LK
τ

)

and
(
LK

t

)
t�0

is the (continuous) local time at K of S.

Proof. Taking a = K in Tanaka’s formula (1) , one has

(St −K)+ − (S0 −K)+ =
∫ t

0+

1{Su−>K}dSu +
∑

0<u�t

1{Su−>K} (Su −K)−

+
∑

0<u�t

1{Su−�K} (Su −K)+ +
1
2
LK

t ,

introducing JK
t as in (3) one obtains

NK
t :=

[
(St −K)+ − St

]
−
[
(S0 −K)+ − S0 + JK

t +
1
2
LK

t

]

=
∫ t

0+

1{Su−>K}dSu + S0 − St
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and
(
NK

t

)
t�0

is a local martingale. Since (St −K)+ − St = − (St ∧K) , one
has

−NK
t = St ∧K − S0 ∧K + JK

t +
1
2
LK

t .

In order to get (2) it is enough to prove that NK
t is in class (D) , i.e., the family

NK
τ 1{τ<+∞}, where τ ranges all (Ft) stopping times, is uniformly integrable.

Indeed, again from Tanaka’s formula

(St −K)+ − (S0 −K)+ − JK
t − 1

2
LK

t =
∫ t

0+

1{Su−>K}dSu.

Let (τn)n�1 (τn → +∞ a.s.) be a sequence of (Ft) stopping times which
reduces both (St)t�0 and

( ∫ t

0+
1{Su−>K}dSu

)
t�0

. Then one gets

EJK
t∧τn

+
1
2

ELK
t∧τn

= E

[
(St∧τn

−K)+ − (S0 −K)+
]

� ESt∧τn
= ES0.

Finally, by Beppo-Levi:

EJK
t +

1
2

ELK
t � ES0

and

EJK
∞ +

1
2

ELK
∞ � ES0,

then for any (Ft) stopping time τ

∣
∣NK

τ 1{τ<+∞}
∣
∣ � 2K + JK

∞ +
1
2
LK
∞ a.s. ,

which ensures that
(
NK

t

)
t�0

is in class (D). Therefore
(
NK

t

)
t�0

is a uniformly
integrable martingale and the result follows. ��

Let τ be an (Ft) stopping time which is a.s. finite. With notations from
[LN06] suppose that S ∈ M2

loc, and moreover that: 〈S〉∞ < ∞ a.s., S+ is in
class (D) , |∆S| � C and

EeεSτ < ∞

for some positive constants C and ε. Then from Theorem 1.1 in [LN06] the
term cS (τ) := E (S0 − Sτ ) in (2) can be characterized as

cS (τ) = lim
λ→∞

λ

√
π

2
P

(
〈S〉1/2

τ > λ
)

= lim
λ→∞

λ

√
π

2
P

(
[S, S]1/2

τ > λ
)
.

Besides as a consequence of (2) one obtains

cS (τ) = lim
K→∞

(
EJK

τ +
1
2

ELK
τ

)
.
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Let τ be an a.s. finite (Ft) stopping time. Define

Cstrict (K, τ) := lim
n→∞

E (Sτ∧Tn
−K)+ , (4)

where Tn → ∞ a.s., Tn reduces (St)t�0. The following proposition shows that
this limit exists and does not depend on the reducing sequence Tn, n � 1.

Proposition 1. Let τ be an a.s. finite (Ft) stopping time. Then

Cstrict (K, τ) = E (S0 −K)+ + EJK
τ +

1
2

ELK
τ . (5)

Furthermore, if the process (∆St)t�0 is in class (D), then

Cstrict (K, τ) = E

[
(Sτ −K)+

]
+ lim

n→∞
nP (S∗

τ > n) ,

where S∗
t := sup0�u�t Su.

Proof. By Tanaka’s formula

(St −K)+ − (S0 −K)+ =
∫ t

0+

1{Su−>K}dSu + JK
t +

1
2
LK

t ,

where JK
t is defined by (3). Since (St)t�0 is a local martingale,

SK
t :=

∫ t

0+

1{Su−>K}dSu

is also a local martingale. We have seen in the proof of Theorem 1 that

NK
t =

∫ t

0+

1{Su−>K}dSu + S0 − St

is a uniformly integrable martingale, then

SK
t := NK

t + St − S0

is the sum of a uniformly integrable martingale and a local martingale (St)t�0.
Therefore a stopping time which reduces (St)t�0 reduces

(
SK

t

)
t�0

as well.
Let T be an (Ft) stopping time which reduces (St)t�0. Then St∧T and SK

t∧T

are uniformly integrable martingales. For any τ – an a.s. finite (Ft) stopping
time one gets

E (Sτ∧T −K)+ = E (S0 −K)+ + EJK
τ∧T +

1
2

ELK
τ∧T , (6)

now taking for T a stopping time Tn, such that Tn → ∞ a.s. and Tn reduces
(St)t�0 , one obtains that
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Cstrict (K, τ) := lim
n→∞

E (Sτ∧Tn
−K)+

exists and does not depend on the sequence of stopping times reducing (St)t�0.
Furthermore,

Cstrict (K, τ) = E (S0 −K)+ + EJK
τ +

1
2

ELK
τ .

In order to move further suppose that the process (∆St)t�0 is in class (D).
Take

Tn := inf {u > 0 |Su > n} .
Since (St)t�0 is an adapted càdlàg process, Tn is an (Ft) stopping time and
Tn → ∞ a.s. Since

|St∧Tn
| � n + ∆STn

,

(St∧Tn
)t�0 is in class (D) and subsequently is a uniformly integrable martin-

gale. In particular Tn is an (Ft) stopping time which reduces (St)t�0. Now
one can get for any τ - an a.s. finite (Ft) stopping time

E (Sτ∧Tn
−K)+ = E

[
(Sτ −K)+ 1{τ�Tn}

]
+ E

[
(STn

−K)+ 1{τ>Tn}

]
.

The left hand side converges and equals Cstrict (K, τ). The first expression
on the right hand side converges as well (by Beppo-Levi) to E

[
(Sτ −K)+

]
.

Hence E
[
(STn

−K)+ 1{τ>Tn}
]

converges as well. Besides one has for n > K

(n−K) P (τ > Tn) � E

[
(STn

−K)+ 1{τ>Tn}

]

� (n−K) P (τ > Tn) + E
[
∆STn

1{τ>Tn}
]

and

E

[
(STn

−K)+ 1{τ>Tn}

]
− E

[
∆STn

1{τ>Tn}
]

� (n−K) P (τ > Tn)

� E

[
(STn

−K)+ 1{τ>Tn}

]
.

Since
(
∆STn

1{τ>Tn}
)
n�1

is a uniformly integrable family E
[
∆STn

1{τ>Tn}
]
→0,

as n → ∞, and

lim
n→∞

E

[
(STn

−K)+ 1{τ>Tn}

]
= lim

n→∞
(n−K) P (τ > Tn)= lim

n→∞
nP (S∗

τ > n).

Finally

lim
n→∞

E (Sτ∧Tn
−K)+ = E

[
(Sτ −K)+

]
+ lim

n→∞
nP (S∗

τ > n) ,

where S∗
t := sup0�u�t Su. ��
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Remark 1. Note that from Theorem 1 and Proposition 1 for any positive local
martingale S, such that (∆St)t�0 is in class (D), and for any a.s. finite (Ft)
stopping time τ

cS (τ) = lim
n→∞

nP (S∗
τ > n) .

Remark 2. Under the conditions of Proposition 1

Cstrict (K, τ) = sup
σ-(Ft) stopping time

E (Sσ∧τ −K)+ . (7)

Proof. From (6) one obtains that for any pair of (Ft) stopping times τ , σ and
a sequence of stopping times Rn, such that Rn → ∞ a.s. and Rn reduces
(St)t�0

E (Sτ∧σ∧Rn
−K)+ = E (S0 −K)+ + EJK

τ∧σ∧Rn
+

1
2

ELK
τ∧σ∧Rn

.

Then by Fatou’s Lemma

E (Sτ∧σ −K)+ � E (S0 −K)+ + lim inf
n→∞

[
EJK

τ∧σ∧Rn
+

1
2

ELK
τ∧σ∧Rn

]

= E (S0 −K)+ + EJK
τ∧σ +

1
2

ELK
τ∧σ

� E (S0 −K)+ + EJK
τ +

1
2

ELK
τ .

Now (7) follows from (5) and (4). ��
Remark 3. The original proof of Proposition 2 in [MY06] differs a little from
ours. In order to obtain (6), the fact that the stopping time which reduces
(St)t�0 reduces as well

(
SK

t

)
t�0

, is not used. Let us go through this other
proof and see that there is no contradiction.

Proof. Let T be an (Ft) stopping time which reduces (St)t�0 and TK
n , n � 1,

TK
n → ∞ be a sequence of stopping times that reduce

(
SK

t

)
t�0

. Then for any
τ – an a.s. finite (Ft) stopping time – one gets

E
(
Sτ∧T∧T K

n
−K

)+ = E (S0 −K)+ + EJK
τ∧T∧T K

n
+

1
2

ELK
τ∧T∧T K

n
.

On the right hand side one can pass to the limit as TK
n → ∞ by Beppo-Levi

and get a finite limit as soon as we already know from the proof of Theorem 1
that

EJK
∞ +

1
2

ELK
∞ � ES0.

On the left hand side,
(
Sτ∧T∧T K

n

)
n�1

is a uniformly integrable martingale,
thus it converges in L1 to Sτ∧T . Finally one gets

E (Sτ∧T −K)+ = E (S0 −K)+ + EJK
τ∧T +

1
2

ELK
τ∧T , (8)

which is the same as (6) . ��
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For any µ – a finite measure on R+ define

Fµ (x) :=
∫ +∞

0

µ (dK) (x−K)+

and µ̄ :=
∫ +∞
0

µ (dK). As in [MY06] we have the following Proposition and
Corollary (the proofs are the same as in the continuous case).

Proposition 2. Under the notations and assumptions of Theorem 1

E [Fµ (Sτ )] = Fµ (S0) + E

[∫ +∞

0

µ (dK)
(
JK

τ +
1
2
LK

τ

)]
− µ̄cS (τ) .

Corollary 1. The process

Fµ (St) − Fµ (S0) −
∫ +∞

0

µ (dK)
(
JK

t +
1
2
LK

t

)
− µ̄ (St − S0) , t � 0

is a martingale.

2 Examples

One can trivially construct strict local martingales from continuous strict local
martingales: indeed, Mt := M

(c)
t +M

(d)
t and

(
M

(c)
t

)
is a strict local martingale

and
(
M

(d)
t

)
is a uniformly integrable martingale, then (Mt) is a strict local

martingale.
We now obtain strict local martingales with jumps which are generaliza-

tions of the strict local martingale
(
1/R(3)

t

)
, where

(
R

(3)
t

)
is a Bessel process

of dimension 3. As in the case of
(
1/R(3)

t

)
, such strict local martingales can be

obtained from absolute continuity relationships between two Dunkl Markov
processes instead of Bessel processes. For simplicity, we consider here only one
dimensional Dunkl Markov processes (see [GY06]).

The Dunkl Markov process (Xt) with parameter k is a Feller process with
extended generator given for f ∈ C2 (R) by

Lkf (x) =
1
2
f ′′ (x) + k

(
1
x
f ′ (x) − f (x) − f (−x)

2x2

)
,

where k � 0. Note that |X| is a Bessel process with index ν := k− 1
2 . Denote

by P
(k)
x the law of (Xt) started at x ∈ R, and by

(
FX

t

)
the natural filtration

of X.

Proposition 3. Let 0 � k < 1
2 � k′ and x > 0. Define

T0 := inf {s � 0 |Xs− = 0 or Xs = 0} .
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Then P
(k)
x (T0 < +∞) = 1 and there is the following absolute continuity rela-

tionship:

P
(k′)
x

∣
∣
∣
∣
FX

t

=
(
|Xt∧T0 |

|x|

)k′−k (
k′

k

)Nt∧T0

exp

(

− (k′)2 − k2

2

∫ t∧T0

0

ds

X2
s

)

P (k)
x

∣
∣
∣
FX

t

, (9)

where Nt denotes the number of jumps of X on [0, t]. Furthermore

Mt :=
(

|x|
|Xt|

)k′−k (
k

k′

)Nt

exp

(
(k′)2 − k2

2

∫ t

0

ds

X2
s

)

(10)

is a strict local martingale under P
(k′)
x , and

P (k)
x (T0 > t) = E

(k′)
x Mt, (11)

where E
(k′)
x is the expectation under P

(k′)
x .

Remark 4. Note that the law of T0 under P
(k)
x is that of x2/

(
2Z( 1

2−k)
)
, where

Z( 1
2−k) is a gamma variable of a parameter 1

2 − k (see page 98 in [Yor01]).

Proof. Let X be a Dunkl Markov process. Note that ∆Xs = Xs − Xs− =
−2Xs−, when ∆Xs �= 0. Hence if Xs = 0, then Xs− = 0 and

T0 = inf {s � 0 |Xs− = 0} = inf {s � 0 ||Xs| = 0} .

In order to prove (9) we proceed as in the proof of Proposition 4 in [GY06].
First we need to extend Theorem 3 in [GY06] for k < 1

2 . Since |X| is a Bessel
process with index

(
k − 1

2

)
, for k < 1

2 , T0 < +∞ a.s., and, for k � 1
2 , T0 = +∞

a.s. Denote

τt := inf
{
s � 0

∣
∣
∣
∣

∫ s

0

du

X2
u

= t

}
,

then τt is a continuous strictly increasing time change and τ∞ = T0. Denote
Yu := Xτu

. Since for any f ∈ C2 (R)

f (Xt) − f (X0) −
∫ t

0

Lkf (Xs) ds

is a local martingale,

f (Yu) − f (Y0) −
∫ t

0

Y 2
s Lkf (Ys) ds
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is a local martingale. Then, as in the proof of Theorem 4 in [GY06], one
obtains that Y is of the form

Yu = exp
(
β(ν)

u + iπN (k/2)
u

)
,

where ν := k − 1
2 ,
(
β

(ν)
u

)
is a Brownian motion with drift ν,

(
N

(k/2)
u

)
is a

Poisson process with parameter k/2 independent from
(
β

(ν)
u

)
. Denote

At :=
∫ t

0

du

X2
u

,

then τAt
= t, for t < T0. Hence

Xt = YAt
, t < T0. (12)

Note also that differentiating the equality Aτt
= t with respect to time one

gets
d

dt
τt = Y 2

t

and At = inf
{
s � 0

∣
∣∫ s

0
Y 2

u du = t
}
, t < T0. Note that (9) is equivalent to

P (k)
x

∣
∣
∣
FX

t ∩{t<T0}
=
(

|x|
|Xt|

)k′−k (
k

k′

)Nt

exp

(
(k′)2 − k2

2

∫ t

0

ds

X2
s

)

P
(k′)
x

∣
∣
∣
∣
FX

t

.

(13)
Indeed (9) is equivalent to

E
(k′)
x (F (Xs, s � t)) = E

(k)
x

(
F (Xs, s � t)

1
Mt∧T0

)

= E
(k)
x

(
F (Xs, s � t)

1
Mt

1{t<T0}

)
,

for any bounded measurable F , (Mt) is given by (10). Then

E
(k′)
x

(
Mt1{t<T0}F̂ (Xs, s � t)

)
= E

(k)
x

(
F̂ (Xs, s � t)1{t<T0}

)
,

which is equivalent to (13). By (12) X is associated to the pair
(
β(ν), N (k/2)

)

under P (k), and to the pair
(
β(ν′), N(k′/2)) under P (k′). Both pairs consist

of a Brownian motion with drift and a Poisson process which are mutually
independent, and ν := k − 1

2 , ν′ := k′ − 1
2 . Now in the same way as in the

proof of Proposition 4 in [GY06], for any bounded measurable F ,

E
(k)
x

(
F
(
β(ν)

s , N (k)
s , s � t

))
= E

(k′)
x

(
DtF

(
β
(ν′)
s , N

(k′)
s , s � t

))
,

where
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Dt := exp
(

(ν − ν′)β(ν′)
t − 1

2

(
ν2 − (ν′)2

)
t

)(
k

k′

)N
(k′/2)
t

exp
(
−1

2
(k − k′) t

)

= exp
(

(k − k′)β(ν′)
t − 1

2

(
k2 − (k′)2

)
t

)(
k

k′

)N
(k′/2)
t

and DAt
= Mt, t < T0. Denote Gt := σ

{
β
(ν′)
s , N

(k′/2)
s , s � t

}
, then

F

(
β
(ν′)
As

, N
(k′/2)
As

)
1{As�u}

is GAs∧u measurable and

E
(k)
x

(
F
(
β

(ν)
As

, N
(k/2)
As

)
1{As�u}

)

= E
(k′)
x

(
E

(k′) (Dt |GAs∧u )F
(
β
(ν′)
As

, N
(k′/2)
As

)
1{As�u}

)

= E
(k′)
x

(
DAs

F

(
β
(ν′)
As

, N
(k′/2)
As

)
1{As�u}

)
.

As u → +∞ one gets

E
(k)
x

(
F
(
β

(ν)
As

, N
(k/2)
As

)
1{As<+∞}

)

= E
(k′)
x

(
DAs

F

(
β
(ν′)
As

, N
(k′/2)
As

)
1{As<+∞}

)
. (14)

Noting that (As < +∞) = (s < T0), (14) leads to (13). From (13) one
easily obtains (11). Suppose that (Mt) is a martingale then from (11) for any
t � 0 P

(k)
x (T0 > t) = 1 and P

(k)
x (T0 = +∞) = 1, which is impossible because

k < 1
2 . Hence (Mt) is a strict local martingale. ��

Other examples of strict local martingales with jumps can be obtained
from absolute continuity relationships between two non-negative semi-stable
Markov processes. We shortly recall the definition of a semi-stable Markov
process (see [Lam72]):

A semi-stable Markov process (with index of stability α = 1) on R+ :=
[0, +∞) is a Markov process (Xt) with the following scaling property: for any
c > 0 (

1
c
X

(x)
ct

)

t�0

(d)
=
(
X

(xc−1)
t

)

t�0

,

where
(
X

(x)
t

)
denotes a semi-stable Markov process started at x > 0. Denote
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T0 := inf {s � 0 |Xs− = 0 or Xs = 0} , (15)

then Lamperti in [Lam72] showed that: either T0 = +∞ a.s., or T0 < +∞ a.s.
and XT0− = 0 a.s., or T0 < +∞ a.s. and XT0− > 0 a.s. Furthermore this does
not depend on the starting point x > 0.

Note that for a semi-stable Markov process the following Lamperti relation
is true. We suppose that there is no killing inside (0, ∞).

Proposition 4. Let (ξt) be a one-dimensional Lévy process, starting at 0.
Define

A
(x)
t :=

∫ t

0

x exp (ξs) ds,

for any x > 0. Then the process (Xu), defined implicitly by

x exp ξt = X
A

(x)
t

, t < T0, (16)

is a semi-stable Markov process, starting at x, and

A(x)
∞ = T0, (17)

where T0 is defined by (15). The converse is also true.

Denote
τ

(x)
t := inf

{
s � 0

∣
∣
∣A(x)

s = t
}
.

Let
(
Fξ

t

)
be the natural filtration of (ξt) and

(
FX

t

)
be the natural filtration of

(Xt). As in [CPY94], using Proposition 4, one obtains the following absolute
continuity relationship between two semi-stable Markov processes.

Proposition 5. Suppose that (Xt) is a semi-stable Markov process associated
with Lévy process (ξt) via Lamperti relation (16) and EP ebξt = etρ(b) < ∞.
Define Q by

Q|FX
t ∩{t<T0} =

(
Xt

x

)b

exp
(
−ρ (b)

∫ t

0

ds

X2
s

)
P |FX

t ∩{t<T0},

where T0 is defined by (15). Then, under Q, (Xt) is still a semi-stable Markov
process associated with Lévy process (ξt) via Lamperti relation (16) and

Ψ̃ (u) = Ψ (u− ib) − Ψ (−ib) ,

where Ψ , Ψ̃ are the characteristic exponents of (ξt) under P and Q respectively.

Proof. Let us consider the change of measure given by the Esscher transform:

Q|Fξ
t

= exp (bξt − ρ (b) t) P |Fξ
t
.
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Since Eebξt = etρ(b) < ∞

Mt := exp (bξt − ρ (b) t)

is a martingale. Furthermore (ξt) is still a Lévy process under Q. Note that{
τ

(x)
t < +∞

}
= {t < T0} and for any t < T0

A
(x)

τ
(x)
t

= t. (18)

Denote Gt := Fξ

τ
(x)
t

, then for any A ∈ Gt

Q
(
A ∩

{
τ

(x)
t � u

})
= EP

(
1

A∩
{

τ
(x)
t �u

} exp
(
bξ

τ
(x)
t

− ρ (b) τ (x)
t

))
. (19)

Note that (Xt/x)b = exp
(
bξ

τ
(x)
t

)
on {t < T0}. Differentiating (18) one gets

that
d

dt
τ

(x)
t =

1
X2

t

.

Letting u tend to infinity, from (19) one gets

Q
(
A ∩

{
τ

(x)
t < +∞

})

= EP

(

1
A∩
{

τ
(x)
t <+∞

}
(
Xt

x

)b

exp
(
−ρ (b)

∫ t

0

ds

X2
s

))

.

But from (17)
{
τ

(x)
t < +∞

}
= {t < T0}. Hence

Q (A ∩ {t < T0}) = EP

(

1A∩{t<T0}

(
Xt

x

)b

exp
(
−ρ (b)

∫ t

0

ds

X2
s

))

. ��

Let us find the range of the parameter b such that

Mt :=
(
Xt

x

)b

exp
(
−ρ (b)

∫ t

0

ds

X2
s

)

is a strict local martingale. Note that it is sufficient to find b such that
Q(T0 < +∞) = 1 and P (T0 = +∞) = 1. Indeed, given such a parameter

Q (t < T0) = EP (Mt)

and as in the proof of Proposition 3 (Mt) is a strict local P -martingale.
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Now let ξ be a Lévy process under P with the characteristic exponent Ψ ,
given by Lévy–Khintchine formula

Ψ (λ) = iaλ +
1
2
σ2λ2 +

∫

R

(
1 − eiλx + iλx1{|x|<1}

)
π (dx) ,

where a ∈ R, σ2 � 0 and π is a positive measure on R\ {0} such that
∫ (

1 ∧ |x|2
)
π (dx) < ∞.

Let us suppose that π has compact support. Then EP ebξt = etρ(b) < ∞ for any
t and b. Let the semi-stable Markov process X be associated to ξ via Lamperti
relation. Conditions for P (T0 = +∞) = 1 or P (T0 < +∞) = 1 bearing on(
a, σ2, π

)
can be deduced from Theorem 1 in [BY05]. Note that T0 < +∞ if

and only if ξt → −∞. Since π has compact support, from the Central Limit
Theorem for a Lévy process, ξt → −∞ if and only if EP ξ1 < 0 i.e.,

−a +
∫

|x|>1

xπ (dx) < 0.

Let Q be given by Proposition 5. Denote by Ψ̃ the characteristic exponent
of ξ under Q, then

Ψ̃ (λ) = iλ

[

a− bσ2 +
∫

|x|<1

x
(
1 − ebx

)
π (dx)

]

+
1
2
σ2λ2 +

∫

R

(
1 − eiλx + iλx1{|x|<1}

)
π̃ (dx) ,

where π̃ (dx) = ebxπ (dx). Hence, in order to have Q (T0 < +∞) = 1 and
P (T0 = +∞) = 1 one can choose b such that

−a +
∫

|x|>1

xπ (dx) � 0 (20)

and
−a + bσ2 −

∫

|x|<1

x
(
1 − ebx

)
π (dx) +

∫

|x|>1

xebxπ (dx) < 0. (21)

It is easy to see that (20) and (21) imply that b < 0. For example, for any
given a and π, such that (20) is true, one can always choose b < 0 such that

bσ2 − e−b

∫

x<−1

|x|π (dx) < a−
∫

x>1

xπ (dx), (22)

which implies (21). Note that condition (22) is more restrictive than (21).
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