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Prerequisites

3.1 Linear Operators in Banach Spaces

In the following, we introduce basics of the language of Operator Theory that can
also be found in most textbooks on Functional Analysis [179,182,186,216,225]. For
the convenience of the reader, we also include associated proofs.

Lemma 3.1.1. (Direct sums of Banach and Hilbert spaces)

(i) Let pX, } }Xq and pY, } }Yq be Banach spaces over K P tR,Cu and } }XˆY : X ˆ
Y Ñ R be defined by

}pξ, ηq}XˆY :“
b

}ξ}2
X ` }η}

2
Y

for all pξ, ηq P Xˆ Y. Then pX ˆ Y, } }XˆYq is a Banach space.
(ii) Let pX, x | yXq and pY, x | yYq be Hilbert spaces over K P tR,Cu and x | yXˆY :
pX ˆ Yq2 Ñ K be defined by

xpξ, ηq|pξ 1, η 1qyXˆY :“ xξ|ξ 1yX ` xη|η
1
yY

for all pξ, ηq, pξ 1, η 1q P Xˆ Y. Then pX ˆ Y, x | yXˆYq is a Hilbert space.

Proof. ‘(i)’: Obviously, } }XˆY is positive definite and homogeneous. Further, it fol-
lows for pξ, ηq, pξ 1, η 1q P Xˆ Y by the Cauchy-Schwarz inequality for the Euclidean
scalar product for R2 that

}pξ, ηq ` pξ 1, η 1q}2
XˆY

“ }ξ ` ξ 1}2
X ` }η` η 1}2

Y

ď p }ξ}X ` }ξ
1
}Xq

2
` p }η}Y ` }η

1
}Yq

2
“ pa` a 1q2 ` pb` b 1q2

“ a2
` b2

` a 1 2 ` b 1 2 ` 2 pa a 1 ` b b 1q

ď a2
` b2

` a 1 2 ` b 1 2 ` 2
a

a2 ` b2 ¨
a

a 1 2 ` b 1 2

“

´

a

a2 ` b2 `
a

a 1 2 ` b 1 2
¯2
“ p }pξ, ηq}XˆY ` }pξ

1, η 1q}XˆYq
2
,
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where a :“ }ξ}X, a 1 :“ }ξ 1}X, b :“ }η}Y, b 1 :“ }η 1}Y, and hence that

}pξ, ηq ` pξ 1, η 1q}XˆY ď }pξ, ηq}XˆY ` }pξ
1, η 1q}XˆY.

The completeness of pXˆ Y, } }XˆYq is an obvious consequence of the completeness
of X and Y .
‘(ii)’: Obviously, x | yXˆY is a positive definite symmetric bilinear, positive definite
hermitian sesquilinear form, respectively. Further, the induced norm on X ˆ Y coin-
cides with the norm defined in (i). [\

Definition 3.1.2. (Linear Operators) Let pX, } }Xq and pY, } }Yq be Banach spaces
over K P tR,Cu. Then we define

(i) A map A is called a Y-valued linear operator in X if its domain DpAq is a sub-
space of X, Ran A Ă Y and A is linear. If pY, } }Yq “ pX, } }Xq such a map is also
called a linear operator in X.

(ii) If in addition A is a Y-valued linear operator in X:
a) The graph GpAq of A by

GpAq :“ tpξ, Aξq P X ˆ Y : ξ P DpAqu.

Note that GpAq is a subspace of X ˆ Y .
b) A is densely-defined if DpAq is in particular dense in X.
c) A is closed if GpAq is a closed subspace of pX ˆ Y, } }XˆYq.
d) A Y-valued linear operator B in X is said to be an extension of A, symboli-

cally denoted by
A Ă B or B Ą A ,

if GpAq Ă GpBq.
e) A is closable if there is a closed extension. In this case,

č

BĄA,B closed

GpBq

is a closed subspace of X ˆ Y which, obviously, is the graph of a unique Y-
valued closed linear extension Ā of A, called the closure of A. By definition,
every closed extension B of A satisfies B Ą Ā.

f) If A is closed, a core of A is a subspace D of its domain such that the closure
of A|D coincides with A, i.e., if

A|D “ A .

Theorem 3.1.3. (Elementary properties of linear operators) Let pX, } }Xq,
pY, } }Yq be Banach spaces over K P tR,Cu, A a Y-valued linear operator in X
and B P LpX,Yq.
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(i) pDpAq, } }Aq, where } }A : DpAq Ñ R is defined by

}ξ}A :“ }pξ, Aξq}XˆY “

b

}ξ}2
X ` }Aξ}

2
Y

for every ξ P DpAq, is a normed vector space. Further, the inclusion ιA :
pDpAq, } }Aq ãÑ X is continuous and A P LppDpAq, } }Aq,Yq.

(ii) A is closed if and only if pDpAq, } }Aq is complete.
(iii) If A is closable, then GpĀq “ GpAq .
(iv) (Inverse mapping theorem) If A is closed and bijective, then A´1 P LpY, Xq.
(v) (Closed graph theorem) In addition, let DpAq “ X. Then A is bounded if and

only if A is closed.
(vi) If A is closable, then A` B is also closable and

A` B “ Ā` B .

Proof. ‘(i)’: Obviously, pDpAq, } }Aq is a normed vector space. Further, because of

}ιA ξ}X “ }ξ}X ď

b

}ξ}2
X ` }Aξ}

2
Y “ }ξ}A

and
}Aξ}Y ď

b

}ξ}2
X ` }Aξ}

2
Y “ }ξ}A

for every ξ P DpAq, it follows that ιA P LppDpAq, } }Aq, Xq and A P LppDpAq,
} }Aq,Yq.
‘(ii)’: Let A be closed and ξ0, ξ1, . . . a Cauchy sequence in pDpAq, } }Aq. Then
pξ0, Aξ0q, pξ1, Aξ1q, . . . is a Cauchy sequence in GpAq and hence by Lemma 3.1.1
along with the closedness of GpAq convergent to some pξ, Aξq P GpAq. This implies
that

lim
νÑ8

}ξν ´ ξ}A “ 0

and the convergence of ξ0, ξ1, . . . in pDpAq, } }Aq. Let pDpAq, } }Aq be complete and
pξ, ηq P GpAq . Then there is a sequence pξ0, Aξ0q, pξ1, Aξ1q, . . . in GpAq which is
convergent to pξ, ηq. Hence pξ0, Aξ0q, pξ1, Aξ1q, . . . is a Cauchy sequence in X ˆ Y .
As a consequence, ξ0, ξ1, . . . is a Cauchy sequence in pDpAq, } }Aq and therefore
convergent to some ξ 1 P DpAq. In particular,

lim
νÑ8

}pξν, Aξνq ´ pξ 1, Aξ 1q}XˆY “ 0

and hence pξ, ηq “ pξ 1, Aξ 1q P GpAq.
‘(iii)’: Let A be closable. Then the closed graph of every closed extension of A
contains GpAq and hence also GpAq . Therefore GpĀq Ą GpAq . This implies in
particular that GpAq is the graph of a map Ã. Further, DpÃq “ pr1GpAq , where
pr1 :“ pX ˆ Y Ñ X, pξ, ηq ÞÑ ξq, is a subspace of X and Ã is in particular a linear
closed extension of A. Hence Ã Ą Ā and GpAq “ GpÃq Ą GpĀq.
‘(iv)’: Let A be closed and bijective. Then it follows by (ii) that pDpAq, } }Aq is a
Banach space and that A P LppDpAq, } }Aq,Yq. Hence it follows by the ‘inverse
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mapping theorem’, for e.g. see Theorem III.11 in Vol. I of [179], that A´1 P

LpY, pDpAq, } }Aqq and by the continuity of ιA that A´1 P LpY, Xq.
‘(v)’: Let DpAq “ X. If A is bounded and ξ0, ξ1, . . . is some Cauchy sequence in
pX, } }Aq, it follows by the continuity of ιA that ξ0, ξ1, . . . is a Cauchy sequence in
X and hence convergent to some ξ P X. Since A is continuous, it follows the con-
vergence of Aξ0, Aξ1, . . . to Aξ and therefore also the convergence of ξ0, ξ1, . . . in
pX, } }Aq to ξ. Hence pX, } }Aq is complete and A is closed by (ii). If A is closed, it
follows by (ii) that pX, } }Aq is a Banach space and that the bijective X-valued lin-
ear operator ιA is continuous. Hence ιA is closed by the previous part of the proof.
Therefore, the inverse of ιA is continuous by (iv) and hence A is bounded.
‘(vi)’: Let A be closable. In a first step, we prove that Ā ` B is closed. For this, let
pξ, ηq P GpĀ` Bq . Then there is a sequence ξ0, ξ1, . . . in DpĀq which is convergent
to ξ and such that pĀ`Bqξ0, pĀ`Bqξ1, . . . is convergent to η. Since B is continuous,
it follows that Āξ0, Āξ1, . . . is convergent to η ´ Bξ. Since Ā is closed, it follows
that ξ P DpĀq as well as Āξ “ η ´ Bξ and hence that ξ P DpĀ ` Bq as well as
pĀ ` Bqξ “ η. Hence Ā ` B is closed, and therefore A ` B is closable such that
Ā` B Ą A` B . Further, it follows by the previous part of the proof that A` B´ B
is a closed extension of A. Hence A` B´ B Ą Ā and therefore also A` B Ą Ā` B.
Finally, it follows that A` B “ Ā` B. [\

Theorem 3.1.4. (Existence of a discontinuous linear functional on every infi-
nite dimensional normed vector space) Let pX, } }q be some infinite dimensional
normed vector space overK P tR,Cu. Then there is a discontinuous linear functional
ω : X Ñ K.

Proof. For this, let B be a Hamel basis of X, i.e., a maximal linearly independent set,
whose existence follows by an application of Zorn’s lemma or the equivalent axiom
of choice. Without restriction, it can be assumed that B contains only elements of
norm 1. Since pX, } }q is infinite dimensional, B contains infinitely many elements
e0, e1, e2, . . . . We define ω : B Ñ N by ωpenq :“ n for all n P N and ωpeq :“ 0 for
all other e P B. Then there is a unique extension of ω to a linear functional on X.
This functional is unbounded and hence discontinuous. [\

Example 3.1.5. (Example for a non-closable linear operator) Let a, b P R be
such that a ă b and I the open interval between a and b. Define ω : CpĪ,Cq Ñ C by

ωp f q :“ lim
xÑa

f pxq

for all f P CpĪ,Cq. Obviously, ω is a densely-defined C-valued linear operator in
L2
C
pIq. Further, let g P CpĪ,Cq be such that gpaq ‰ 0. Then the sequence g0, g1, . . .

in CpĪ,Cq, defined by gν :“ g for all ν P N, is converging in L2
C
pIq to g and

lim
νÑ8

ωpgνq “ gpaq ‰ 0 .

Since C0pI,Cq is dense in L2
C
pIq, there is a sequence h0, h1, . . . in C0pI,Cq such that

lim
νÑ8

}hν ´ g}2 “ 0 .
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For such a sequence
lim
νÑ8

ωphνq “ 0 .

Hence Gpωq contains the differing elements pg, 0q, pg, gpaqq and therefore ω is not
closable. Note that the non-closability of ω is caused by its discontinuity in g.

Theorem 3.1.6. (An application of the closed graph theorem) Let pX, } }Xq,
pY, } }Yq, pZ, } }Zq be Banach spaces over K P tR,Cu, A a closed bijective Y-
valued linear operator in X and B a closable Z-valued linear operator in X such that
DpBq Ą DpAq. Then there is C P r0,8q such that

}Bξ}Z ď C }Aξ}Y

for all ξ P DpAq and hence in particular B|DpAq P LppDpAq, } }Aq,Zq.

Proof. First, it follows by Theorem 3.1.3 (iv) that A´1 P LpY, Xq. Further, B ˝ A´1

is a Z-valued linear operator on Y since A´1 maps into the domain of B. Let pη, ζq P
Gp B ˝ A´1 q. Then there is a sequence pη0, BpA´1η0qq, pη1, BpA´1η1qq, . . . in GpB ˝
A´1q converging to pη, ζq. In particular,

lim
νÑ8

ην “ η

and therefore also
lim
νÑ8

A´1ην “ A´1η .

Since B is closable, it follows that pA´1η, ζq P GpB̄q and hence because of A´1η P
DpAq Ă DpBq that pA´1η, ζq P GpBq. Therefore also BA´1η “ ζ and pη, ζq P
GpB ˝ A´1q. Hence B ˝ A´1 is in addition closed and therefore by Theorem 3.1.3 (v)
bounded. As a consequence, it follows

}Bξ}Z “ }B ˝ A´1Aξ}Z ď C }Aξ}Y

for every ξ P DpAq where C P r0,8q is some bound for B ˝ A´1. [\

Theorem 3.1.7. (Definition and elementary properties of the adjoint) Let pX,
x | yXq and pY, x | yYq be Hilbert spaces overK P tR,Cu, A a densely-defined Y-valued
linear operator in X and U : X ˆ Y Ñ Y ˆ X the Hilbert space isomorphism defined
by Upξ, ηq :“ p´ η, ξq for all pξ, ηq P X ˆ Y .

(i) Then the closed subspace
rUpGpAqqsK

of Y ˆ X is the graph of an uniquely determined X-valued linear operator A˚

in Y which is in particular closed and called the adjoint of A. If in addition
pX, x | yXq“pY, x | yYq, we call A symmetric if A˚ĄA and self-adjoint if A˚“A.

(ii) If B is a Y-valued linear operator B in X such that B Ą A, then

B˚ Ă A˚ .
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(iii) If A˚ is densely-defined, then A Ă A˚˚ :“ pA˚q˚ and hence A is in particular
closable.

(iv) If A is closed, then A˚ is densely-defined and A˚˚ “ A.
(v) If A is closable, then Ā “ A˚˚.

If in addition pX, x | yXq “ pY, x | yYq:

(vi) (Maximality of self-adjoint operators) If A is self-adjoint and B Ą A is sym-
metric, then B “ A.

(vii) If A is symmetric, then Ā is symmetric, too. Therefore, we call a symmetric A
essentially self-adjoint if Ā is self-adjoint.

(viii) (Hellinger-Toeplitz) If DpAq “ X and A is self-adjoint, then A P LpX, Xq.

Proof. ‘(i)’: First, it follows that

rUpGpAqqsK “ tpη, ξq P Y ˆ X : xpη, ξq|Upξ 1, Aξ 1qyYˆX “ 0 for all ξ 1 P DpAqu

and hence that

rUpGpAqqsK “ tpη, ξq P Y ˆ X : xη|Aξ 1yY “ xξ|ξ
1
yX for all ξ 1 P DpAqu .

In particular, it follows for pη, ξ1q, pη, ξ2q P rUpGpAqqsK that

xξ1 ´ ξ2|ξ
1
yX “ 0

for all ξ 1 P DpAq and hence that ξ1 “ ξ2 since DpAq is dense in X. As a conse-
quence, by

A˚ : pr1rUpGpAqqs
K
Ñ X ,

where pr1 :“ pY ˆ X Ñ Y, pη, ξq ÞÑ ηq, defined by

A˚η :“ ξ ,

for all η P pr1rUpGpAqqs
K, where ξ P X is the unique element such that pη, ξq P

rUpGpAqqsK, there is defined a map such that

GpA˚q “ rUpGpAqqsK .

Note that the domain of A˚ is a subspace of Y . In particular, it follows for all η, η 1 P
DpA˚q and λ P K

xη` η 1|Aξ 1yY “ xη|Aξ
1
yY ` xη

1
|Aξ 1yY “ xA

˚η|ξ 1yX ` xA
˚η 1|ξ 1yX

“ xA˚η` A˚η 1|ξ 1yX

xλ.η|Aξ 1yY “ λp˚q ¨ xη|Aξ 1yY “ λp˚q ¨ xA˚η|ξ 1yX “ xλ.A
˚η|ξ 1yX

for all ξ 1 P DpAq and hence also the linearity of A˚.
‘(ii)’: Obvious.
‘(iii)’: For this, let A˚ be densely-defined. Then, it follows
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`

Y ˆ X Ñ X ˆ Y, pη, ξq ÞÑ p´ ξ, ηq
˘

“ ´U´1

and hence

GpA˚˚q “
“

´ U´1
pGpA˚qq

‰K
“
“

U´1
pGpA˚qq

‰K
“
“

U´1
rUpGpAqqsK

‰K

“
“

rU´1UpGpAqqsK
‰K
“ GpAqKK “ GpAq Ą GpAq . (3.1.1)

‘(iv)’: For this, let A be closed. Then, it follows for η P rDpA˚qsK

p0, ηq P
“

U´1
pGpA˚qq

‰K
“
“

U´1
rUpGpAqqsK

‰K
“
“

rU´1UpGpAqqsK
‰K

“ GpAqKK “ GpAq “ GpAq

and hence η “ 0. Hence DpA˚q is dense in X, and it follows by (3.1.1) that GpA˚˚q “
GpAq “ GpAq.
‘(v)’: For this, let A be closable. Since Ā is densely defined and closed, it follows by
(iv) that Ā˚ is densely-defined. Because of A Ă Ā, this implies that A˚ Ą Ā˚ and
hence that A˚ is densely-defined, too. Therefore, it follows by (iii) that A Ă A˚˚ and
by (3.1.1) that GpA˚˚q “ GpAq “ GpĀq and hence, finally, that A˚˚ “ Ā. In the
following, it is assumed that pX, x | yXq “ pY, x | yYq.
‘(vi)’: For this, let A be self-adjoint and B a symmetric extension of A. Then, it
follows by using GpBq Ą GpAq that

GpBq Ă GpB˚q “ rUpGpBqqsK Ă rUpGpAqqsK “ GpA˚q “ GpAq

and hence B Ă A Ă B and therefore, finally, that B “ A.
‘(vii)’: For this, let A be symmetric. Then A˚ Ą A and hence also A˚ Ą Ā.

GpĀ˚q “ rUpGpĀqqsK “ rU GpAq sK “ rUpGpAqq sK “
“

rUpGpAqqsKK
‰K

“ GpA˚q “ GpA˚q Ą GpĀq .

‘(viii)’: For this, let A be self-adjoint and DpAq “ X. Then, A “ A˚ is in particular
closed and hence by Theorem 3.1.3 (v) bounded. [\

Theorem 3.1.8. Let pX, x | yXq be a Hilbert space over K P tR,Cu and Y a dense
subspace of X. Further, let x | yY : Y2 Ñ K be a scalar product for Y such that
pY, x | yYq is a Hilbert space over K and such that there is κ ą 0 such that

}ξ}2
Y ě κ }ξ}2

for all ξ P Y where } }Y : Y Ñ R is the norm induced on Y by x | yY. Then, there is a
uniquely determined densely-defined, linear and self-adjoint operator in X such that
DpAq is a dense subspace of pY, x | yYq and

xξ|Aξy “ xξ|ξyY
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for all ξ P DpAq. This A is given by

DpAq “ tξ P Y : xξ|¨yY P LppY, } }q,Kqu

and for every ξ P DpAq
Aξ “ ξ̂

where ξ̂ P X is the, by the denseness of Y in X, the linear extension theorem and
Riesz’ lemma, uniquely determined element such that

xξ|¨yY “ xξ̂|¨y
ˇ

ˇ

Y . (3.1.2)

In particular, A is semibounded from below with bound κ, i.e.,

xξ|Aξy ě κ xξ|ξy

for all ξ P DpAq.

Proof. For ξ P X, it follows

| xξ|ηy | ď }ξ} ¨ }η} ď κ´1{2
}ξ} ¨ }η}Y

for every η P Y and hence by Riesz’ lemma the existence of a uniquely determined
ξ̂ P Y such that

xξ|ηy “ xξ̂|ηyY

for all η P Y . Hence by Bξ :“ ξ̂ for every ξ P X there is given map B : X Ñ X such
RanB Ă Y . Further, B is obviously linear and because of

xBξ|ηy “ xη|Bξyp˚q “ xBη|Bξyp˚qY “ xBξ|BηyY “ xξ|Bηy

for all ξ, η P X also symmetric. Further, for ξ P ker B, it follows that vanishing of
the restriction of xξ|¨y to Y and hence by the denseness of Y in X and Riesz’ lemma
that ξ “ 0. Hence B is injective. In addition, RanB is dense in pY, } }Yq since for
ξ P RanBKY

0 “ xξ|BηyY “ xBη|ξy
p˚q

Y “ xη|ξyp˚q “ xξ|ηy

for every η P X and hence ξ “ 0. As a consequence,

Ran B “ Ran BKYKY “ t0uKY “ Y

where the closure is performed in pY, } }Yq. Therefore, since the inclusion ιYãÑX of
pY, }}Yq into X is continuous and Y is dense in X, it follows also that RanB is dense
in X. In the following, we define A to be the inverse of the restriction of B in image
to its range. Then A is a densely-defined, linear and symmetric operator in X with
range X. In particular, it follows for pξ1, ξ2q P GpA˚q and ξ P DpAq

xξ1|Aξy “ xξ2|ξy “ xBξ2|ξyY “ xBξ2|BAξyY “ xBAξ|Bξ2y
p˚q

Y “ xAξ|Bξ2y
p˚q

“ xBξ2|Aξy
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and hence that ξ1 ´ Bξ2 is orthogonal to RanA “ X. As a consequence, it follows
that ξ1 “ Bξ2 and therefore that ξ1 P DpAq and Aξ1 “ ξ2. Hence A˚ Ă A. Finally,
since the symmetry of A implies that A˚ Ą A, it follows that A is self-adjoint. In
particular, it follows for ξ P DpAq

xξ|Aξy “ xAξ|ξyp˚q “ xBAξ|ξyp˚qY “ xξ|ξy
p˚q

Y “ xξ|ξyY ě κ }ξ}2

and hence that A is in particular semibounded from below with bound κ. Further, if
ξ P DpAq, then

xξ|ηyY “ xBAξ|ηyY “ xAξ|ηy

for all η P Y and hence xξ|¨yY P LppY, } }q,Kq. On the other hand, if ξ P Y is such
that xξ|¨yY P LppY, } }q,Kq and ξ̂ P X such that (3.1.2) is true, it follows that Bξ̂ “ ξ
and hence ξ P DpAq and Aξ “ ξ̂. Finally, if A 1 is a densely-defined, linear and
self-adjoint operator in X such that DpA 1q is a dense subspace of pY, x | yYq and

xξ|A 1ξy “ xξ|ξyY

for all ξ P DpA 1q, then it follows by polarization that

xξ|ηyY “ xξ|A
1ηy “ xA 1ξ|ηy

for all ξ, η P DpA 1q. Hence it follows for ξ P DpAq by the denseness of DpAq in
pY, } }Yq and the continuity of ιYãÑX that

xξ|ηyY “ xA
1ξ|ηy

for all η P Y . Hence xξ|¨yY P LppY, } }q,Kq and by the foregoing ξ P DpAq and
Aξ “ A 1ξ. As a consequence, it follows A Ą A 1 and since A, A 1 are both self-adjoint
that A 1 “ A. [\

Theorem 3.1.9. Let pX, x | yXq and pY, x | yYq be Hilbert spaces over K P tR,Cu, A
a densely-defined Y-valued, linear and closed operator in X. Then A˚A (as usual
maximally defined) is a densely-defined linear, self-adjoint and positive operator in
X. In particular, DpA˚Aq is a core for A and ker A “ kerpA˚Aq.

Proof. Since A is closed, it follows that pDpAq, x yAq, where x yA : pDpAqq2 Ñ K is
defined by

xξ|ηyA :“ xξ|ηyX ` xAξ|AηyY

for all ξ, η P DpAq, is a Hilbert space. In particular, it follows

}ξ}A “

b

}ξ}2
X ` }Aξ}

2
Y ě }ξ}X

for all ξ P DpAq where } }A denotes the norm induced on DpAq by x | yA. Hence by
the previous theorem, B : DpBq Ñ X, defined by

DpBq “ tξ P DpAq : xAξ|A¨yY P LppDpAq, } }Xq,Kqu
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and for every ξ P DpBq by
Bξ “ ξ̂ ,

where ξ̂ P X is the uniquely determined element such that

xAξ|A¨yY “ xξ̂ ´ ξ|¨yX

ˇ

ˇ

DpAq ,

is densely-defined, linear, self-adjoint and semibounded from below with bound 1
and DpBq is a dense subspace of pDpAq, } }Aq. Hence it follows by the definition of
A˚A that

A˚A “ B´ idX .

As a consequence, A˚A is a densely-defined, linear, self-adjoint and positive operator
in X. Further, since DpBq is dense in pDpAq, } }Aq, for ξ P DpAq there is a sequence
ξ0, ξ1, . . . in DpBq such that

lim
νÑ8

}ξν ´ ξ}A “ 0 .

Hence it follows also that

lim
νÑ8

}ξν ´ ξ}X “ 0 , lim
νÑ8

}Aξν ´ Aξ}Y “ 0

and therefore that DpA˚Aq is a core for A. Further, for ξ P kerpA˚Aq it follows

xAξ|AξyY “ xA
˚Aξ|ξyX “ 0

and hence ξ P ker A. Since ker A Ă kerpA˚Aq, it follows finally that ker A “

kerpA˚Aq. [\

Theorem 3.1.10. Let pX, x | yXq and pY, x | yYq be complex Hilbert spaces, A a
densely-defined Y-valued, linear and closed operator in X. Then ker A is a closed
subspace of X and the orthogonal projection P0 P LpX, Xq onto ker A is given by

P0 “ s´ lim
νÑ8

p1` νA˚Aq´1

where ‘s´lim’ denotes the strong limit. Note in particular that, because of

p1` νA˚Aqξ “ ξ

for all ξ P ker A, the elements of ker A are fixed points of p1 ` νA˚Aq´1 for every
ν P N.

Proof. From the linearity of A, it follows that ker A is a subspace of X. Further, for
ξ P ker A there is a sequence ξ0, ξ1, . . . in ker A converging to ξ. The corresponding
sequence Aξ0, Aξ1, . . . is converging to 0. Hence it follows by the closedness of A
that ξ P ker A and therefore that ker A “ ker A is a closed subspace of X. According
to the previous theorem, ker A equals the kernel of the densely-defined, linear, self-
adjoint and positive operator B :“ A˚A in X. In the next step, we prove for ν P N by
using the functional calculus for B that
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p1` νBq´1
“

1
1` ν idσpBq

pBq

where σpBq denotes the spectrum of B. For this, we first note that 1`νB is a densely-
defined, linear and self-adjoint operator in X which is semibounded from below with
bound 1. Hence the spectrum of 1 ` νB is contained in r1,8q and therefore 1 ` νB
is in particular bijective. Further, 1{p1 ` ν idσpBqq is a bounded real-valued function
on σpBq which is measurable with respect to every additive, monotone and regular
interval function on R. By the functional calculus for B, the Cayley transform UB “

pB´ iqpB` iq´1 “ 1´ 2ipB` iq´1 of B is given by

UB “
idσpBq ´ i
idσpBq ` i

pBq “ 1´ 2i
1

idσpBq ` i
pBq .

Hence it follows that
pB` iq´1

“
1

idσpBq ` i
pBq .

Further,

1` νB “ 1´ νi` νpB` iq “
“

p1´ νiqpB` iq´1
` ν

‰

pB` iq

“

„

1´ νi
idσpBq ` i

` ν

j

pBq pB` iq “
1` ν idσpBq
idσpBq ` i

pBq pB` iq

and hence

p1` νBq´1
“

1
idσpBq ` i

pBq
idσpBq ` i

1` ν idσpBq
pBq “

1
1` ν idσpBq

pBq .

In a further step, we prove that the orthogonal projection P0 P LpX, Xq onto ker B is
given by

`

χt0u |σpBq
˘

pBq

where χt0u denotes the characteristic function of t0u. First, it follows by the func-
tional calculus for B that

`

χt0u |σpBq
˘

pBq is an idempotent, self-adjoint, bounded and
linear on X and hence an orthogonal projection. For ξ P X, it follows that

pB` iq´1 `χt0u |σpBq
˘

pBqξ “
1

idσpBq ` i
pBq

`

χt0u |σpBq
˘

pBqξ

“
1
i

`

χt0u |σpBq
˘

pBqξ

and hence that
`

χt0u |σpBq
˘

pBqξ P ker B .

In particular, it follows in the case that 0 is no eigenvalue of B that
`

χt0u |σpBq
˘

pBq is
the zero operator which projects onto ker B “ t0u. Further, if 0 is an eigenvalue of
B, it follows for ξ P ker B by the functional calculus for B that

`

χt0u |σpBq
˘

pBqξ “
`

χt0u |σpBq
˘

p0qξ “ ξ
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and hence also in this case that Ran
`

χt0u |σpBq
˘

pBq “ ker B. Finally,

ˆ

1
1` ν idσpBq

˙

νPN

is a sequence which is uniformly bounded by 1 and everywhere on σpBq pointwise
convergent to χt0u |σpBq. Hence it follows by the functional calculus for B that

s´ lim
νÑ8

1
1` ν idσpBq

pBq “
`

χt0u |σpBq
˘

pBq .
[\

Theorem 3.1.11. (Elementary properties of the resolvent) Let pX, } }Xq be a non-
trivial Banach space over K P tR,Cu and A a densely-defined closed linear operator
in X.

(i) We define the resolvent set ρpAq Ă K of A by

ρpAq :“ tλ P K : A´ λ is bijectiveu .

Then ρpAq is an open subset of K. Therefore, its complement σpAq :“ KzρpAq,
which is called the spectrum of A, is a closed subset of K.

(ii) We define the resolvent RA : ρpAq Ñ LpX, Xq of A by

RApλq :“ pA´ λq´1

for every λ P ρpAq. Then RA satisfies the first resolvent formula

RApµq ´ RApλq “ pµ´ λqRApµqRApλq (3.1.3)

for every λ, µ P ρpAq and the second resolvent formula

RApλq ´ RBpλq “ RApλqpB´ AqRBpλq (3.1.4)

for every λ P ρpAq X ρpBq where B is some closed linear operator in X having
the same domain as A, i.e., DpBq “ DpAq.

(iii) For every ξ P X, ω P LpX,Kq is the corresponding function

ω ˝ RAξ

real-analytic/holomorphic. Here RAξ : ρpAq Ñ X is defined by pRAξqpλq :“
RApλqξ.

Proof. ‘(i), (iii)’: For this, let λ0 P ρpAq. Then A ´ λ0 is a closed densely-defined
bijective linear operator in X and hence RApλ0q P LpX, Xqzt0u. Then it follows for
every λ P U1{}RApλ0q}pλ0q

A´ λ “
“

idX ´ pλ´ λ0q .RApλ0q
‰

pA´ λ0q
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and therefore, since
idX ´ pλ´ λ0q.RApλ0q

is bijective as a consequence of

}pλ´ λ0q.RApλ0q} ă 1 ,

see e.g. [128] Chapter IV, §2, Theorem 2, that A´ λ is bijective as a composition of
bijective maps and

RApλq “
8
ÿ

k“0

pλ´ λ0q
k
rRApλ0qs

k`1 . (3.1.5)

Hence λ P ρpAq and in particular for every ξ P X, ω P LpX,Kq

pω ˝ RAξqpλq “
8
ÿ

k“0

ω
`

rRApλ0qs
k`1ξ

˘

pλ´ λ0q
k . (3.1.6)

‘(ii)’: For λ, µ P ρpAq and every ξ P DpAq, it follows

pA´ µqξ “ pA´ λqξ ` pλ´ µqξ

and hence for every η P X

pA´ µqRApλqη “ η` pλ´ µqRApλqη .

The last implies
RApλq “ RApµq ` pλ´ µqRApµqRApλq

and hence (3.1.3). Finally, let B : DpAq Ñ X be some closed linear operator in X.
Then it follows for every µ P ρpAq, λ P ρpBq and every ξ P DpAq

pA´ µqξ “ pA´ Bqξ ` pB´ λqξ ` pλ´ µqξ

and hence for every η P X

pA´ µqRBpλqη “ pA´ BqRBpλqη` η` pλ´ µqRBpλqη .

The last implies

RBpλq “ RApµqpA´ BqRBpλq ` RApµq ` pλ´ µqRApµqRBpλq

and hence (3.1.4). [\

3.2 Weak Integration of Banach Space-Valued Maps

The integration of Banach space-valued maps [49, 52, 225] is an essential tool in the
study of semigroups of operators. Most authors use for this the Bochner integral.



26 3 Prerequisites

Instead, the so called weak (or Pettis) integral is developed in the following up to
the level needed for the remainder of the course. The use of the more general weak
integral is mainly due to the validity of Theorem 3.2.2 below which seems to favour
the approach via weak integration in the important special case of Hilbert space-
valued maps. On the other hand, in the following only integrals of maps are needed
which are a.e. defined and a.e. continuous on open subsets of Rn for some n P N˚.
For this class of functions, it can easily be seen that the weak integral and the Bochner
integral coincide if existent.

Definition 3.2.1. (Weak Integral/Pettis’ integral) Let n P N
˚ and pX, } }q be a

Banach space over K P tR,Cu. We define for every X-valued map f which is a.e.
defined on Rn:

(i) f is weakly measurable if ω ˝ f is measurable for all ω P LpX,Kq ,
(ii) f is weakly summable if ω ˝ f is summable for every ω P LpX,Kq and if there is

ξ P X such that

ωpξq “

ż

Rn
ω ˝ f dvn

for every ω P LpX,Kq. Such ξ, if existent, is unique since LpX,Kq separates
points on X.1 For this reason, we define in that case the weak (or Pettis) integral
of f by

ż

Rn
f dvn :“ ξ .

Theorem 3.2.2. (Existence of the weak integral for reflexive Banach spaces) Let
n P N

˚, pX, } }q be a reflexive Banach space over K P tR,Cu and f a X-valued
map which is a.e. defined on Rn. Then f is weakly summable if and only if ω ˝ f is
summable for every ω P LpX,Kq.

Proof. If f is weakly summable, by definition, ω ˝ f is summable for every ω P

LpX,Kq. If, on the other hand, ω ˝ f is summable for every ω P LpX,Kq, we define
A : LpX,Kq Ñ L1

K
pRnq by

Aω :“ ω ˝ f

for every ω P LpX,Kq. Obviously, A is linear. A is in addition closed. For this,
let ω P LpX,Kq, ω1, ω2, . . . be a sequence in LpX,Kq such that ω1 ˝ f , ω2 ˝ f , . . .
is convergent to some g P LpX,Kq. Then a subsequence of ω1 ˝ f , ω2 ˝ f , . . . is
converging a.e. pointwise on R

n to g. Hence ω ˝ f is a.e. equal to g on R
n and

therefore Aω “ g. Hence A P LpLpX,Kq, L1
K
pRnqq by the closed graph theorem,

Theorem 3.1.3 (v). As a consequence, IA : LpX,Kq Ñ K, defined by

IApωq :“
ż

Rn
ω ˝ f dvn ,

is an element of LpLpX,Kq,Kq. Since X is reflexive, it follows the existence of ξ P X
such that IApωq “ ωpξq for all ω P LpX,Kq and therefore, finally, the weak summa-
bility of f . [\

1 See, e.g., [186] Theorem 3.4.
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Remark 3.2.3. For an example of an actual calculation of a weak integral, compare
the proof of Lemma 10.2.1 (v).

Theorem 3.2.4. (Elementary properties of the weak integral) Let n P N˚, K P
tR,Cu, pX, } }Xq, pY, } }Yq be Banach spaces over K, f , g be X-valued maps which
are a.e. defined on Rn and weakly summable, λ P K and T P LpX,Yq.

(i) If f is weakly integrable and g is a.e. equal to f , then g is weakly integrable and
ż

Rn
g dvn

“

ż

Rn
f dvn .

(ii) Then f ` g, λ f and T ˝ f are weakly integrable and
ż

Rn
f ` g dvn

“

ż

Rn
f dvn

`

ż

Rn
g dvn ,

ż

Rn
λ f dvn

“ λ

ż

Rn
f dvn ,

ż

Rn
T ˝ f dvn

“ T
ż

Rn
f dvn .

(iii) For every f P L1
K
pRnq and every ξ P X:

ż

Rn
f . ξ dvn

“

ˆ
ż

Rn
f dvn

˙

. ξ

where f . ξ is defined by p f . ξqpxq :“ f pxq. ξ for all x in the domain of f .

Proof. ‘(i)’: Obvious.
‘(ii)’: For every ω P LpX,Kq, ω ˝ p f ` gq “ ω ˝ f ` ω ˝ g, ω ˝ pλ f q “ λω ˝ f is
summable and

ż

Rn
ω ˝ p f ` gq dvn

“ ω

ˆ
ż

Rn
f dvn

`

ż

Rn
g dvn

˙

,

ż

Rn
ω ˝ pλ f q dvn

“ ω

ˆ

λ

ż

Rn
f dvn

˙

.

Further, it follows for every ω P LpY,Kq that ω ˝ T P LpX,Kq and hence the summa-
bility of ω ˝ pT ˝ f q “ pω ˝ T q ˝ f and

ż

Rn
ω ˝ pT ˝ f q dvn

“ pω ˝ T q
ˆ
ż

Rn
f dvn

˙

“ ω

ˆ

T
ż

Rn
f dvn

˙

.

‘(iii)’: For this, let f P L1
K
pRnq and ξ P X. Then it follows for every ω P LpX,Kq that

ω ˝ p f . ξq “ ωpξq . f is summable and that
ż

Rn
ω ˝ p f . ξq dvn

“ ω

ˆˆ
ż

Rn
f dvn

˙

. ξ

˙

.

[\
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Theorem 3.2.5. (Existence of the weak integral) Let K P tR,Cu, pX, } }q be a K-
Banach space, n P N˚, Ω a non-empty open subset of Rn and f : Ω Ñ X almost
everywhere continuous.

(i) There is a sequence psνqνPN of step functions such that supppsνq Ă Ω, Ranpsνq Ă
Ranp f q Y t0Xu for all ν P N and for almost all x P Rn

lim
νÑ8

sνpxq “ f̂ pxq

where f̂ : Rn Ñ X is defined by f̂ pxq :“ f pxq for all x P Ω and f̂ pxq :“ 0X for
all x P RnzΩ. (As a consequence, f̂ is ‘strongly measurable’.)

(ii) f̂ is essentially separably-valued, i.e., there is a zero set M Ă R
n along with an

at most countable subset D of X such that f̂ pRnzMq Ă D.
(iii) If } f̂ pxq} ď hpxq for almost all x P Rn and some a.e. on Rn defined summable

function h, then f̂ is weakly-summable, } f̂ } is summable and
›

›

›

›

ż

Rn
f̂ dvn

›

›

›

›

ď

ż

Rn
} f̂ } dvn . (3.2.1)

Proof. ‘(i)’: For this, we define for every ν P N˚, k P Zn the interval Iνk of side length
1{ν by

Iνk :“
„

k1

ν
,

k1 ` 1
ν

˙

ˆ ¨ ¨ ¨ ˆ

„

kn

ν
,

kn ` 1
ν

˙

.

The family
`

Iνk
˘

kPZn gives a decomposition of Rn into pairwise disjoint bounded
intervals of length 1{ν. We define for every ν P N˚ a corresponding step function
sν : Rn Ñ X by

sνpxq :“ f pxνkq , x P Iνk

for all Iνk Ă Uνp0q X Ω where xνk is some chosen element of Iνk . For all other x P Rn,
we define sνpxq :“ 0X . Note that Ranpsνq Ă Ranp f qYt0Xu. Then it follows for every
point x P Ω of continuity of f that limνÑ8 sνpxq “ f pxq: Since f is continuous in x
and Ω is open, for given ε ą 0, there is δ ą 0 such that Uδpxq Ă Ω and at the same
time such that f pyq P Uεp f pxqq for all y P Uδpxq. Hence for ν ą max t|x|`δ,

?
n{δu

it follows that x P Uνp0q X Ω,

x P Iν
prνx1s,...,rνxnsq

Ă B?n{νpxq Ă Uδpxq Ă Uνp0q X Ω

where r s : R Ñ Z is the floor function defined by rys :“ max tk P Z : k ď yu, and
hence }sνpxq ´ f pxq} “ } f pxνkq ´ f pxq} ă ε where k :“ prνx1s, . . . , rνxnsq. Finally,
for x R Ω, it follows that limνÑ8 sνpxq “ 0X because sνpxq “ 0X for all ν P N˚.
‘(ii)’: Let M consist of those x P Rn for which psνpxqqνPN˚ fails to converge to f̂ pxq.
By (i) M is a zero set. In addition, let D be the union of the ranges of all sν, ν P N˚.
Then D is at most countable, and f pRnzMq is contained in the closure of D.
‘(iii)’: For this, let h be as described in (iii) and psνqνPN˚ be as defined defined in the
proof of (i). Then it follows that } f̂ } is measurable since a.e. on Rn pointwise limit
of a sequence of measurable functions and hence also summable since a.e. on Rn
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majorized by the summable function h. In the following, let ε ą 0. Then we define
for every ν P N˚ the step function

tνpxq :“

#

sνpxq if }sνpxq} ď p1` εq } f̂ pxq}
0 if }sνpxq} ą p1` εq } f̂ pxq}

for every x P Rn. Then also
lim
νÑ8

tνpxq “ f̂ pxq ,

for almost all x P Rn. Further, }tν ´ f̂ } is Lebesgue summable for every ν P N˚. To
prove this, we notice that for any µ P N˚ the corresponding function }tν ´ tµ} is a
step function, and that p}tν´ tµ}qµPN˚ converges almost everywhere on Rn pointwise
to }tν ´ f̂ }. Hence }tν ´ f̂ } is measurable. In addition, p2 ` εqh is a summable
majorant for }tν´ f̂ } and hence }tν´ f̂ } is also summable. Further, p}tν´ f̂ }qνPN˚ is
almost everywhere on Rn convergent to 0 and is majorized by the summable function
p2` εqh. Hence it follows by Lebesgue’s dominated convergence theorem that

lim
νÑ8

ż

Rn
}tν ´ f̂ } dvn

“ 0 . (3.2.2)

In addition, it follows for µ, ν P N˚ that
›

›

›

›

ż

Rn
tµ dvn

´

ż

Rn
tν dvn

›

›

›

›

“

›

›

›

›

ż

Rn
ptµ ´ tνq dvn

›

›

›

›

ď

ż

Rn
}tµ ´ tν} dvn

ď

ż

Rn
}tµ ´ f̂ } dvn

`

ż

Rn
}tν ´ f̂ } dvn

and hence by p3.2.2q and the completeness of X that

lim
νÑ8

ż

Rn
tν dvn

“ ξ

for some ξ P X. Note in particular that
›

›

›

›

ż

Rn
tν dvn

›

›

›

›

ď

ż

Rn
}tν} dvn

ď p1` εq

ż

Rn
} f̂ } dvn

and hence that
}ξ} ď p1` εq

ż

Rn
} f̂ } dvn . (3.2.3)

Further, it follows by Lebesgue’s dominated convergence theorem for every ω P

LpX,Cq
ż

Rn
ω ˝ f̂ dvn

“ lim
νÑ8

ż

Rn
ω ˝ tν dvn

“ ω

ˆ

lim
νÑ8

ż

Rn
tν dvn

˙

“ ωpξq .

Hence f̂ is weakly-summable and
ż

Rn
f̂ dvn

“ ξ .

Finally, (3.2.1) follows by (3.2.3). [\
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Remark 3.2.6. It is not difficult to see that a function f satisfying the assumptions
of Theorem 3.2.5 and the additional assumption of Theorem 3.2.5 (iii) is Bochner
integrable and that its Bochner integral and its weak integral coincide.

Corollary 3.2.7. (Fubini’s theorem for a class of weakly integrable functions)
Let K P tR,Cu, pX, } }q a K-Banach space, m, n P N˚, Ω be a non-empty open subset
of Rm`n, f : Ω Ñ X be almost everywhere continuous and such that } f̂ } is a.e.
on Rm`n majorized by a summable function h where f̂ : Rm`n Ñ X is defined by
f̂ pxq :“ f pxq for all x P Ω and f̂ pxq :“ 0X for all x P Rm`nzΩ. Then there is a zero
set N1 Ă R

m such that

(i) f̂ px, ¨q is weakly summable for all x P RmzN1.
(ii)

ˆ

R
m
zN1 Ñ X, x ÞÑ

ż

Rn
f̂ px, ¨q dvn

˙

is weakly summable and
ż

Rm`n
f̂ dvm`n

“

ż

Rm

ˆ

R
m
zN1 Ñ X, x ÞÑ

ż

Rn
f̂ px, ¨q dvn

˙

dvm .

Proof. ‘(i)’: First, we note that by integration theory for any zero set N Ă R
m`n,

there is a zero set N1 Ă R
m such that

Nx :“ ty P Rn : px, yq P Nu

is a zero set for all x P RmzN1. Further, by Theorem 3.2.5 it follows the weak summa-
bility of f̂ and the summability of } f̂ }. Also, according to the proof of Theorem 3.2.5
(iii), there is a sequence psνqνPN of step functions on Rm`n such that supppsνq Ă Ω,
Ranpsνq Ă Ranp f q Y t0Xu for all ν P N,

lim
νÑ8

sνpxq “ f̂ pxq

for almost all x P Rm`n,
}sνpxq} ď 2 } f̂ pxq}

for all ν P N, x P Rm`n and

lim
νÑ8

ż

Rm`n
sν dvm`n

“

ż

Rm`n
f̂ dvm`n .

Hence there is a zero set N1 Ă R
m such that for all x P RmzN1 the corresponding

sequence of step functions psνpx, ¨qqνPN satisfies

lim
νÑ8

sνpx, ¨q “ f̂ px, ¨q

almost everywhere on Rn and at the same time such that } f̂ px, ¨q} is summable. In
particular, it follows for such x that }sνpx, ¨q ´ f̂ px, ¨q} is Lebesgue summable for
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every ν P N˚. To prove this, we notice that for any µ P N˚ the corresponding function
}sνpx, ¨q ´ sµpx, ¨q} is a step function and that p}sνpx, ¨q ´ sµpx, ¨q}qµPN˚ converges
almost everywhere on Rn pointwise to }sνpx, ¨q ´ f̂ px, ¨q}. Hence }sνpx, ¨q ´ f̂ px, ¨q}
is measurable. In addition, 2} f̂ px, ¨q} is a summable majorant for }sνpx, ¨q ´ f̂ px, ¨q}
and hence }sνpx, ¨q ´ f̂ px, ¨q} is also summable. Further, p}sνpx, ¨q ´ f̂ px, ¨q}qνPN˚ is
almost everywhere on Rn convergent to 0 and is majorized by the summable function
2} f̂ px, ¨q}. Hence it follows by Lebesgue’s dominated convergence theorem that

lim
νÑ8

ż

Rn
}sνpx, ¨q ´ f̂ px, ¨q} dvn

“ 0 .

Further,
›

›

›

›

ż

Rn
sµpx, ¨q dvn

´

ż

Rn
sνpx, ¨q dvn

›

›

›

›

ď

ż

Rn
}sµpx, ¨q ´ sνpx, ¨q} dvn

ď

ż

Rn
}sµpx, ¨q ´ f̂ px, ¨q} dvn

`

ż

Rn
}sνpx, ¨q ´ f̂ px, ¨q} dvn

for all µ, ν P N, and hence it follows by the completeness of pX, } }q the existence of
ξx P X such that

lim
νÑ8

ż

Rn
sνpx, ¨q dvn

“ ξx .

In particular

}ξx} ď

ż

Rn
} f̂ px, ¨q} dvn

since
›

›

›

›

ż

Rn
sνpx, ¨q dvn

›

›

›

›

ď

ż

Rn
}sνpx, ¨q} dvn

ď

ż

Rn
} f̂ px, ¨q} dvn

for every ν P N. Since

ωpξxq “ lim
νÑ8

ż

Rn
ω ˝ sνpx, ¨q dvn

“

ż

Rn
ω ˝ f̂ px, ¨q dvn

for all ω P LpX,Kq, it follows the weak integrability of f̂ px, ¨q and

lim
νÑ8

ż

Rn
sνpx, ¨q dvn

“

ż

Rn
f̂ px, ¨q dvn .

‘(ii)’: Further, we define for every ν P N the corresponding step function tν on Rm by

tνpxq :“
ż

Rn
sνpx, ¨q dvn

for all x P Rm and F : RmzN1 Ñ X by

Fpxq :“
ż

Rn
f̂ px, ¨q dvn
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for all x P RmzN1. Then
lim
νÑ8

tνpxq “ Fpxq

and
}tνpxq} ď

ż

Rn
} f̂ px, ¨q} dvn , }Fpxq} ď

ż

Rn
} f̂ px, ¨q} dvn

for all x P RmzN1. Note that
ˆ

R
m
zN1 Ñ R, x ÞÑ

ż

Rn
} f̂ px, ¨q} dvn

˙

is summable by Fubini’s theorem. Also, it follows by Fubini’s theorem that
ż

Rm
tν dvm

“

ż

Rm`n
sν dvm`n

for every ν P N and hence that

lim
νÑ8

ż

Rm
tν dvm

“

ż

Rm`n
f̂ dvm`n .

In particular, it follows that }tν ´ F} is Lebesgue summable for every ν P N˚. To
prove this, we notice that for any µ P N˚ the corresponding function }tν ´ tµ} is a
step function and that p}tν ´ tµ}qµPN˚ converges almost everywhere on Rn pointwise
to }tν ´ F}. Hence }tν ´ F} is measurable. In addition,

ˆ

R
m
zN1 Ñ R, x ÞÑ

ż

Rn
2 } f̂ px, ¨q} dvn

˙

(3.2.4)

is a summable majorant for }tν ´ F} and hence }tν ´ F} is also summable. Further,
p}tν ´ F}qνPN˚ is almost everywhere on Rm convergent to 0 and is majorized by the
summable function (3.2.4). Hence it follows by Lebesgue’s dominated convergence
theorem that

lim
νÑ8

ż

Rm
}tν ´ F} dvm

“ 0 .

As a consequence,

ω

ˆ
ż

Rm`n
f̂ dvm`n

˙

“ lim
νÑ8

ż

Rm
ω ˝ tν dvm

“

ż

Rm
ω ˝ F dvm

for all ω P LpX,Kq. Finally, this implies the weak integrability of F and that
ż

Rm
F dvm

“

ż

Rm`n
f̂ dvm`n .

[\
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Theorem 3.2.8. Let K P tR,Cu, pX, } }q a K-Banach space and f : ra, bs Ñ X be
bounded and almost everywhere continuous. Then F : ra, bs Ñ X defined by

Fpxq :“
ż x

a
f ptq dt

for every x P ra, bs is continuous. Furthermore, if f is continuous in x P pa, bq, then
F is differentiable in x and

F 1pxq “ f pxq .

Proof. Obviously, by Theorem 3.2.5, it follows the weak integrability of χra,xs. f̂ for
all x P ra, bs. Further, it follows for x, y P ra, bs that

}Fpyq ´ Fpxq} “
›

›

›

›

ż y

x
f ptq dt

›

›

›

›

ď

ż y

x
} f ptq} dt ď M ¨ |y´ x|

if y ě x as well as

}Fpyq ´ Fpxq} “
›

›

›

›

ż x

y
f ptq dt

›

›

›

›

ď

ż x

y
} f ptq} dt ď M ¨ |y´ x|

if y ă x, where M ě 0 is such that } f ptq} ď M for all t P ra, bs, and hence the
continuity of F. Further, let f be continuous in x P pa, bq. Hence for given ε ą 0,
there is δ ą 0 such that

} f ptq ´ f pxq} ă ε

for all t P ra, bs satisfying |t´ x| ă δ. Now let h P R˚ be such that |h| ă δ and small
enough such that x ` h P pa, bq. We consider the cases h ą 0 and h ă 0. In the first
case, it follows that

›

›

›

›

1
h
.
`

Fpx` hq ´ Fpxq
˘

´ f pxq
›

›

›

›

“

›

›

›

›

1
h

„
ż x`h

a
f ptq dt ´

ż x

a
f ptq dt

j

´ f pxq
›

›

›

›

“

›

›

›

›

1
h

ż x`h

x
r f ptq ´ f pxqs dt

›

›

›

›

ď
1
h

ż x`h

x
} f ptq ´ f pxq} dt ď ε .

Analogously, in the second case,
›

›

›

›

1
h
.
`

Fpx` hq ´ Fpxq
˘

´ f pxq
›

›

›

›

“

›

›

›

›

1
h

„
ż x`h

a
f ptq dt ´

ż x

a
f ptq dt

j

´ f pxq
›

›

›

›

“

›

›

›

›

´
1
h

ż x

x`h
r f ptq ´ f pxqs dt

›

›

›

›

ď
1
|h|

ż x

x`h
} f ptq ´ f pxq} dt ď ε .

Hence it follows
lim

hÑ0,h‰0

1
h
.
`

Fpx` hq ´ Fpxq
˘

“ f pxq .

[\
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Theorem 3.2.9. Let K P tR,Cu, pX, } }q be a K-Banach space and f : ra, bs Ñ X
continuous where a and b are some elements of R such that a ă b. Further, let
F : ra, bs Ñ X be continuous and differentiable on pa, bq such that F 1pxq “ f pxq for
all x P pa, bq. Then

ż b

a
f pxq dx “ Fpbq ´ Fpaq . (3.2.5)

Proof. For this, let ω P LpX,Kq. Then ω ˝ f , ω ˝ F are continuous, and ω ˝ F is
differentiable on pa, bqwith derivativeω˝ f |pa,bq. Hence it follows by the fundamental
theorem of calculus that

ω

ˆ
ż b

a
f pxq dx

˙

“

ż b

a
pω ˝ f qpxq dx “ pω ˝ Fqpbq ´ pω ˝ Fqpaq “ ωpFpbq ´ Fpaqq

and hence (3.2.5) since LpX,Kq separates points on X. [\

Theorem 3.2.10. (Substitution rule for weak integrals) Let K P tR,Cu, pX, } }q a
K-Banach space, n P N˚, Ω1, Ω2 non-empty open subsets of Rn, f : Ω2 Ñ X almost
everywhere continuous and such that } f } is summable. Finally, let h : Ω1 Ñ Ω2 be
continuously differentiable such that h 1pxq ‰ 0 for all x P Ω1 and bijective. Then
|detph 1q|.p f ˝ hq is weakly summable and

ż

Ω2

f dvn
“

ż

Ω1

|detph 1q|.p f ˝ hq dvn . (3.2.6)

Proof. First, it follows by the inverse mapping theorem that h´1 : Ω2 Ñ Ω1 is
continuously differentiable. Hence it follows by the substitution rule for Lebesgue
integrals that h´1pNf q Ă Ω1 is a zero set where Nf Ă Ω2 denotes the set of discon-
tinuities of f . In particular, |detph 1q|.p f ˝ hq is a.e. continuous and

}|detph 1q|.p f ˝ hq} ď |detph 1q| ¨ p} f } ˝ hq .

Since |detph 1q| ¨ p} f } ˝ hq is summable, it follows that |detph 1q|.p f ˝ hq is weakly
summable. Further, it follows by the substitution rule for Lebesgue integrals that

ω

ˆ
ż

Ω2

f dvn
˙

“

ż

Ω2

ω ˝ f dvn
“

ż

Ω1

|detph 1q|.rpω ˝ f q ˝ hs dvn

“ ω

ˆ
ż

Ω1

|detph 1q|.p f ˝ hq dvn
˙

for every ω P LpX,Kq and hence (3.2.6). [\

Theorem 3.2.11. (Integration of strongly continuous maps) Let K P tR,Cu,
pX, } }Xq, pY, } }Yq be K-Banach spaces, n P N

˚ and Ω a non-empty open subset
of Rn. Further, let f : Ω Ñ LpX,Yq be such that for every ξ P X the corresponding
map f ξ :“ pΩ Ñ Y, x ÞÑ f pxqξq is almost everywhere continuous and for which
there is some a.e. on Rn defined summable function h such that
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} f̂ pxq} ď hpxq

for almost all x P Rn. Then by
ż

Rn
f̂ dvn :“

ˆ

X Ñ Y, ξ ÞÑ
ż

Rn
f̂ ξ dvn

˙

, (3.2.7)

there is defined a bounded linear operator on X satisfying
›

›

›

›

ż

Rn
f̂ dvn

›

›

›

›

ď }h}1 . (3.2.8)

Proof. For this, let ξ P X. Then f̂ ξ is almost everywhere continuous and

} f̂ ξ}Y ď }ξ}X . h .

Hence it follows by Theorem 3.2.5 that f̂ ξ is weakly integrable, that } f̂ ξ}Y is inte-
grable as well as

›

›

›

›

ż

Rn
f̂ ξ dvn

›

›

›

›

Y
ď

ż

Rn
} f̂ ξ}Y dvn

ď }h}1 ¨ }ξ}X . (3.2.9)

Hence it follows that by (3.2.7) it is defined a map from X to Y which is linear by the
linearity of the weak integral. Finally, the boundedness of that operator and (3.2.8)
follows from (3.2.9). [\

3.3 Exponentials of Bounded Linear Operators

This section defines the exponential function exp on LpX, Xq where X is a Banach
space. The Theorems 3.3.1 and 4.1.1 at the beginning of the next section give a
complete characterization of all semigroups which are continuous in the topology
induced on LpX, Xq by the operator norm. For every such semigroup T : r0,8q Ñ
LpX, Xq, there is a uniquely determined A P LpX, Xq such that T ptq “ expptAq for
every t P r0,8q. Hence there is a unique extension of T to a homomorphism of
pR,`q into pLpX, Xq, ˝q given by pRÑ LpX, Xq, t ÞÑ expptAqq. As a consequence of
Theorem 3.3.1 (i), for every ξ P X the corresponding u :“ pR Ñ X, t ÞÑ expptAqξq
satisfies up0q “ ξ and

u1ptq “ ´Auptq (3.3.1)

for every t P R. Here 1 denotes the ordinary derivative of functions with values in X.
Applications of (3.3.1) with A P LpX, Xq are usually restricted to finite dimensional
X, i.e., to systems of ordinary differential equations of the first order. An excep-
tion to this is given in Chapter 5.2. Equations of the type (3.3.1) in infinite dimen-
sions usually involve partial differential operators. In general, such operators induce
unbounded linear operators in Banach spaces.
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Theorem 3.3.1. (Definition and properties of the exponential function) Let K P
tR,Cu and pX, } }q a K-Banach space. Then we define the exponential function exp :
LpX, Xq Ñ LpX, Xq by

exppAq :“
8
ÿ

k“0

1
k!
. Ak

where A0 :“ idX and Ak`1 :“ A ˝ Ak for all k P N. Note that this series is absolutely
convergent since }Ak} ď }A}k for all k P N.

(i) The map uA : KÑ LpX, Xq, defined by

uAptq :“ exppt.Aq

for every t P K, is differentiable with derivative

u 1Aptq “ A ˝ uAptq

for all t P K.
(ii) For all A, B P LpX, Xq satisfying A ˝ B “ B ˝ A

exppA` Bq “ exppAq ˝ exppBq . (3.3.2)

(iii) For all A P LpX, Xq satisfying }A} ď 1, n P N and ξ P X,
›

› exp
`

n.pA´ idXq
˘

ξ ´ Anξ
›

› ď
?

n ¨ }pA´ idXqξ} . (3.3.3)

Proof. ‘(i)’: For this, let A P LpX, Xq. Then it follows for t P K, h P K˚, by using the
bilinearity and continuity of the composition map on ppLpX, Xqq2 , that

›

›

›

›

1
h
. r expppt ` hq.Aq ´ exppt.Aqs ´ A ˝ exppt.Aq

›

›

›

›

“

›

›

›

›

›

8
ÿ

k“2

1
k!

„

pt ` hqk ´ tk

h
´ ktk´1

j

. Ak

›

›

›

›

›

“ lim
nÑ8

›

›

›

›

›

n
ÿ

k“2

1
k!

„

pt ` hqk ´ tk

h
´ ktk´1

j

. Ak

›

›

›

›

›

. (3.3.4)

Further, for any n P N, n ě 2:
›

›

›

›

›

n
ÿ

k“2

1
k!

„

pt ` hqk ´ tk

h
´ ktk´1

j

. Ak

›

›

›

›

›

ď

n
ÿ

k“2

1
k!

ˇ

ˇ

ˇ

ˇ

pt ` hqk ´ tk

h
´ ktk´1

ˇ

ˇ

ˇ

ˇ

}A}k ,

(3.3.5)

and for any k P N, k ě 2:

ˇ

ˇ

ˇ

ˇ

pt ` hqk ´ tk

h
´ ktk´1

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

t ` h´ t
h

¨

«

k´1
ÿ

l“0

pt ` hql ¨ tk´pl`1q

ff

´ ktk´1

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

k´1
ÿ

l“1

”

pt ` hql ¨ tk´pl`1q
´ tk´1

ı

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

k´1
ÿ

l“1

tk´pl`1q “
pt ` hql ´ t l‰

ˇ

ˇ

ˇ

ˇ

ˇ
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“

ˇ

ˇ

ˇ

ˇ

ˇ

k´1
ÿ

l“1

l´1
ÿ

m“0

pt ` hqm ¨ tk´pm`2q

ˇ

ˇ

ˇ

ˇ

ˇ

¨ |h| ď |h| ¨
k´1
ÿ

l“1

l´1
ÿ

m“0

p |t| ` |h| qk´2

“
|h|
2
¨ kpk ´ 1q ¨ p |t| ` |h| qk´2 .

Inserting the last into (3.3.5) gives
›

›

›

›

›

n
ÿ

k“2

1
k!

„

pt ` hqk ´ tk

h
´ ktk´1

j

. Ak

›

›

›

›

›

ď
|h|
2

n
ÿ

k“2

1
pk ´ 2q!

¨ p |t| ` |h| qk´2
}A}k

ď
|h| ¨ }A}2

2
exp

`

p|t| ` |h|q ¨ }A}
˘

.

Finally, inserting the last into (3.3.4) gives
›

›

›

›

1
h
. rexpppt ` hq.Aq ´ exppt.Aqs ´ A ˝ exppt.Aq

›

›

›

›

ď
|h| ¨ }A}2

2
exp

`

p|t| ` |h|q ¨ }A}
˘

and hence

lim
hÑ0,h‰0

›

›

›

›

1
h
. r expppt ` hq.Aq ´ exppt.Aqs ´ A ˝ exppt.Aq

›

›

›

›

“ 0 .

‘(ii)’: For this, let A, B P LpX, Xq be such that A ˝ B “ B ˝ A and t P K, h P K˚. Then
›

›

›

›

1
h
.
`

uApt ` hq ˝ uBpt ` hq

´uAptq ˝ uBptq
˘

´
`

u 1Aptq ˝ uBptq ` uAptq ˝ u 1Bptq
˘›

›

“

›

›

›

›

„

1
h
.
`

uApt ` hq ´ uAptq
˘

´ u 1Aptq
j

˝ uBptq

` uAptq ˝
„

1
h
.
`

uBpt ` hq ´ uBptq
˘

´ u 1Bptq
j

`
1
h
.
`

uApt ` hq ´ uAptq
˘

˝
`

uBpt ` hq ´ uBptq
˘

›

›

›

›

ď

›

›

›

›

„

1
h
.
`

uApt ` hq ´ uAptq
˘

´ u 1Aptq
j ›

›

›

›

¨ }uBptq}

` }uAptq} ¨
›

›

›

›

„

1
h
.
`

uBpt ` hq ´ uBptq
˘

´ u 1Bptq
j ›

›

›

›

`

›

›

›

›

1
h
.
`

uApt ` hq ´ uAptq
˘

›

›

›

›

¨

›

›

›

›

`

uBpt ` hq ´ uBptq
˘

›

›

›

›

.



38 3 Prerequisites

Hence it follows by (i) the differentiability of gA,B : K Ñ LpX, Xq defined by
hA,Bptq :“ uA`Bptq ´ uAptq ˝ uBptq for every t P K and

h 1A,Bptq “ pA` Bq ˝ uA`Bptq ´ A ˝ uAptq ˝ uBptq ´ uAptq ˝ B ˝ uBptq

“ pA` Bq ˝ uA`Bptq ´ A ˝ uAptq ˝ uBptq ´ B ˝ uAptq ˝ uBptq

“ pA` Bq ˝ hA,Bptq

for all t P K where the bilinearity and continuity of the composition map on
pLpX, Xqq2 has been used as well as that A ˝ B “ B ˝ A by assumption. Hence it
follows by hA,Bp0q “ uA`Bp0q ´ uAp0q ˝ uBp0q “ 0 along with Theorem 3.2.9,
Theorem 3.2.5 that

}hA,Bptq} ď }A` B} ¨
ż t

0
} hA,Bpsq} ds

for all t P r0,8q. As a consequence, it follows for ε ą 0 that

}hA,Bptq} ă ε e t}A`B} (3.3.6)

for all t P r0,8q. Because otherwise there is t0 P p0,8q such that

}hA,Bpt0q} ě ε e t0}A`B}

and such that (3.3.6) is valid for all t P r0, t0q. Then

}hA,Bpt0q} ď }A` B} ¨
ż t0

0
} hA,Bpsq} ds ď }A` B} ¨

ż t0

0
ε e t}A`B} ds

“ ε ¨
´

e t0}A`B}
´ 1

¯

ă ε ¨ e t0}A`B} .�

From (3.3.6) it follows that hA,Bptq “ 0 for all t ě 0 and hence (3.3.2).
‘(iii)’: For this, let A P LpX, Xq be such that }A} ď 1, n P N and ξ P X. Then

›

› exp
`

n.pA´ idXq
˘

ξ ´ Anξ
›

› “ e´n
¨ } exppn.Aqξ ´ en. Anξ}

“ e´n
¨ lim

mÑ8

›

›

›

›

›

m
ÿ

k“0

nk

k!
pAk

´ An
qξ

›

›

›

›

›

. (3.3.7)

Further, it follows for m P N by using the Cauchy-Schwarz inequality for the Euclid-
ean scalar product on Rm`1:
›

›

›

›

›

m
ÿ

k“0

nk

k!
pAk

´ An
qξ

›

›

›

›

›

ď

m
ÿ

k“0

nk

k!

›

›pAk
´ An

qξ
›

› ď

m
ÿ

k“0

nk

k!

›

›

›
pA|k´n|

´ idXqξ
›

›

›

“

m
ÿ

k“0

nk

k!

›

›

›

›

›

›

|k´n|´1
ÿ

l“0

Al
˝ pA´ idXqξ

›

›

›

›

›

›

ď }pA´ idXqξ} ¨
m
ÿ

k“0

|k ´ n|
nk

k!
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ď }pA´ idXqξ} ¨

˜

m
ÿ

k“0

pk ´ nq2
nk

k!

¸1{2

¨

˜

m
ÿ

k“0

nk

k!

¸1{2

(3.3.8)

ď }pA´ idXqξ} ¨ en{2
¨

˜

8
ÿ

k“0

pk ´ nq2
nk

k!

¸1{2

“ }pA´ idXqξ} ¨ en{2
¨

˜

8
ÿ

k“0

“

kpk ´ 1q ´ p2n´ 1qk ` n2‰ nk

k!

¸1{2

“ }pA´ idXqξ} ¨ en{2` “n2
´ p2n´ 1qn` n2‰ en˘1{2

“
?

n en
}pA´ idXqξ} .

Finally, (3.3.3) follows from (3.3.7) and (3.3.8). [\




