3

Prerequisites

3.1 Linear Operators in Banach Spaces

In the following, we introduce basics of the language of Operator Theory that can
also be found in most textbooks on Functional Analysis [179,182,186,216,225]. For
the convenience of the reader, we also include associated proofs.

Lemma 3.1.1. (Direct sums of Banach and Hilbert spaces)

(i) Let (X, | |x) and (Y, |y) be Banach spaces over K € {R,C} and || |xxy : X x
Y — R be defined by

[Emxxy = /I€1% + I3,

forall (¢,7) € X x Y. Then (X x Y, | |xxy) is a Banach space.
(ii) Let (X,{|)x) and (Y, {|)y) be Hilbert spaces over K € {R,C} and (| )y, y :
(X x Y)?> — K be defined by

EMIE 1 Dxy 7= ElEDx + Ty
forall (¢,7m), (¢',n") € X x Y. Then (X x Y,{| )x,y) is a Hilbert space.

Proof. ‘(i)’: Obviously, | |xxy is positive definite and homogeneous. Further, it fol-
lows for (£,7), (£',n') € X x Y by the Cauchy-Schwarz inequality for the Euclidean
scalar product for R? that

[&m) + (€' n") |y
= e+ &%+ In+n'l5
< (J€lx + 1€"1x)* + (lnlly + In"Ix)* = (a+a")* + (b + ')
=d>+b +a'*+b'?+2(aa’ +bb)
<@+ +a?+b+2 @+ a'? + b2

2
= (Va2 + 0+ V£ 7)) = (1Em ey + 1En)lxr)’s
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where a := |£|

x.a' = |&'|x,b:=|n|y,b’ :=||n’|ly, and hence that

[&m) + ("0 ) xy < NEmlxy + 177" [xxy-

The completeness of (X x Y, || [xxy) is an obvious consequence of the completeness
of Xand Y.

‘(ii)’: Obviously, (| )xy is a positive definite symmetric bilinear, positive definite
hermitian sesquilinear form, respectively. Further, the induced norm on X x Y coin-
cides with the norm defined in (i). ]

Definition 3.1.2. (Linear Operators) Let (X,
over K € {R, C}. Then we define

|x) and (Y, || ||y) be Banach spaces

(i) A map A is called a Y-valued linear operator in X if its domain D(A) is a sub-
space of X, RanA c Y and A is linear. If (Y, || |y) = (X, | |x) such a map is also
called a linear operator in X.

(i) If in addition A is a Y-valued linear operator in X:

a) The graph G(A) of A by

G(A) = {(£,A6) € X x Y : £ € D(A))}.

Note that G(A) is a subspace of X x Y.

b) A is densely-defined if D(A) is in particular dense in X.

c) Ais closedif G(A) is a closed subspace of (X X Y, | |xxy)-

d) A Y-valued linear operator B in X is said to be an extension of A, symboli-
cally denoted by

AcB or BDA,

if G(A) < G(B).
e) A is closable if there is a closed extension. In this case,

G(B)

B>A,Bclosed

is a closed subspace of X x Y which, obviously, is the graph of a unique Y-
valued closed linear extension A of A, called the closure of A. By definition,
every closed extension B of A satisfies B > A.

f) If Ais closed, a core of A is a subspace D of its domain such that the closure
of A|p coincides with A, i.e., if

Ap=A.

Theorem 3.1.3. (Elementary properties of linear operators) Let (X, | |x),
(Y, | lly) be Banach spaces over K € {R,C}, A a Y-valued linear operator in X
and Be L(X,Y).
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(i) (D(A),|l||a), where | ||a : D(A) — R is defined by

[€]a = (€. A8) xxy = 4/ €]k + I1A€]5

for every £ € D(A), is a normed vector space. Further, the inclusion ¢ :
(D(A), | |la) < X is continuous and A € L((D(A), | ||a), Y).

(ii) A is closed if and only if (D(A), || ||a) is complete.

(iii) If A is closable, then G(A) = G(A) .

(iv) (Inverse mapping theorem) If A is closed and bijective, then A~! € L(Y, X).

(v) (Closed graph theorem) In addition, let D(A) = X. Then A is bounded if and
only if A is closed.

(vi) If A is closable, then A + B is also closable and

A+B=A+B.

Proof. “(i)’: Obviously, (D(A), || |a) is a normed vector space. Further, because of

laéllx = [€lx < 1/ l€]% + [A€]5 = [€]a

and
lA¢ly < A/I€% + [A€]5 = €]

for every ¢ € D(A), it follows that tx € L((D(A), | |a),X) and A € L((D(A),
), ).

‘(ii)’: Let A be closed and &, &;,... a Cauchy sequence in (D(A),||||a). Then
(&0,AD), (£1,A&1),... is a Cauchy sequence in G(A) and hence by Lemma 3.1.1
along with the closedness of G(A) convergent to some (£, A¢) € G(A). This implies
that

lim (&, —¢&[a =0
v—00

and the convergence of &y, &y, ... in (D(A), | ||a)- Let (D(A), || ||a) be complete and
(é,m) € G(A). Then there is a sequence (&, A&), (£1,AE1), ... in G(A) which is
convergent to (£, 7). Hence (&,A&), (¢1,A&)),... is a Cauchy sequence in X x Y.
As a consequence, &,&1,... is a Cauchy sequence in (D(A), | |a) and therefore
convergent to some £’ € D(A). In particular,

Jim |(&,A&,) = (€', 4€") [xxy = 0

and hence (£,7) = (£/,A¢') € G(A).

‘(iii)’: Let A be closable. Then the closed graph of every closed extension of A
contains G(A) and hence also G(A). Therefore G(A) > G(A). This implies in
particular that G(A) is the graph of a map A. Further, D(A) = pr,G(A), where
pr; := (X x Y — X, (£,5) — &), is a subspace of X and A is in particular a linear
closed extension of A. Hence A o A and G(A) = G(A) o G(A).

‘(iv)’: Let A be closed and bijective. Then it follows by (ii) that (D(A), | [a) is a
Banach space and that A € L((D(A),| |a),Y). Hence it follows by the ‘inverse
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mapping theorem’, for e.g. see Theorem IIL.11 in Vol. I of [179], that A~ €
L(Y,(D(A), | ||a)) and by the continuity of ¢4 that A" € L(Y, X).

‘(v)’: Let D(A) = X. If A is bounded and &),&,... is some Cauchy sequence in
(X, | |a), it follows by the continuity of ¢4 that &y, &, ... is a Cauchy sequence in
X and hence convergent to some & € X. Since A is continuous, it follows the con-
vergence of A&y, Aé,... to A¢ and therefore also the convergence of &j,&1,... in
(X, | ]|a) to & Hence (X, | |a) is complete and A is closed by (ii). If A is closed, it
follows by (ii) that (X, | |a) is a Banach space and that the bijective X-valued lin-
ear operator ¢4 is continuous. Hence ¢4 is closed by the previous part of the proof.
Therefore, the inverse of ¢4 is continuous by (iv) and hence A is bounded.

‘(vi)’: Let A be closable. In a first step, we prove that A + B is closed. For this, let
(£,m) € G(A + B). Then there is a sequence &, &1, ... in D(A) which is convergent
to & and such that (A + B)&, (A + B)¢, ... is convergent to 7. Since B is continuous,
it follows that A&y, Ay, ... is convergent to n — B&. Since A is closed, it follows
that £ € D(A) as well as A¢é = n — B¢ and hence that &€ € D(A + B) as well as
(A + B)¢ = n. Hence A + B is closed, and therefore A + B is closable such that
A + B > A + B. Further, it follows by the previous part of the proof that A + B — B
is a closed extension of A. Hence A + B — B D A and therefore alsoA + B> A + B.
Finally, it follows that A + B = A + B. )

Theorem 3.1.4. (Existence of a discontinuous linear functional on every infi-
nite dimensional normed vector space) Let (X, || |) be some infinite dimensional
normed vector space over K € {R, C}. Then there is a discontinuous linear functional
w:X—-K

Proof. For this, let B be a Hamel basis of X, i.e., a maximal linearly independent set,
whose existence follows by an application of Zorn’s lemma or the equivalent axiom
of choice. Without restriction, it can be assumed that B contains only elements of
norm 1. Since (X, | |) is infinite dimensional, B contains infinitely many elements
€0, €1,€,.... We define w : B— N by w(e,) := nforall n € N and w(e) := 0 for
all other e € B. Then there is a unique extension of w to a linear functional on X.
This functional is unbounded and hence discontinuous. m;

Example 3.1.5. (Example for a non-closable linear operator) Let a,b € R be
such that @ < b and I the open interval between a and b. Define w : C(I,C) — C by

w(f) = lim f(x)

for all f € C(I,C). Obviously, w is a densely-defined C-valued linear operator in
Lé([); Further, let g € C(1,C) be such that g(a) # 0. Then the sequence go, g1, . . .
in C(I,C), defined by g, := g for all v € N, is converging in L%(/) to g and

lim w(s,) = () £ 0.
Since Cy(1,C) is dense in Lé(l), there is a sequence hg, hy, ... in Co(1, C) such that

lim |[A, — gl =0.
v—00
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For such a sequence
lim w(h,) =0.

v—00

Hence G(w) contains the differing elements (g, 0), (g, g(a)) and therefore w is not
closable. Note that the non-closability of w is caused by its discontinuity in g.

Theorem 3.1.6. (An application of the closed graph theorem) Let (X, | ||x),
(Y| lly)s (Z,||lz) be Banach spaces over K € {R,C}, A a closed bijective Y-
valued linear operator in X and B a closable Z-valued linear operator in X such that
D(B) o D(A). Then there is C € [0, c0) such that

I1B¢|z < C|A&]y

for all ¢ € D(A) and hence in particular B|p(4) € L((D(A),

Ia), 2).

Proof. First, it follows by Theorem 3.1.3 (iv) that A=' € L(Y, X). Further, Bo A™!
is a Z-valued linear operator on Y since A~! maps into the domain of B. Let (1,{) €

G(BoA~"). Then there is a sequence (19, B(A~'10)), (1, B(A~'171)),... in G(B o
A~1) converging to (17, ¢). In particular,
lim n, =17
v—00
and therefore also
lim A™'p, = A7y .
v—00
Since B is closable, it follows that (A~'n,¢) € G(B) and hence because of A~ €
D(A) < D(B) that (A~'5,{) € G(B). Therefore also BA™!'n = ¢ and (1,{) €
G(BoA~!). Hence Bo A~! is in addition closed and therefore by Theorem 3.1.3 (v)
bounded. As a consequence, it follows

|Bélz = [ Bo AT Az < C|AE]y

for every & € D(A) where C € [0, o0) is some bound for Bo A~!. O

Theorem 3.1.7. (Definition and elementary properties of the adjoint) Let (X,
(] )x) and (Y, {| )y) be Hilbert spaces over K € {R, C}, A a densely-defined Y-valued
linear operator in X and U : X x Y — Y x X the Hilbert space isomorphism defined
by U(&,n) := (—n,&) forall (£,7) € X x Y.

(i) Then the closed subspace
[U(GA))]+

of ¥ x X is the graph of an uniquely determined X-valued linear operator A*

in Y which is in particular closed and called the adjoint of A. If in addition

(X, {)x) = (Y {])y), we call A symmetric if A* DA and self-adjoint if A* = A.
(i1) If Bis a Y-valued linear operator B in X such that B © A, then

B¥ c A* .
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(iii) If A* is densely-defined, then A < A** := (A*)* and hence A is in particular
closable.

(iv) If A is closed, then A* is densely-defined and A** = A.

(v) If Aisclosable, then A = A**.

If in addition (X, {|)y) = (%, <] )y):

(vi) (Maximality of self-adjoint operators) If A is self-adjoint and B © A is sym-
metric, then B = A.

(vii) If A is symmetric, then A is symmetric, too. Therefore, we call a symmetric A
essentially self-adjoint if A is self-adjoint.

(viil) (Hellinger-Toeplitz) If D(A) = X and A is self-adjoint, then A € L(X, X).

Proof. ‘(i)’: First, it follows that

[UGA)]* = {(n.6) € Y x X : {(n.&)|U(¢" AE"))yx = 0 forall ¢ € D(A)}
and hence that
[UGAN]F = {(mé) e Y x X : (nA¢")y = (£l¢")x forall &' € D(A)} .
In particular, it follows for (17,¢1), (1,&) € [U(G(A))]* that

&= &lENx=0

for all £’ € D(A) and hence that & = &, since D(A) is dense in X. As a conse-
quence, by
A* 1 pri[U(G(A))]H — X,

where pry := (Y x X — Y, (,£) — 1), defined by
A'ni=¢,
for all n € pr;[U(G(A))]+, where ¢ € X is the unique element such that (1,&) €
[U(G(A))]*, there is defined a map such that
G(A*) = [U(G(A)]* .

Note that the domain of A* is a subspace of Y. In particular, it follows for all n, 7’ €
D(A*)and 1€ K

M +0'|AE )y = MAE )y + M'[AET) y = (A™nE") x + (A n'[¢7)«
= A"+ A*n'[E")«
AnlAg")y = A - (lAg")y =A%) - (A*nlg") = (LA™l )
for all £’ € D(A) and hence also the linearity of A*.

‘(ii)’: Obvious.
‘(iii)’: For this, let A* be densely-defined. Then, it follows
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(Y XX =X xY,(n,8) » (&) =-U"

and hence
G(Aa™) = [ UT(G@A)] T = [UT'(G(a*)] T = [U7'uG@))] ]
— [[U'UGAN] ] = G(A) ™ = G(A) > G(A) . (.1.1)
‘(iv)’: For this, let A be closed. Then, it follows for € [D(A*)] +
1 1 1

(0.m) € [UTH(G(A*))] ™ = [UT'[U(GA)]*]™ = [[U'U(G(A)] ]

— G(A)™ = G{A) = G(A)

and hence n = 0. Hence D(A*) is dense in X, and it follows by (3.1.1) that G(A**) =
G(A) = G(A).

‘(v)’: For this, let A be closable. Since A is densely defined and closed, it follows by
(iv) that A* is densely-defined. Because of A — A, this implies that A* > A* and
hence that A* is densely-defined, too. Therefore, it follows by (iii) that A = A** and
by (3.1.1) that G(A**) = G(A) = G(A) and hence, finally, that A** = A. In the
following, it is assumed that (X, {| )x) = (¥, {| )y)-

‘(vi)’: For this, let A be self-adjoint and B a symmetric extension of A. Then, it
follows by using G(B) > G(A) that

G(B) c G(B*) = [U(G(B))]* < [U(G(A)]* = G(A*) = G(4)
and hence B — A B and therefore, finally, that B = A.
‘(vii)’: For this, let A be symmetric. Then A* > A and hence also A* > A.

G(A*) = [UG(A))]* = [UG(A)]* = [U(G(A))]* = [[UGA)] ]+

= G(A*) = G(A*) > G(A) .

~—

‘(viii)’: For this, let A be self-adjoint and D(A) = X. Then, A = A* is in particular
closed and hence by Theorem 3.1.3 (v) bounded. O

Theorem 3.1.8. Let (X, (| )y) be a Hilbert space over K € {R,C} and Y a dense
subspace of X. Further, let {|)y : ¥?> — K be a scalar product for Y such that
(Y,{])y) is a Hilbert space over K and such that there is x > 0 such that

€15 = €l

for all £ € Y where || |y : Y — R is the norm induced on Y by {| ). Then, there is a
uniquely determined densely-defined, linear and self-adjoint operator in X such that
D(A) is a dense subspace of (¥,{|)y) and

(€lAg) = &1y
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for all £ € D(A). This A is given by

D(A) = {&e Y : &)y e LX), K)}
and for every £ € D(A)

A

AE =&

where 3 € X is the, by the denseness of Y in X, the linear extension theorem and
Riesz’ lemma, uniquely determined element such that

Elyy =&l ]y - (3.1.2)

In particular, A is semibounded from below with bound «, i.e.,

(€lAg) = « (&lé)
forall £ € D(A).

Proof. For ¢ € X, it follows

[Elmy | < €]l <« 2] - Inly

for every n € Y and hence by Riesz’ lemma the existence of a uniquely determined
& € Y such that

&y = &y

for all 7 € Y. Hence by B¢ := & for every ¢ € X there is given map B : X — X such
RanB c Y. Further, B is obviously linear and because of

(Bén) = (n|BE®) = (Bn|Be)SY = (Bé|Bn)y = (&|Bn)

for all £, € X also symmetric. Further, for & € ker B, it follows that vanishing of
the restriction of {£|-) to ¥ and hence by the denseness of ¥ in X and Riesz’ lemma
that £ = 0. Hence B is injective. In addition, RanB is dense in (Y, | |y) since for
& e RanB1Y

0 = (&[Bry = Brle)S = o)™ = )

for every n € X and hence £ = 0. As a consequence,
Ran B = Ran BYvy = {0}y = ¥

where the closure is performed in (Y, || |y). Therefore, since the inclusion ty.,x of
(7, ||y) into X is continuous and Y is dense in X, it follows also that RanB is dense
in X. In the following, we define A to be the inverse of the restriction of B in image
to its range. Then A is a densely-defined, linear and symmetric operator in X with
range X. In particular, it follows for (£1,&,) € G(A*) and ¢ € D(A)

(&11AE) = (&]€) = (B&|E)y = (B&|BAE)y = (BAE|BEYY = (A€|BEY™
— (B&)|AE)
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and hence that &, — B¢, is orthogonal to RanA = X. As a consequence, it follows
that &, = B¢, and therefore that &, € D(A) and A¢; = &. Hence A* — A. Finally,
since the symmetry of A implies that A* > A, it follows that A is self-adjoint. In
particular, it follows for £ € D(A)

(€1Ag) = (Agle)™) = (BAEE = o)\ = (€le)y = «|¢)?

and hence that A is in particular semibounded from below with bound «. Further, if
£ e D(A), then
&)y = (BAE|n)y = (Alm)

for all € Y and hence (¢|-)y € L((Y, ] |),K). On the other hand, if £ € Y is such
that (¢]-)y € L((Y, | ), K) and € € X such that (3.1.2) is true, it follows that BE = ¢
and hence £ € D(A) and A¢é = &. Finally, if A’ is a densely-defined, linear and
self-adjoint operator in X such that D(A’) is a dense subspace of (¥, (| )y) and

(€lA'8) = &ld)y

for all £ € D(A’), then it follows by polarization that

Elmyy = €A = (A'éln)

for all £,n € D(A’). Hence it follows for ¢ € D(A) by the denseness of D(A) in
(Y, ] |v) and the continuity of ¢y, x that

Elmy = (AE

for all n € Y. Hence <{¢|-)y € L((% ] |),K) and by the foregoing & € D(A) and
A& = A’€. As a consequence, it follows A D A’ and since A, A’ are both self-adjoint
that A’ = A. o

Theorem 3.1.9. Let (X,{|)yx) and (¥,{|)y) be Hilbert spaces over K € {R,C}, A
a densely-defined Y-valued, linear and closed operator in X. Then A*A (as usual
maximally defined) is a densely-defined linear, self-adjoint and positive operator in
X. In particular, D(A*A) is a core for A and ker A = ker(A*A).

Proof. Since A is closed, it follows that (D(A),{ ),), where { ), : (D(A))?> — K is
defined by

Ema = Emx + (AE[Am)y
for all £, € D(A), is a Hilbert space. In particular, it follows

[€la = /€15 + IAZ]5 = Jlx

for all £ € D(A) where | ||a denotes the norm induced on D(A) by (| ),. Hence by
the previous theorem, B : D(B) — X, defined by

D(B) = {§ € D(A) : (Ag|A-)y € L((D(A), [ [x). K)}
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and for every ¢ € D(B) by

~

B¢ =&,

where £ € X is the uniquely determined element such that
(AE|A)y = & — &)k |D(A) ’

is densely-defined, linear, self-adjoint and semibounded from below with bound 1
and D(B) is a dense subspace of (D(A), | |a)- Hence it follows by the definition of
A*A that

A*A = B —idx .

As a consequence, A*A is a densely-defined, linear, self-adjoint and positive operator
in X. Further, since D(B) is dense in (D(A), | |a), for &£ € D(A) there is a sequence
&0,&1, ... in D(B) such that

lim £, —&|a=0.
y—00
Hence it follows also that
lim &, —€|x =0, lim |[A&, — Aé|y =0
v—00 v—00
and therefore that D(A*A) is a core for A. Further, for £ € ker(A*A) it follows

(A&|AE)y = (A™Ag|E)x = 0

and hence £ € kerA. Since kerA < ker(A*A), it follows finally that kerA =
ker(A*A). O

Theorem 3.1.10. Let (X,{|)y) and (Y,{|)y) be complex Hilbert spaces, A a
densely-defined Y-valued, linear and closed operator in X. Then ker A is a closed
subspace of X and the orthogonal projection Py € L(X, X) onto ker A is given by

Py =s— lim (1 +vA*A)~!

v—00

where ‘s—lim’ denotes the strong limit. Note in particular that, because of
(1+vA*A)E = ¢

for all £ € ker A, the elements of ker A are fixed points of (1 + vA*A)~! for every
veN.

Proof. From the linearity of A, it follows that ker A is a subspace of X. Further, for
¢ € ker A there is a sequence &, £, ... in ker A converging to £. The corresponding
sequence A&y, A¢,... is converging to 0. Hence it follows by the closedness of A
that £ € ker A and therefore that ker A = ker A is a closed subspace of X. According
to the previous theorem, ker A equals the kernel of the densely-defined, linear, self-
adjoint and positive operator B := A*A in X. In the next step, we prove for v € N by
using the functional calculus for B that
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1

1+vB) ' = —————
(1+vE) T+ vidy (s

where o-(B) denotes the spectrum of B. For this, we first note that 1 +vB is a densely-
defined, linear and self-adjoint operator in X which is semibounded from below with
bound 1. Hence the spectrum of 1 + vB is contained in [1, 00) and therefore 1 + vB
is in particular bijective. Further, 1/(1 + vid,(s)) is a bounded real-valued function
on o (B) which is measurable with respect to every additive, monotone and regular
interval function on R. By the functional calculus for B, the Cayley transform Up =
(B—i)(B+i)~! =1-2i(B+i)~! of Bis given by

id,yp) — 1 1
Up=————B)=1—-2i——
B idyp) +i (B) lldU(B) +1i
Hence it follows that 1
B+i)'= — (B).
( l) ldo-(B) +1 ( )
Further,
1+vB=1—vi+v(B+i)=[(1—vi)(B+i)~" +v](B+1i)
1 —vi 1 + vidy(p)
= BYB+i)=—"2(B)(B+i
GG R e L IR
and hence
1 id, gy + i 1
(1+vB)~" = : @ -
ldo-(B) +1 1+ VldO-(B) 1+ VldO-(B)

In a further step, we prove that the orthogonal projection Py € L(X, X) onto ker B is
given by

(X{o} |U'(B)) (B)
where y,, denotes the characteristic function of {0}. First, it follows by the func-

tional calculus for B that (x,, o »)) (B) is an idempotent, self-adjoint, bounded and
linear on X and hence an orthogonal projection. For & € X, it follows that

B+ 1) (tlots)) (BE = ——— (B) (¥, lotsy) (B)E
1

B id(,.(B) +1i
= (X(U} ‘D‘(B)) (B)§

l
and hence that
(X{o} |(r(B)) (B)f € kerB .

In particular, it follows in the case that 0 is no eigenvalue of B that (y ol 5) (B)is
the zero operator which projects onto ker B = {0}. Further, if O is an eigenvalue of
B, it follows for & € ker B by the functional calculus for B that

(/\/{o) |0'(B)) (B)‘f = (/\/{o} |o-(B)) (0)§ =¢
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and hence also in this case that Ran (X{O} lo(3)) (B) = ker B. Finally,

1
(1 + Vido.(B) ) eN

is a sequence which is uniformly bounded by 1 and everywhere on o (B) pointwise
convergent to x |-(8)- Hence it follows by the functional calculus for B that

S— lim ————— (B) = (¥ lo(n)) (B) -

v—o 1+ vidgy (g O

Theorem 3.1.11. (Elementary properties of the resolvent) Let (X, | |x) be a non-
trivial Banach space over K € {R, C} and A a densely-defined closed linear operator
in X.

(i) We define the resolvent set p(A) < K of A by
p(A) ;== {1eK: A — Aisbijective} .

Then p(A) is an open subset of K. Therefore, its complement o-(A) := K\p(A),
which is called the spectrum of A, is a closed subset of K.
(ii) We define the resolvent R4 : p(A) — L(X, X) of A by

Ry(A):=(A— )"
for every A € p(A). Then Ry satisfies the first resolvent formula
Ra(u) = Ra(d) = (u— A) Ra(u)R4 (1) (3.1.3)
for every A, i € p(A) and the second resolvent formula
Ra(1) — Rp(A) = Ra(A)(B — A)Rp(1) (3.1.4)

for every A € p(A) n p(B) where B is some closed linear operator in X having
the same domain as A, i.e., D(B) = D(A).
(iii) For every ¢ € X, w € L(X,K) is the corresponding function

a)oRAf

real-analytic/holomorphic. Here Ro€ : p(A) — X is defined by (Ra€)(2) :=
Ry()é.

Proof. “(1), (iii)’: For this, let g € p(A). Then A — Ay is a closed densely-defined
bijective linear operator in X and hence R4 (4g) € L(X, X)\{0}. Then it follows for
every A € Ui/jr, ()] (Ao)

A — A = [idx — (4= Ao) . Ra(A0) (A — A0)
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and therefore, since
idx — (4 — 29).Ra(A0)

is bijective as a consequence of
[(1=20)-Ra(0)| < 1,
see e.g. [128] Chapter IV, §2, Theorem 2, that A — A is bijective as a composition of

bijective maps and
o0

Ra(A) = > (A= A0)* [Ra(0)]*+" . (3.1.5)

Hence A € p(A) and in particular for every £ € X, w € L(X,K)
(o Ra&)(A) = D" w ([Ra(0)]*T'8) (1= o)t . (3.1.6)
k=0

‘(i1)’: For A, u € p(A) and every & € D(A), it follows
(A—pé=(A-D&+ (A —p)§
and hence for every n € X
(A= )Ra()n =1+ (A= w)Rs ()7 .

The last implies
Ra(4) = Ra(u) + (4 = p)Ra ()R (1)

and hence (3.1.3). Finally, let B : D(A) — X be some closed linear operator in X.
Then it follows for every u € p(A), A € p(B) and every & € D(A)

(A—wé=(A=B)s+ (B— )¢+ (1—p)é
and hence for every n € X
(A — 1)Rg(A)n = (A = B)Rs()n + 1 + (1 — p)Re(A)n .
The last implies
Rp(A) = Ra(u)(A — B)Rp(A) + Ra(p) + (2 — p)Ra()Rp(2)

and hence (3.1.4). m]

3.2 Weak Integration of Banach Space-Valued Maps

The integration of Banach space-valued maps [49, 52,225] is an essential tool in the
study of semigroups of operators. Most authors use for this the Bochner integral.
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Instead, the so called weak (or Pettis) integral is developed in the following up to
the level needed for the remainder of the course. The use of the more general weak
integral is mainly due to the validity of Theorem 3.2.2 below which seems to favour
the approach via weak integration in the important special case of Hilbert space-
valued maps. On the other hand, in the following only integrals of maps are needed
which are a.e. defined and a.e. continuous on open subsets of R” for some n € N*.
For this class of functions, it can easily be seen that the weak integral and the Bochner
integral coincide if existent.

Definition 3.2.1. (Weak Integral/Pettis’ integral) Let n € N* and (X, ||||) be a
Banach space over K € {R,C}. We define for every X-valued map f which is a.e.
defined on R™:

() f is weakly measurable if w o f is measurable for all w € L(X,K),
(ii) f is weakly summable if w o f is summable for every w € L(X,K) and if there is
& € X such that

w(§) =fnw0de”

for every w € L(X,K). Such ¢&, if existent, is unique since L(X,K) separates
points on X.! For this reason, we define in that case the weak (or Pettis) integral

of f by
f fdv':=&.

Theorem 3.2.2. (Existence of the weak integral for reflexive Banach spaces) Let
n € N*  (X,]|) be a reflexive Banach space over K € {R,C} and f a X-valued
map which is a.e. defined on R”. Then f is weakly summable if and only if w o f is
summable for every w € L(X, K).

Proof. If f is weakly summable, by definition, w o f is summable for every w €
L(X,K). If, on the other hand, w o f is summable for every w € L(X, K), we define
A: L(X,K) — LL(R") by

Aw:=wo f

for every w € L(X,K). Obviously, A is linear. A is in addition closed. For this,
let w € L(X,K), w,wy,... be a sequence in L(X,K) such that w; o f,wy 0 f, ...
is convergent to some g € L(X,K). Then a subsequence of w; o f,ws o f,... is
converging a.e. pointwise on R” to g. Hence w o f is a.e. equal to g on R" and
therefore Aw = g. Hence A € L(L(X,K),Ly(R")) by the closed graph theorem,
Theorem 3.1.3 (v). As a consequence, I, : L(X,K) — K, defined by

Ih(w) = J"wofdv”,

is an element of L(L(X,K), K). Since X is reflexive, it follows the existence of £ € X
such that I (w) = w(&) for all w € L(X, K) and therefore, finally, the weak summa-
bility of f. m]

! See, e.g., [186] Theorem 3.4.
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Remark 3.2.3. For an example of an actual calculation of a weak integral, compare
the proof of Lemma 10.2.1 (v).

Theorem 3.2.4. (Elementary properties of the weak integral) Let n € N* K €
{R,C}, (X,]||x), (¥, || |y) be Banach spaces over K, f, g be X-valued maps which
are a.e. defined on R” and weakly summable, A € Kand T € L(X, Y).

(i) If fis weakly integrable and g is a.e. equal to f, then g is weakly integrable and

J gdvi =\ fdv".
RVI Rll

(i) Then f + g, Af and T o f are weakly integrable and

f—i—gdv”:f fdv”—i—f gav' J Afdv' =21 fa* ,
Rr Rr Rr R

Rn

f Tofd"=T| fd/".

R®

(iii) For every f € L} (R") and every & € X:

R”f.fdv = <Lnfdv > ¥3

where f.¢£ is defined by (f.£)(x) := f(x). £ for all x in the domain of f.

Proof. ‘(i)’: Obvious.
‘(ii)’: For every w € L(X,K), wo (f +g) =wof+wog wo (Af) = Awo fis

summable and
f wo (f+g)av —w(J fdv"—i—J gdv") ,
n n Rn

Jﬂwo(/lf)dv" :w(/ljnfdv"> .

Further, it follows for every w € L(Y,K) that w o T € L(X, K) and hence the summa-
bility of wo (T o f) = (wo T) o f and

JR”wo(Tof)dv”: (woT) (Jnfdv") —w<TfRnfdv") .

“(iii)’: For this, let f € L} (R") and & € X. Then it follows for every w € L(X,K) that
wo (f.€) = w(é). fis summable and that

[Loetaar-o(( [ sav).e).
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Theorem 3.2.5. (Existence of the weak integral) Let K € {R,C}, (X, | |) be a K-
Banach space, n € N*, Q a non-empty open subset of R” and f : Q — X almost
everywhere continuous.

(i) There is a sequence (s, ),en of step functions such that supp(s,) < Q, Ran(s,) <
Ran(f) u {Ox} for all v € N and for almost all x € R"

lim s,(x) = f(x)

v—00

where f : R" — X is defined by f(x) := f(x) for all x € Q and f(x) := Oy for
all x e R"\Q. (As a consequence, f is “strongly measurable’.)

(ii) f is essentially separably-valued, i.e., there is a zero set M — R” along with an
at most countable subset D of X such that f(R"\M) c D.

(iii) If | f(x)] < h(x) for almost all x € R" and some a.e. on R" defined summable

function A, then f is weakly-summable, | f| is summable and

J. o

Proof. ‘(i)’: For this, we define for every v € N*, k € Z" the interval Iy of side length
1/v by
IZ:=|:]2’kl+l>>< .><|:k_n’kn——’—1)'
4 v

v v
The family (I}),_,, gives a decomposition of R" into pairwise disjoint bounded
intervals of length 1/v. We define for every v € N* a corresponding step function
sy R" — X by

< f £ dv* . (3.2.1)
Rn

sy(x) = f(x)), xe I}

forall I} = U,(0) n Q where x; is some chosen element of I;’. For all other x € R”,
we define s,(x) := Ox. Note that Ran(s,) < Ran(f)u{0x}. Then it follows for every
point x € Q of continuity of f that lim,_, s,(x) = f(x): Since f is continuous in x
and Q is open, for given & > 0, there is § > 0 such that Us(x) < Q and at the same
time such that f(y) € U.(f(x)) forall y € Us(x). Hence for v > max {|x| +6, v/n/6}
it follows that x € U,(0) n Q,

x€ll, 0 ol © B /iy(x) € Us(x) = U,(0) n Q
where [ ] : R — Z is the floor function defined by [y] := max{k € Z : k < y}, and
hence ||s,(x) — f(x)| = [ f(x]) — f(x)| < & where k := ([vx1],...,[vx,]). Finally,
for x ¢ Q, it follows that lim,_, o, s,(x) = Ox because s,(x) = Ox for all v € N*.
“(ii)’: Let M consist of those x € R” for which (s, (x)),ey+ fails to converge to f(x).
By (i) M is a zero set. In addition, let D be the union of the ranges of all s,, v € N*,
Then D is at most countable, and f(R"\M) is contained in the closure of D.
‘(iil)’: For this, let & be as described in (iii) and (s, ),en+ be as defined defined in the
proof of (i). Then it follows that || f|| is measurable since a.e. on R” pointwise limit
of a sequence of measurable functions and hence also summable since a.e. on R”
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majorized by the summable function 4. In the following, let € > 0. Then we define
for every v € N* the step function

for every x € R". Then also

~

lim #,(x) = f(x) ,

v—00

for almost all x € R”. Further, |1, — f| is Lebesgue summable for every v € N*. To
prove this, we notice that for any u € N* the corresponding function |7, — 1,] is a
step function, and that (|, — 7] ) .en+ converges almost everywhere on R" pointwise
to |, — f|. Hence |f, — f| is measurable. In addition, (2 + &)h is a summable
majorant for |7, — f| and hence ||, — f] is also summable. Further, (|¢, — £] ), is
almost everywhere on R” convergent to 0 and is majorized by the summable function
(2 + &)h. Hence it follows by Lebesgue’s dominated convergence theorem that

v—00

lim J lt, — fldv* = 0. (3.2.2)
Rn

In addition, it follows for u, v € N* that

J t,dv' — f t, dv" f (t, —t,)av"
<[ A | - flav
R R"

and hence by (3.2.2) and the completeness of X that

<Jumfwww
Rﬂ

lim | t,dv =¢

v—00 R”

for some £ € X. Note in particular that

f Ly <f Htv\|dv"<(1+s)f 17 v
R7 Rn R7

and hence that
el < (1-+2) | 11 (323)

Further, it follows by Lebesgue’s dominated convergence theorem for every w €
L(X,C)

J wo fdv" = lim wOIVdv"=w<limf tvdv"> =w(f) .

v—00 R v—00

Hence f is weakly-summable and

fav'=¢.

]Rn
Finally, (3.2.1) follows by (3.2.3). O
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Remark 3.2.6. It is not difficult to see that a function f satisfying the assumptions
of Theorem 3.2.5 and the additional assumption of Theorem 3.2.5 (iii) is Bochner
integrable and that its Bochner integral and its weak integral coincide.

Corollary 3.2.7. (Fubini’s theorem for a class of weakly integrable functions)
LetK € {R,C}, (X, | ||) a K-Banach space, m,n € N*, Q be a non-empty open subset
of R™" f : Q — X be almost everywhere continuous and such that | f] is a.e.
on R™*" majorized by a summable function i where f : R”** — X is defined by
f(x) := f(x) forall x € Q and f(x) := O for all x € R”*"\Q. Then there is a zero
set N; < R™ such that

(i) f(x,-)is weakly summable for all x € R"\N;.
(i1)
<R’"\N1 - X, x— f(x, ) dv")
RYI
is weakly summable and

favmtn = J (R’”\Nl - X, x— f(x, -)dv”> av" .
RII

Rm+n

m

Proof. “(i)’: First, we note that by integration theory for any zero set N < R™+",
there is a zero set N; < R such that

N, :={yeR": (x,y) € N}

is a zero set for all x € R™\N;. Further, by Theorem 3.2.5 it follows the weak summa-
bility of f and the summability of | f|. Also, according to the proof of Theorem 3.2.5
(iii), there is a sequence (s, ),en of step functions on R"*" such that supp(s,) < @,
Ran(s,) < Ran(f) u {Ox} forall v e N,

lim s,(x) = f(x)

v—00

for almost all x € R™t",
sy ()] < 2 (x)]]

forallve N, x e R"" and

lim s, dVv"t" = favm.
V=0 Jpm+n Rm+n

Hence there is a zero set Ny < R™ such that for all x € R™\N, the corresponding
sequence of step functions (s, (x, -)),en satisfies

lim s,(x,-) = f(x,)

v—00

almost everywhere on R” and at the same time such that ||f(x,-)| is summable. In
particular, it follows for such x that |s,(x, ) — f(x,-)| is Lebesgue summable for
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every v € N*. To prove this, we notice that for any yu € N* the corresponding function
sy (x,-) — su(x,-)| is a step function and that (||s,(x,-) — s,(x,-)||)uen* converges
almost everywhere on R” pointwise to | s, (x,-) — f(x,-)|. Hence |s,(x,-) — f(x,-)|
is measurable. In addition, 2|| f(x, -)| is a summable majorant for ||s,(x,-) — f(x,-)]
and hence |s,(x,-) — f(x,-)| is also summable. Further, (|s,(x, ) — £(x,)|)yen is
almost everywhere on R” convergent to 0 and is majorized by the summable function

2| £(x, ). Hence it follows by Lebesgue’s dominated convergence theorem that

lim Isy(x,-) — f(x,-)]|dv" = 0.

V=0 Jgn

Further,

f s/,(x,-)dv"—f sy(x, ) dv" <J Isu(x,-) — sv(x, )| av"
n RII n

< [ Istd = fola [ fsx) = fllar
for all 4, v € N, and hence it follows by the completeness of (X, || |) the existence of

&x € X such that
lim J sy(x, ) dv' =& .

v—00

In particular
M4<LuﬂWWW"

since

J sy(x, ) dv"

for every v € N. Since

<fH&@JMW<JHﬂLWm"
R7 R2

w(&) = lim | wos,(x)dV" = f wo f(x,-)dv"

v—00 R n

for all w € L(X, K), it follows the weak integrability of f (x,-) and

lim J sy )dv' = | f(x,)dv" .

v—00 R

‘(ii)’: Further, we define for every v € N the corresponding step function ¢, on R” by

b= | sl

forall x € R" and F : R"™\N; — X by
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for all x € R™\N;. Then
lim 7,(x) = F(x)

v—00

and

Il < [ 1 1Fel < [ 1

for all x € R™\N;. Note that

(R'"\Nl SR | 1G] dv")

R

is summable by Fubini’s theorem. Also, it follows by Fubini’s theorem that

J t,dV" = J s, vt
m Rm+n

for every v € N and hence that

lim | t,dv" = fdvmt .
v—0 Jpm Rm+n

In particular, it follows that ||z, — F|| is Lebesgue summable for every v € N*. To
prove this, we notice that for any u € N* the corresponding function |, — 1,] is a
step function and that (|, — 1,]|) en+ converges almost everywhere on R" pointwise
to |t, — F|. Hence |t, — F|| is measurable. In addition,

(Rm\N1 - R,x— J 2 £ (x| dv”) (3.2.4)
RH

is a summable majorant for ||#, — F| and hence |z, — F| is also summable. Further,
(|2, = F|)ver is almost everywhere on R™ convergent to 0 and is majorized by the
summable function (3.2.4). Hence it follows by Lebesgue’s dominated convergence
theorem that

lim J |2, — F||dv™" =0.
RV‘VI

v—00

Asa consequence,

w( fdv'"+"> = limf wotvdv’"zj woFadv"
Rm+n V—00 m m

for all w € L(X, K). Finally, this implies the weak integrability of F and that

Fdv" = favm.
m Rm+n
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Theorem 3.2.8. Let K € {R,C}, (X, | |) a K-Banach space and f : [a,b] — X be
bounded and almost everywhere continuous. Then F : [a,b] — X defined by

F(x) := rf(t) dt

for every x € [a, b] is continuous. Furthermore, if f is continuous in x € (a, b), then
F is differentiable in x and

Proof. Obviously, by Theorem 3.2.5, it follows the weak integrability of x4,y f for
all x € [a, b]. Further, it follows for x,y € [a, b] that

|ﬂw—Fu>='ffmm <fWﬂww<ﬂrw—w
if y > x as well as
FO) = @l = | [ o] < [ 1@l <m-y-

if y < x, where M > 0 is such that ||f(¢)|| < M for all ¢ € [a,b], and hence the
continuity of F. Further, let f be continuous in x € (a,b). Hence for given & > 0,
there is 6 > O such that

If(6) = f(0)] <&

for all ¢ € [a, b] satisfying |t — x| < 6. Now let & € R* be such that |i| < ¢ and small
enough such that x + & € (a, b). We consider the cases & > 0 and & < 0. In the first

case, it follows that
1 x+h X
L rwa- [ rwal - s

1 x+h
<3| Io-swia<e.

X

|H4mx+m—Fw»—f@>

-l [0 - s

X

Analogously, in the second case,

‘%wafmdriffwdﬂ—f@)

<%ﬂ;hﬂ0—ﬂﬂcﬁ<a

‘H(mx+m—Fu»—fu>

_W_%fjum—f@ﬂm

x+h

Hence it follows |
]1_1})3}#0 E(F(x +h) — F(x)) = f(x) .
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Theorem 3.2.9. Let K € {R,C}, (X, | |) be a K-Banach space and f : [a,b] — X
continuous where a and b are some elements of R such that a < b. Further, let
F : [a,b] — X be continuous and differentiable on (a, b) such that F’(x) = f(x) for
all x € (a,b). Then

b
J f(x)dx = F(b) — F(a) . (3.2.5)

Proof. For this, let w € L(X,K). Then w o f, w o F are continuous, and w o F is
differentiable on (a, b) with derivative wo f| ). Hence it follows by the fundamental
theorem of calculus that

of [ " 1 @) - Jb«u o £)(x) dx = (@ F)(b) — (o F)(a) = w(F(b) — F(@))

a

and hence (3.2.5) since L(X, K) separates points on X. O

Theorem 3.2.10. (Substitution rule for weak integrals) Let K € {R,C}, (X, || ||) a
K-Banach space, n € N*, Qy, Q, non-empty open subsets of R”", f : 2, — X almost
everywhere continuous and such that || f|| is summable. Finally, let 7 : Q; — ©, be
continuously differentiable such that 2’(x) # 0 for all x € Q; and bijective. Then
|det(h”)|.(f o h) is weakly summable and

fdv' = J \det(h")|.(f o h) dV" . (3.2.6)
Q) Q

Proof. First, it follows by the inverse mapping theorem that 47~' : Q, — Q is
continuously differentiable. Hence it follows by the substitution rule for Lebesgue
integrals that h~' (Ny) < ©Q is a zero set where Ny < Q, denotes the set of discon-
tinuities of f. In particular, |det(h’)|.(f o &) is a.e. continuous and

[ldet(R)].(f o m)| < |det(R")] - (|.f] o 1) -

Since |det(h’)| - (||f]| o &) is summable, it follows that |det(h’)|.(f o k) is weakly
summable. Further, it follows by the substitution rule for Lebesgue integrals that

w (szdv”) = Lz wo fdv' = Ll \det(h")|.[(w o f) o h] dv"

=w (J |det(h")].(f o h) dv")
Q
for every w € L(X,K) and hence (3.2.6). |

Theorem 3.2.11. (Integration of strongly continuous maps) Let K € {R,C},
(X, |l Ix), (Y| |ly) be K-Banach spaces, n € N* and Q a non-empty open subset
of R”. Further, let f : Q — L(X,Y) be such that for every ¢ € X the corresponding
map f¢ = (Q — Y,x — f(x)&) is almost everywhere continuous and for which
there is some a.e. on R” defined summable function /4 such that
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[FGl < h(x)

for almost all x € R". Then by

J fav' = <X—> Y,& — fgdv”) , (3.2.7)

Rn

there is defined a bounded linear operator on X satisfying

[ 5w

Proof. For this, let £ € X. Then f¢ is almost everywhere continuous and

I7&ly < [€x . -

Hence it follows by Theorem 3.2.5 that f¢ is weakly integrable, that | f€|y is inte-
grable as well as

< Al . (3.2.8)

f§ "

Rn

<f felly v < [l - l¢lx . (3.2.9)
Y R®

Hence it follows that by (3.2.7) it is defined a map from X to Y which is linear by the
linearity of the weak integral. Finally, the boundedness of that operator and (3.2.8)
follows from (3.2.9). m]

3.3 Exponentials of Bounded Linear Operators

This section defines the exponential function exp on L(X, X) where X is a Banach
space. The Theorems 3.3.1 and 4.1.1 at the beginning of the next section give a
complete characterization of all semigroups which are continuous in the topology
induced on L(X, X) by the operator norm. For every such semigroup 7 : [0,00) —
L(X, X), there is a uniquely determined A € L(X, X) such that T(¢) = exp(tA) for
every ¢ € [0,00). Hence there is a unique extension of T to a homomorphism of
(R,+) into (L(X, X), o) given by (R — L(X,X),t — exp(tA)). As a consequence of
Theorem 3.3.1 (i), for every £ € X the corresponding u := (R — X, 7 — exp(tA)¢)
satisfies u(0) = £ and

u'(t) = —Au(t) (3.3.1)

for every ¢ € R. Here ’ denotes the ordinary derivative of functions with values in X.
Applications of (3.3.1) with A € L(X, X) are usually restricted to finite dimensional
X, i.e., to systems of ordinary differential equations of the first order. An excep-
tion to this is given in Chapter 5.2. Equations of the type (3.3.1) in infinite dimen-
sions usually involve partial differential operators. In general, such operators induce
unbounded linear operators in Banach spaces.
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Theorem 3.3.1. (Definition and properties of the exponential function) Let K €
{R,C} and (X, | |) a K-Banach space. Then we define the exponential function exp :

L(X,X) — L(X,X) by
1
exp(4) = 3 1 4

where A? := idx and A**! := A o A* for all k € N. Note that this series is absolutely
convergent since ||A¥|| < |A[* for all k € N.

(i) The map uy : K — L(X, X), defined by
us(t) = exp(r.A)
for every t € K, is differentiable with derivative
uy (1) = Aouy(t)

forall t € K.
(ii) Forall A,B e L(X, X) satisfyingAoB=BoA

exp(A + B) = exp(A) o exp(B) . (3.3.2)
(iii) For all A € L(X, X) satisfying |A|| < l,neNand ¢ € X,
|exp (n.(A —idx))é — A"&| < v/n- (A —idx)€] . (3.3.3)

Proof. “(i)’: For this, let A € L(X, X). Then it follows for t € K, h € K*, by using the
bilinearity and continuity of the composition map on ((L(X, X))?, that

‘% [exp((t + h).A) — exp(t.A)] —Ao exp(tA)H

il [ t+h ktkl] Ak
— k! .

I E T B O ) L N
= lim Z o [— — kA (3.3.4)
Further, for any n € N,n > 2:
"1 [+ Rk = 1|t R =
2 - |:( ) _ktk—1:| .Ak - ( ) _ klk_l HAHk ,
Sk h k! h
3.3.5)

and forany k € N, k > 2

t+ h)k — ¢ -t 'S
%_k,kfl _ ’*T [Z(Hh)l' t+1) | _ gt

=0

k—1 k—1

> my e — ]

=1
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—11-1

Al < |l - ZZ 1|+ [])*

=1 m=0

k—11-1

= > Y+ nym )

=1 m=0

|| -
= > k(k=1)-(Jrl + || )<2
Inserting the last into (3.3.5) gives

é% [(r+h})lk—t"k ]

|| - A2
< — o ((\t| + |A]) - HA”) :

(Il + [ A

Finally, inserting the last into (3.3.4) gives

%. [exp((t + h).A) —exp(t.A)] — Ao exp(t.A)H

_ Il

< ———— oxp (] + [A]) - A])

and hence

. 1
hlﬁl;eo W [exp((t + h).A) —exp(t.A)] — Ao exp(t.A)‘ =0.

‘(i1)’: For this, let A, B € L(X, X) be such that Ao B = BoA and t € K, h € K*. Then

'%.(MA(t-i-h)OuB(t-f—h)
—un(t) o ug(t)) — (up(r) o up() + ua(t) o ug(r))|

‘ [ 1) —ua()) = M/Q(t)] o up(t)
+ ua(t) o [% (up(t + h) — up(t)) — ug(t)]

1 (uA(t + h) = ua(1)) o (up(t + h) — up(t))

|

H a4 1) — un()) — )¢ H Jus )]

+ HMA

340 - wat) - 50|

+

‘% .(MA([+ h) — MA(I))

. (MB(I + /’l) — MB(I))
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Hence it follows by (i) the differentiability of gap : K — L(X,X) defined by
hap(t) := uayp(t) — ua(t) o up(z) for every t € K and

hap(t) = (A + B) ouasp(t) — Aous(t) oup(t) — ua(t) o Boug(t)
= (A + B) o MA+B(I) —Ao MA(Z) o MB(I) —Bo MA<t) o MB([)
= (A + B) o hA,B(l)

for all + € K where the bilinearity and continuity of the composition map on
(L(X,X))? has been used as well as that A o B = B o A by assumption. Hence it
follows by h45(0) = ua4+p(0) — ua(0) o up(0) = 0 along with Theorem 3.2.9,
Theorem 3.2.5 that

t
Ihas(t)] <A+ B - j | has(s)] ds

for all 7 € [0, 00). As a consequence, it follows for & > 0 that

[has(D)] < ge4+2l (3.3.6)
for all 7 € [0, o). Because otherwise there is 7y € (0, 00) such that

[ha (o) = &e®lA !

and such that (3.3.6) is valid for all 7 € [0, #p). Then

o to
Ihas(i)] <A+ B| - f | has(s)] ds < |A + B| - f e MBI g
0 0
e (etoHA+3H _ 1) <g-ehlAtBl 4

From (3.3.6) it follows that &4 () = O for all 7 > 0 and hence (3.3.2).
‘(iii)’: For this, let A € L(X, X) be such that |A| < 1,n € N and ¢ € X. Then

|exp (n.(A —idx))é — A"E|| = e™" - | exp(n.A)é — €. A"
i

D At —ane

k=0

=¢ " lim
m—00

(3.3.7)

Further, it follows for m € N by using the Cauchy-Schwarz inequality for the Euclid-
ean scalar product on R"*!:

m m

< 31t - el < 33 5 [lal o — e

=0

m k
=Y Y Ale(a—idog < (A—ide] - Y lk—nl
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m 1/2 N
< (A —idx)é] - (Z ) -<Z %) (3.3.8)
- 1/2
(5
( [k(k—1) —

o\ 12
s n n
= (A —idy )& - €"/* - - (2n—1)k+n]k'>
0

< (A —idx)é] - €

M8

o~
[=}

8

Rl

— (A —idx)&] - 2 ([n* = 2n — Vn +n*] ") = Ve (A —idx)é] .

Finally, (3.3.3) follows from (3.3.7) and (3.3.8). O





