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Global Determination of the Basin
of Attraction

Up to now we have focussed on the construction of a Lyapunov function, i.e.
a function with negative orbital derivative. For such a function in a neighbor-
hood of an exponentially asymptotically stable equilibrium one can always
find a Lyapunov basin as described above. Since the basin of attraction is an
open set and the Lyapunov basins are compact sets, they are always proper
subsets of the basin of attraction. Hence, the best we can expect is that, given
a compact subset of the basin of attraction, we find a Lyapunov basin larger
than this compact set with our method.

For the results of this section we assume that f is bounded in A(x0) which
can be achieved by studying the dynamically equivalent system ẋ = g(x)
where g(x) = f(x)

1+‖f(x)‖2 , cf. Remark 2.5. In particular, the basin of attraction
of x0 is the same for the two systems ẋ = f(x) and ẋ = g(x). We can show
that given a compact set K0 ⊂ A(x0) one obtains a Lyapunov basin larger
than K0 by approximating the function V . The approximation can either be
direct or using the Taylor polynomial of V . This result uses an estimate of
|[V (x) − V (x0)] − [v(x) − v(x0)]| near x0. Note, that this estimate is possible
although the approximation v only uses the values of the orbital derivative
V ′(x) and not of V (x). The reason is that V is a smooth function in x0. Thus,
the result does not hold for approximations of the function T .

The result requires a sufficiently dense grid. Even if the set v′(x) < 0
is already quite large, the largest sublevel set of v probably only provides a
small Lyapunov basin. In order to enlarge the Lyapunov basin one has to use
a denser grid – not only where v′(x) > 0, not only near the boundary of the
former Lyapunov basin, but in the whole expected basin of attraction.

We consider again the example (2.11). A series of Lyapunov basins with
denser grids is shown in Figures 5.1 to 5.3. Note that here the sets v′(x) < 0 do
not change significantly, but the values of v and hence the Lyapunov basins
do. However, the enlargement of the Lyapunov basins is not monotonous,
cf. Figures 5.1 and 5.2. This indicates that in practical applications the error
is in fact smaller than predicted by the corresponding theorem. Figure 5.3



116 5 Global Determination of the Basin of Attraction

–2

–1

1

2

y

–1 –0.5 0.5 1

x

–2

–1

1

2

y

–1 –0.5 0.5 1

x

Fig. 5.1. The function v is the approximation of the Lyapunov function V satisfying
V ′(x, y) = −(x2 + y2) for the example (2.11). The figures show the set v′(x, y) = 0
(grey), a level set of v(x, y) (black) and a local Lyapunov basin (thin black). Left:
grid density α = 0.4. Right: grid density α = 0.2 (cf. also Figures 5.2 and 5.3).
Compare the Lyapunov basins (black) in both figures: although we used more grid
points (black +) in the right-hand figure, the left-hand Lyapunov basin is no subset
of the right-hand one.
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Fig. 5.2. The set v′(x, y) = 0 (grey), a level set of v(x, y) (black), the grid points
(black +) and a local Lyapunov basin (thin black). Left: grid density α = 0.15.
Right: grid density α = 0.1 (cf. also Figure 5.3). The example considered is (2.11).

compares the best result (484 grid points) with the numerically calculated
boundary of the basin of attraction, an unstable periodic orbit. For the data
of the grids and the calculations of all figures, cf. Appendix B.2.
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Fig. 5.3. The set v′(x, y) = 0 (grey), a level set of v(x, y) (black), the grid points
(black +) and a local Lyapunov basin (thin black). Left: grid density α = 0.075.
Right: the same Lyapunov basin (black) is shown together with the numerically
calculated periodic orbit which is the boundary of the basin of attraction (grey).
The example considered is (2.11).

Given a Lyapunov function q and a Lyapunov basin K, Theorem 2.24
implies K ⊂ A(x0). Thus, on the one hand, we search for a function q, the
orbital derivative of which is negative in K\{x0}, i.e. a Lyapunov function. On
the other hand, K is supposed to be a sublevel set of q, i.e. K is a Lyapunov
basin. We have discussed the construction of a Lyapunov function in the
preceding chapter, but can we thus find a Lyapunov basin? The appropriate
question concerning a global Lyapunov function is, whether we can cover any
compact set K0 ⊂ A(x0) with our approach, supposed that the grid is dense
enough.

The precise result which we will obtain reads: Let K0 be a compact set

with x0 ∈
◦
K0 ⊂ K0 ⊂ A(x0). Then there is an open set B with B ⊂ A(x0),

a compact set B ⊃ K ⊃ K0 and a function q obtained by our method, such
that

1. K = {x ∈ B | q(x) ≤ (R∗)2} for an R∗ ≥ 0,
2. q′(x) < 0 holds for all x ∈ K \ {x0}.

In other words, q is a Lyapunov function with Lyapunov basin K and thus
they fulfill the conditions of Theorem 2.24. This can be achieved for the
approximant vW of V via W . For the direct approximation of V by v one
has to use the extension v∗ due to the local behavior of v. For the approxima-
tion t of T these results do not hold since T is not defined and smooth in x0

which is necessary for the proof. For T , we consider a mixed approximation
in Section 5.2.
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We show in Section 5.1.1 that we can cover any compact subset of A(x0)
when approximating the function V with V ′ = −p(x). Because of possible
numerical problems near x0 – we have to choose a very dense grid here and
this leads to a high condition number of the interpolation matrix – we also
discuss a mixed approximation of V ∗ in Section 5.2 where, additionally to
the orbital derivative, the values of the approximated function are given on a
non-characteristic hypersurface. In case of the approximation of T this mixed
approximation is the only possibility to cover an arbitrary compact subset of
A(x0). The mixed approximation is particularly appropriate to approximate
the basin of attraction step by step.

5.1 Approximation via a Single Operator

In this section we consider the approximation of a single operator. In Section
5.1.1 we approximate the function V satisfying V ′(x) = −p(x) via the
operator Dq(x) = q′(x) of the orbital derivative, where we follow [24].
In Section 5.1.2 we approximate the function W (x) = V (x)

n(x) via the operator
DmW (x) = W ′(x) + m(x)W (x).

5.1.1 Approximation via Orbital Derivatives

Approximating the function V ′(x) = −p(x), cf. Theorem 2.46, we obtain an
error estimate for the values of v and show in Theorem 5.1 a converse theorem
to Theorem 2.24. However, by this theorem we will need grid points near the
equilibrium which may lead to difficulties in the numerical calculation.

Theorem 5.1. Let x0 be an equilibrium of ẋ = f(x) where f ∈ Cσ(Rn, Rn)
such that the real parts of all eigenvalues of Df(x0) are negative. Moreover,
assume that supx∈A(x0) ‖f(x)‖ < ∞ or, more generally, supx∈Rn ‖f(x)‖ < ∞
holds; this can be achieved using (2.2).

We consider the radial basis function Ψ(x) = ψl,k(c‖x‖) with c > 0, where
ψl,k denotes the Wendland function with k ∈ N and l :=

⌊
n
2

⌋
+ k + 1. Let

N � σ ≥ σ∗ := n+1
2 + k. Let q be a (local) Lyapunov function with Lyapunov

basin K̃ := K̃q
r (x0). Let K0 ⊂ A(x0) be a compact set with K̃ ⊂

◦
K0.

Then there is an open set B with B ⊂ A(x0) and an h∗ > 0, such that for
all reconstructions v ∈ C2k−1(Rn, R) of the Lyapunov function V of Theorem
2.46 where V ′(x) = −p(x) with respect to the grid XN ⊂ B \ {x0} with fill
distance h ≤ h∗ there is an extension v∗ as in Theorem 4.8 and a compact set
K ⊃ K0 such that

• (v∗)′(x) < 0 holds for all x ∈ K \ {x0},
• K = {x ∈ B | v∗(x) ≤ (R∗)2} for an R∗ ∈ R

+.

In other words, v∗ is a Lyapunov function with Lyapunov basin K.
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Proof: Let V ∈ Cσ(A(x0), R) be the function of Theorem 2.46 which satisfies
V ′(x) = −p(x) for all x ∈ A(x0) and V (x0) = 0. Set R :=

√
maxx∈K0 V (x) >

0 and

K1 = {x ∈ A(x0) | V (x) ≤ R2},
K2 = {x ∈ A(x0) | V (x) ≤ R2 + 2},
B = {x ∈ A(x0) | V (x) < R2 + 3}.

Then obviously K0 ⊂ K1 ⊂ K2 ⊂ B ⊂ B ⊂ A(x0) and B is open, cf. Theorem
2.46; note that supx∈A(x0) ‖f(x)‖ < ∞. All these sets are positively invariant.

Let B̃ be an open set with B ⊂ B̃ ⊂ B̃ ⊂ A(x0), e.g. B̃ = {x ∈ A(x0) |
V (x) < R2 + 4}. Let χ ∈ C∞

0 (Rn, [0, 1]) be a function with χ(x) = 1 for
x ∈ B and χ(x) = 0 for R

n \ B̃. Thus, χ ∈ C∞
0 (Rn) ⊂ F . Set ã := ‖χ‖F

and V0 = V · χ; then V0 ∈ Cσ
0 (Rn, R) and V0(x) = V (x) holds for all x ∈ B.

Lemma 3.13 implies V0 ∈ F . Choose r′0 > 0 so small that Br′
0
(x0) = {x ∈

R
n | ‖x − x0‖ ≤ r′0} ⊂ K̃ and

2r′0 max
r̃∈[0,r′

0]

∣∣∣∣ d

dr
ψ(r̃)

∣∣∣∣ ≤ 1
4‖V0‖2

F
(5.1)

hold where ψ(r) := ψl,k(cr). This is possible since d
dr ψ(r) = O(r) for r → 0,

cf. Proposition 3.11. Choose r0 > 0 such that

Ω := {x ∈ A(x0) | V0(x) = r2
0} ⊂ Br′

0
(x0)

holds. Ω is a non-characteristic hypersurface by Lemma 2.37 and, hence, by
Theorem 2.38 there exists a function θ ∈ Cσ(A(x0)\{x0}, R) defined implicitly
by Sθ(x)x ∈ Ω.

Set θ0 := maxx∈B θ(x) > 0. Define minx∈B\B̃q
r (x0)

p(x) =: M0 > 0. Define

h∗ > 0 such that h∗ <
(

1
C∗ min

(
1

2θ0
,M0

)) 1
κ

holds with C∗ and κ as in

Theorem 4.2 where K0 = B.
Let XN ⊂ B\{x0} be a grid with fill distance h ≤ h∗. For the approximant

v of V0(= V in B) we set b̃ := −v(x0). For the function ṽ := v + b̃ · χ we have
ṽ(x0) = v(x0) + b̃ = 0. For x∗ ∈ Br′

0
(x0) we have with δx∗ , δx0 ∈ F∗, cf.

Lemma 3.22,

|V0(x∗) − ṽ(x∗)| = |(δx∗ − δx0)(V0 − v − b̃χ)|
= |(δx∗ − δx0)(V0 − v)|
≤ ‖δx∗ − δx0‖F∗ · ‖V0 − v‖F
≤ ‖δx∗ − δx0‖F∗ · ‖V0‖F by Proposition 3.34. (5.2)

Moreover, the Taylor expansion yields the existence of an r̃ ∈ [0, ρ], where
ρ := ‖x∗ − x0‖ ≤ r′0 such that
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‖δx∗ − δx0‖2
F∗ = (δx∗ − δx0)

x(δx∗ − δx0)
yΨ(x − y)

= (δx∗ − δx0)
x [ψ(‖x − x∗‖) − ψ(‖x − x0‖)]

= 2 [ψ(0) − ψ(‖x∗ − x0‖)]

= −2
d

dr
ψ(r̃)ρ

≤ 1
4‖V0‖2

F
, cf. (5.1).

Hence, we have with (5.2)

|V0(x∗) − ṽ(x∗)| ≤ 1
2

for all x∗ ∈ Br′
0
(x0).

For x ∈ Ω, i.e. V (x) = V0(x) = r2
0, we have x ∈ Br′

0
(x0) and hence ṽ(x) ≤

V0(x) + 1
2 = r2

0 + 1
2 and ṽ(x) ≥ V0(x) − 1

2 = r2
0 − 1

2 . For v(x) = ṽ(x) − b̃χ(x)
we thus have

v(x) ∈
[
r2
0 − b̃ − 1

2
, r2

0 − b̃ +
1
2

]
for all x ∈ Ω. (5.3)

For the orbital derivatives we have, using Theorem 4.2

|v′(x) − V ′
0(x)| = |v′(x) + p(x)| ≤ C∗hκ =: ι for all x ∈ B. (5.4)

Since C∗hκ = ι < M0 by definition of h∗, we have v′(x) < −p(x) + M0 ≤ 0
for all x ∈ B \ B̃q

r (x0). Hence, we can apply Theorem 4.8 and obtain an
extension v∗ of v, such that v∗(x) = av(x) + b holds for all x ∈ B \ B̃q

r (x0)
and (v∗)′(x) < 0 holds for all x ∈ B \ {x0}. Now set

K = {x ∈ B | v∗(x) ≤ a(R2 + 1 − b̃) + b =: (R∗)2}
= {x ∈ B \ K̃ | v(x) ≤ R2 + 1 − b̃} ∪ K̃.

The equation follows from the fact that K̃ is a subset of both sets, for the
proof see below.

We will show that K1 ⊂ K ⊂ K2 holds. Then K0 ⊂ K, K is a compact
set and (v∗)′(x) < 0 holds for all x ∈ K \ {x0}.

We show K1 ⊂ K. For x ∈ K1\B̃q
r (x0) we have in particular θ0 ≥ θ(x) ≥ 0

and with ι < 1
2θ0

we obtain
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v(x) = v(Sθ(x)x) −
∫ θ(x)

0

v′(Sτx) dτ

≤ r2
0 − b̃ +

1
2

+
∫ θ(x)

0

(−V ′
0(Sτx) + ι) dτ by (5.3) and (5.4)

≤ V0(Sθ(x)x) −
∫ θ(x)

0

V ′
0(Sτx) dτ

︸ ︷︷ ︸
= V0(x)

+
1
2

+ θ(x)ι − b̃

≤ V0(x) +
1
2

+ θ0ι − b̃

≤ R2 + 1 − b̃, i.e. x ∈ K.

Since in particular for x ∈ ∂K̃ the inequality v(x) ≤ R2+1−b̃ and thus v∗(x) ≤
a(R2+1−b̃)+b holds true and, moreover, v∗ decreases along solutions, K̃ ⊂ K
follows. In particular we have a(R2 + 1− b̃) + b > 0 since v∗(x0) = q(x0) ≥ 0.
Altogether, we have K1 ⊂ K.

For the inclusion K ⊂ K2 we show that for x ∈ B \ K2 the inequality
v(x) > R2 + 1 − b̃ and thus v∗(x) > a(R2 + 1 − b̃) + b holds true. If x ∈
B \ K2 ⊂ A(x0), then we have θ(x) ≤ θ0 and

v(x) = v(Sθ(x)x) −
∫ θ(x)

0

v′(Sτx) dτ

≥ r2
0 − b̃ − 1

2
+

∫ θ(x)

0

(−V ′
0(Sτx) − ι) dτ by (5.3) and (5.4)

≥ V0(Sθ(x)x) −
∫ θ(x)

0

V ′
0(Sτx) dτ

︸ ︷︷ ︸
= V0(x)

−1
2
− θ(x)ι − b̃

≥ V0(x) − 1
2
− θ0ι − b̃

> R2 + 2 − 1 − b̃, i.e. x �∈ K

since ι < 1
2θ0

. This proves the theorem. �

5.1.2 Taylor Polynomial

In the following theorem we consider the function V where V ′(x) = −‖x −
x0‖2. We do not approximate V by this equation for the orbital derivative, but
we approximate the function W (x) = V (x)

n(x) as in Section 4.2.3 which satisfies

DmW (x) = −‖x−x0‖2

n(x) . The proof is similar to the one of Theorem 5.1.

Theorem 5.2. Let x0 be an equilibrium of ẋ = f(x), where f ∈ Cσ(Rn, Rn)
such that the real parts of all eigenvalues of Df(x0) are negative. Moreover,
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assume that supx∈A(x0) ‖f(x)‖ < ∞ or, more generally, supx∈Rn ‖f(x)‖ < ∞
holds; this can be achieved using (2.2).

We consider the radial basis function Ψ(x) = ψl,k(c‖x‖) with c > 0, where
ψl,k denotes the Wendland function with k ∈ N and l :=

⌊
n
2

⌋
+ k + 1. Let

V be the Lyapunov function of Theorem 2.46 with V ′(x) = −‖x − x0‖2 and
V (x0) = 0, and n(x) =

∑
2≤|α|≤P cα(x−x0)α +M‖x−x0‖2H as in Definition

2.56, and let W (x) = V (x)
n(x) ∈ CP−2(A(x0), R) with W (x0) = 1, cf. Proposition

2.58. Let σ ≥ P ≥ 2+σ∗, where σ∗ := n+1
2 +k. Let K0 ⊂ A(x0) be a compact

set with x0 ∈
◦
K0.

Then there is an open set B with B ⊂ A(x0), such that for all reconstruc-
tions w ∈ C2k−1(Rn, R) of W with respect to a grid XN ⊂ B \ {x0} which is
dense enough in the sense of Theorem 4.10, there is a compact set K ⊃ K0

such that with vW (x) := n(x)w(x)

• v′
W (x) < 0 holds for all x ∈ K \ {x0},

• K = {x ∈ B | vW (x) ≤ (R∗)2} for an R∗ ∈ R
+.

In other words, vW is a Lyapunov function with Lyapunov basin K.

Proof: Let V ∈ Cσ(A(x0), R) be the function of Theorem 2.46 which
satisfies V ′(x) = −‖x − x0‖2 for all x ∈ A(x0) and V (x0) = 0. Then
W ∈ CP−2(A(x0), R) satisfies W ′(x) + n

′(x)
n(x) W (x) = −‖x−x0‖2

n(x) for all x ∈
A(x0) \ {x0}, cf. (4.21). Note that P − 2 ≥ σ∗. Set R :=

√
maxx∈K0 V (x) > 0

and

K1 = {x ∈ A(x0) | V (x) ≤ R2},
K2 = {x ∈ A(x0) | V (x) ≤ R2 + 2},
B = {x ∈ A(x0) | V (x) < R2 + 3}.

Then obviously K0 ⊂ K1 ⊂ K2 ⊂ B ⊂ B ⊂ A(x0) and B is open, cf. Theorem
2.46; note that supx∈A(x0) ‖f(x)‖ < ∞. All these sets are positively invariant.

Let B̃ be an open set with B ⊂ B̃ ⊂ B̃ ⊂ A(x0), e.g. B̃ = {x ∈ A(x0) |
V (x) < R2 + 4}. Let χ ∈ C∞

0 (Rn, [0, 1]) be a function with χ(x) = 1 for
x ∈ B and χ(x) = 0 for R

n \ B̃. Thus, χ ∈ C∞
0 (Rn) ⊂ F . Set ã := ‖χ‖F and

W0 = W ·χ; then W0 ∈ CP−2
0 (Rn, R) and W0(x) = W (x) holds for all x ∈ B.

Lemma 3.13 implies W0 ∈ F . Choose r′0 > 0 so small that Br′
0
(x0) ⊂ K0,

r′0 ≤ 1(
4C

√
Ψ(0)‖W0‖F

) 1
2

(5.5)

and 2(r′0)
5 max

r̃∈[0,r′
0]

∣∣∣∣ d

dr
ψ(r̃)

∣∣∣∣ ≤ 1
(4C‖W0‖F )2

(5.6)

hold, where n(x) ≤ C‖x − x0‖2 for all x ∈ B, cf. Proposition 2.58, 2.,
and ψ(r) := ψl,k(cr). This is possible since d

drψ(r) = O(r) for r → 0, cf.
Proposition 3.11. Choose r0 > 0 such that
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Ω := {x ∈ A(x0) | V (x) = r2
0} ⊂ Br′

0
(x0)

holds. Ω is a non-characteristic hypersurface by Lemma 2.37 and hence, by
Theorem 2.38 there exists a function θ ∈ Cσ(A(x0)\{x0}, R) defined implicitly
by Sθ(x)x ∈ Ω. Set θ0 := maxx∈B θ(x) > 0. Let

c̃ < min
(

1
2θ0CM0

,
1
C

)
, (5.7)

where M0 := maxx∈B ‖x − x0‖2 and choose a grid XN ⊂ B \ {x0} according
to Theorem 4.10.

For the approximant w of W0(= W in B) we set b̃ := 1 − w(x0). With
δx0 ∈ F∗, cf. Lemma 3.25, and W0(x0) = 1, cf. Proposition 2.58, 3., we have

|b̃| = |δx0(W0 − w)|
≤ ‖δx0‖F∗ · ‖W0 − w‖F
≤

√
Ψ(0) · ‖W0‖F (5.8)

by Proposition 3.37 since ‖δx0‖2
F∗ = δx

x0
δy
x0

Ψ(x − y) = Ψ(0). For the function
w̃ := w + b̃ ·χ we have w̃(x0) = w(x0) + b̃ = 1. For x∗ ∈ Br′

0
(x0) we have thus

|W0(x∗) − w̃(x∗)| = |(δx∗ − δx0)(W0 − w − b̃ · χ)|
= |(δx∗ − δx0)(W0 − w)|
≤ ‖δx∗ − δx0‖F∗ · ‖W0 − w‖F
≤ ‖δx∗ − δx0‖F∗ · ‖W0‖F by Proposition 3.37.

Moreover, the Taylor expansion yields the existence of an r̃ ∈ [0, ρ] where
ρ := ‖x∗ − x0‖ ≤ r′0 such that

‖δx∗ − δx0‖2
F∗ = (δx∗ − δx0)

x(δx∗ − δx0)
yΨ(x − y)

= (δx∗ − δx0)
x [ψ(‖x − x∗‖) − ψ(‖x − x0‖)]

= 2 [ψ(0) − ψ(‖x∗ − x0‖)]
= −2ψ′(r̃)ρ

≤ 1
(4C · (r′0)2‖W0‖F )2

, cf. (5.6).

Hence, for all x∗ ∈ Br′
0
(x0) we have

|W0(x∗) − w̃(x∗)| ≤ 1
4C · (r′0)2

. (5.9)

For vW (x) = n(x)w(x) = n(x)[w̃(x) − b̃χ(x)] we have for all x∗ ∈ Br′
0
(x0)
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|V (x∗) − vW (x∗)| = n(x∗)[W0(x∗) − w̃(x∗) + b̃χ(x∗)]

≤ max
x∈Br′

0
(x0)

n(x)

︸ ︷︷ ︸
≤C·(r′

0)
2

[
|W0(x∗) − w̃(x∗)| + |b̃|

]

≤ 1
4

+
1
4

by (5.5), (5.8) and (5.9).

Thus,

vW (x) ∈
[
r2
0 − 1

2
, r2

0 +
1
2

]
for all x ∈ Ω. (5.10)

For the orbital derivatives we have, using Theorem 4.10, (4.18) and (4.19)

v′
W (x) < 0 for all x ∈ B \ {x0} and (5.11)

|v′
W (x) + ‖x − x0‖2| ≤ c̃ C‖x − x0‖2 ≤ c̃ CM0 ≤ 1

2θ0
(5.12)

by (5.7) for all x ∈ B.
Now set

K = {x ∈ B | vW (x) ≤ R2 + 1 =: (R∗)2}.
We will show that K1 ⊂ K ⊂ K2 holds. Then K0 ⊂ K, K is a compact set
and v′

W (x) < 0 holds for all x ∈ K \ {x0}, cf. (5.11).
We show K1 ⊂ K. Let x ∈ K1. We distinguish between the cases θ(x) < 0

and θ(x) ≥ 0. If θ(x) < 0, then

vW (x) = vW (Sθ(x)x) −
∫ θ(x)

0

v′
W (Sτx) dτ

≤ vW (Sθ(x)x)

≤ r2
0 +

1
2

by (5.10)

≤ R2 + 1,

since R2 = maxx∈K0 V (x) ≥ maxx∈Ω V (x) = r2
0.

Now assume θ0 ≥ θ(x) ≥ 0. We have

vW (x) = vW (Sθ(x)x) −
∫ θ(x)

0

v′
W (Sτx) dτ

≤ r2
0 +

1
2

+
∫ θ(x)

0

(
‖Sτx − x0‖2 +

1
2θ0

)
dτ by (5.10) and (5.12)

≤ V (Sθ(x)x) −
∫ θ(x)

0

V ′(Sτx) dτ

︸ ︷︷ ︸
=V (x)

+
1
2

+
θ(x)
2θ0

≤ V (x) + 1
≤ R2 + 1,
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i.e. x ∈ K. Hence, K1 ⊂ K.
For the inclusion K ⊂ K2 we show that for x ∈ B \ K2 the inequality

vW (x) > R2+1 holds true. If x ∈ B\K2 ⊂ A(x0), then we have 0 ≤ θ(x) ≤ θ0

and

vW (x) = vW (Sθ(x)x) −
∫ θ(x)

0

v′
W (Sτx) dτ

≥ r2
0 − 1

2
+

∫ θ(x)

0

(
‖Sτx − x0‖2 − 1

2θ0

)
dτ by (5.10) and (5.12)

≥ V (Sθ(x)x) −
∫ θ(x)

0

V ′(Sτx) dτ

︸ ︷︷ ︸
=V (x)

−1
2
− θ(x)

2θ0

≥ V (x) − 1
2
− 1

2
> R2 + 2 − 1,

i.e. x �∈ K. This proves the theorem. �

5.2 Mixed Approximation

For T (and also for V ) one can use a mixed approximation. Here, additionally
to the orbital derivative Q′, the values of Q are given on an (n−1)-dimensional
manifold, a non-characteristic hypersurface. Such a non-characteristic hyper-
surface can be given by the level set of a (local) Lyapunov function within its
Lyapunov basin. With this method one can also cover each compact subset of
the basin of attraction by a Lyapunov basin when approximating the function
T or V . In the case of T , where T ′(x) = −1, the level sets of the function
T and thus also of t up to a certain error have a special meaning: a solution
needs the time T2 − T1 from the level set T = T2 to the level set T = T1.

Moreover, one can exhaust the basin of attraction by compact sets: starting
with a local Lyapunov function and a corresponding local Lyapunov basin K0,
one obtains a larger Lyapunov basin K1 through mixed approximation using
the boundary ∂K0 as a non-characteristic hypersurface. The boundary ∂K1

is again a non-characteristic hypersurface and hence one obtains a sequence
of compact sets K0 ⊂ K1 ⊂ . . . which exhaust A(x0). In Figure 5.4 we show
the first step of this method with the function V ∗ for example (2.11): starting
with a local Lyapunov basin K0 (magenta), we obtain a larger Lyapunov basin
K1 using mixed approximation. In [23] the same example with a different grid
XN is considered, and one more step is calculated.

In this section we approximate the function Q = T or Q = V ∗ via its
orbital derivatives and its function values. The orbital derivatives are given on
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Fig. 5.4. Mixed approximation of V ∗ where (V ∗)′(x, y) = −(x2 + y2) with given
value V ∗(x, y) = 1 on the boundary of the local Lyapunov basin K̃ = K0 (thin
black). We used a grid of M = 10 points (black circles) on ∂K̃ for the values of the
approximation v and a second grid of N = 70 points (black +) with α = 0.2 for the
orbital derivative v′. The sign of v′(x, y) (grey), and the level sets v(x, y) = 1 and
v(x, y) = 1.1 (black) are shown. The level set v(x, y) = 1.1 is the boundary of K1

(black) which is a subset of the basin of attraction for (2.11).

+

+ − K1

K̃ = K0

− +

+

a grid XN , whereas the function values are given on a different grid X0
M ⊂ Ω

where Ω is a non-characteristic hypersurface. In most cases, Ω is given by a
level set of a Lyapunov function q, e.g. a local Lyapunov function. This mixed
interpolation problem was discussed in Section 3.1.3, cf. Definition 3.7. Any
compact subset K0 ⊂ A(x0) can be covered by a Lyapunov basin K obtained
by a mixed approximation via radial basis functions as we prove in Section
5.2.1.

Moreover, we can approach the basin of attraction stepwise by a sequence
of Lyapunov functions qi, i = 1, 2, . . . with Lyapunov basins Ki ⊃ Ki−1. The
advantage of this approach is that one can use a grid XN outside Ki−1 in
each step, cf. Section 5.2.2.

5.2.1 Approximation via Orbital Derivatives and Function Values

We approximate the Lyapunov function T satisfying T ′ = −c̄. Note that
we fix the values of T on the boundary of a Lyapunov basin, i.e. on a non-
characteristic hypersurface.
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Theorem 5.3. Consider the function Ψ(x) = ψl,k(c‖x‖) with c > 0, where
ψl,k denotes the Wendland function with k ∈ N and l :=

⌊
n
2

⌋
+ k + 1. Let

f ∈ Cσ(Rn, Rn), where N � σ ≥ σ∗ := n+1
2 + k. Moreover, assume that

supx∈A(x0) ‖f(x)‖ < ∞ or, more generally, supx∈Rn ‖f(x)‖ < ∞ holds. Let
q be a Lyapunov function with Lyapunov basin K̃ := K̃q

r (x0) according to

Definition 2.23. Define Ω := ∂K̃. Let K0 be a compact set with K̃ ⊂
◦
K0 ⊂

K0 ⊂ A(x0) and let H ∈ Cσ(Ω, R+
0 ).

Then there is an open set B with B ⊂ A(x0) and constants h∗
0, h

∗ > 0
such that for every reconstruction t of T in the sense of Definition 3.7, where
T is defined in Theorem 2.38 with T (x) = H(x) for x ∈ Ω, using grids
XN ⊂ B \ B̃q

r (x0) with fill distance h ≤ h∗ and X0
M ⊂ Ω with fill distance

h0 ≤ h∗
0, there is an extension t∗ ∈ C2k−1(Rn, R) of t as in the Extension

Theorem 4.8, such that:
There is a compact set B ⊃ K ⊃ K0 with

1. K = {x ∈ B | t∗(x) ≤ (R∗)2} for an R∗ ∈ R
+,

2. (t∗)′(x) < 0 for all x ∈ K \ {x0}.
In other words, t∗ is a Lyapunov function with Lyapunov basin K.

Proof: We assume without loss of generality that q(x0) = 0. Ω is a non-
characteristic hypersurface and we define the function θ for all x ∈ A(x0)\{x0}
implicitly by

Sθ(x)x ∈ Ω, i.e. q(Sθ(x)x) = r2,

cf. Theorem 2.38, and set

θ0 := max
x∈K0\B̃q

r (x0)
θ(x) ≥ 0,

K1 :=
{

x ∈ A(x0) \ B̃q
r (x0) | θ(x) ≤ θ0

}
∪ B̃q

r (x0).

Then obviously K0 ⊂ K1, and K1 is positively invariant.
Define T ∈ Cσ(A(x0) \ {x0}, R) as in Theorem 2.38, i.e. T ′(x) = −c̄

for x ∈ A(x0) \ {x0} and T (x) = H(x) for x ∈ Ω. We set cM :=
maxx∈Ω H(x) = maxx∈Ω T (x) and cm := minx∈Ω H(x) = minx∈Ω T (x). With
θ∗ := cM−cm+ 3

2 c̄ θ0+2
1
2 c̄

> θ0 we define the following sets

K2 :=
{

x ∈ A(x0) \ B̃q
r (x0) | θ(x) ≤ θ∗

}
∪ B̃q

r (x0),

B :=
{

x ∈ A(x0) \ B̃q
r (x0) | θ(x) < θ∗ + 1

}
∪ B̃q

r (x0).

Then obviously K1 ⊂ K2 ⊂ B, both K2 and B are positively invariant and B
is open, cf. Proposition 2.44; note that supx∈A(x0) ‖f(x)‖ < ∞.

We modify T in B̃q
r (x0) and outside B such that T ∈ Cσ

0 (Rn, R) ⊂ F and
T remains unchanged in B \ B̃q

r (x0), cf. the proof of Theorem 4.1.
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We apply Theorem 3.41 to K = B \ B̃q
r (x0) and to grids XN ⊂ B \

B̃q
r (x0) with fill distance h ≤

(
c̄

2C∗

) 1
κ =: h∗ and X0

M ⊂ Ω with fill distance
h0 ≤ 1

C∗
0

=: h∗
0, where C∗ and C∗

0 are as in Theorem 3.41. We obtain an

approximation t ∈ C2k−1(Rn, R) for which the following inequality holds for
all x ∈ B \ B̃q

r (x0), cf. (3.49),

−3
2
c̄ ≤ t′(x) ≤ −1

2
c̄ < 0. (5.13)

The Extension Theorem 4.8, applied to K = B, q and q = t implies

(t∗)′(x) < 0 for all x ∈ B \ {x0}. (5.14)

Note that for the function t∗ we have t∗(x) = at(x)+ b for all x �∈ B̃q
r (x0). We

set R :=
√

cM + 1 + 3
2 c̄ θ0 and define

K := {x ∈ B | t∗(x) ≤ aR2 + b =: (R∗)2}
= {x ∈ B \ B̃q

r (x0) | t(x) ≤ R2} ∪ B̃q
r (x0).

The equation follows from the fact that B̃q
r (x0) is a subset of both sets, for the

proof see below. Note that by (3.50) of Theorem 3.41 we have the following
result for all x ∈ B \ {x0}:

t(Sθ(x)x) ∈ [cm − 1, cM + 1] (5.15)

since Sθ(x)x ∈ Ω.
We will show that K1 ⊂ K ⊂ K2 holds. Note that K1 ⊂ K implies

K0 ⊂ K. K ⊂ K2 ⊂ B, on the other hand, shows that K is a compact set; 2.
then follows from (5.14).

We show K1 ⊂ K: For x ∈ K1 \ B̃q
r (x0), we have with 0 ≤ θ(x) ≤ θ0, the

positive invariance of K1 and (5.15)

cM + 1 ≥ t(Sθ(x)x)

= t(x) +
∫ θ(x)

0

t′(Sτx) dτ

≥ t(x) − 3
2
c̄ θ(x) by (5.13)

t(x) ≤ cM + 1 +
3
2
c̄ θ0 = R2

and hence x ∈ K. For x ∈ B̃q
r (x0), we have by the Extension Theorem 4.8

and (5.15) t∗(x) ≤ maxξ∈Ω t∗(ξ) ≤ a(cM + 1) + b ≤ (R∗)2. Thus, x ∈ K.
We show K ⊂ K2: Assume in contradiction that there is an x ∈ B \ K2

with t(x) ≤ R2 and θ(x) > θ∗ – note that B̃q
r (x0) ⊂ K2 by construction. By

(5.15) we have
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cm − 1 ≤ t(Sθ(x)x)

= t(x) +
∫ θ(x)

0

t′(Sτx) dτ

≤ t(x) − 1
2
c̄ θ(x) by (5.13)

t(x) > cm − 1 +
1
2
c̄ θ∗ = R2

by definition of θ∗. This is a contradiction and thus K ⊂ K2, which proves
the theorem. �

The following corollary shows that the difference of the values of t corre-
sponds to the time which a solution needs from one level set to another up to
the error maxξ |t′(ξ) + c̄|.
Corollary 5.4 Let the assumptions of Theorem 5.3 hold. For x ∈ R

n and
t̃ > 0 let Sτx ∈ K \ B̃q

r (x0) hold for all τ ∈
[
0, t̃

]
. Denote ρ1 := t(x) and

ρ0 := t(St̃x). Moreover, let maxξ∈K\B̃q
r (x0)

|t′(ξ) + c̄| =: ι < c̄ hold (by the
assumptions of Theorem 5.3, in particular (5.13), ι = C∗hκ ≤ c̄

2 is an upper
bound).

Then the time t̃ fulfills

ρ1 − ρ0

c̄ + ι
≤ t̃ ≤ ρ1 − ρ0

c̄ − ι
.

Proof: We have ρ0 − ρ1 =
∫ t̃

0
t′(Sτx) dτ . Since |t′(Sτx) + c̄| ≤ ι holds for

all τ ∈
[
0, t̃

]
, we have (−c̄ − ι) t̃ ≤ ρ0 − ρ1 ≤ (−c̄ + ι) t̃, which proves the

corollary. �
Now we consider the Lyapunov function V satisfying V ′(x) = −p(x). Fix-

ing the values on a non-characteristic hypersurface Ω, we have to consider
the function V ∗, cf. Proposition 2.51, which satisfies (V ∗)′(x) = −p(x) for
x ∈ A(x0) \ {x0} and V ∗(x) = H(x) for x ∈ Ω, where H is a given function.

Theorem 5.5. Consider the function Ψ(x) = ψl,k(c‖x‖) with c > 0, where
ψl,k denotes the Wendland function with k ∈ N and l :=

⌊
n
2

⌋
+ k + 1. Let

f ∈ Cσ(Rn, Rn), where N � σ ≥ σ∗ := n+1
2 + k. Moreover, assume that

supx∈A(x0) ‖f(x)‖ < ∞ or, more generally, supx∈Rn ‖f(x)‖ < ∞ holds. Let
q be a Lyapunov function with Lyapunov basin K̃ := K̃q

r (x0) according to

Definition 2.23. Define Ω := ∂K̃. Let K0 be a compact set with K̃ ⊂
◦
K0 ⊂

K0 ⊂ A(x0) and let H ∈ Cσ(Ω, R+
0 ).

Then there is an open set B with B ⊂ A(x0) and constants h∗
0, h

∗ > 0 such
that for every reconstruction v of V ∗ in the sense of Definition 3.7, where V ∗

is defined in Proposition 2.51 with V ∗(x) = H(x) for x ∈ Ω, using grids
XN ⊂ B \ B̃q

r (x0) with fill distance h ≤ h∗ and X0
M ⊂ Ω with fill distance

h0 ≤ h∗
0, there is an extension v∗ ∈ C2k−1(Rn, R) of v as in the Extension

Theorem 4.8, such that:



130 5 Global Determination of the Basin of Attraction

There is a compact set B ⊃ K ⊃ K0 with

1. K = {x ∈ B | v∗(x) ≤ (R∗)2 for an R∗ ∈ R
+,

2. (v∗)′(x) < 0 for all x ∈ K \ {x0}.
In other words, v∗ is a Lyapunov function with Lyapunov basin K.

Proof: We assume without loss of generality that q(x0) = 0. Ω is a non-
characteristic hypersurface and we define the function θ for all x ∈ A(x0)\{x0}
implicitly by

Sθ(x)x ∈ Ω, i.e. q(Sθ(x)x) = r2,

cf. Theorem 2.38, and set

θ0 := max
x∈K0\B̃q

r (x0)
θ(x) ≥ 0,

K1 :=
{

x ∈ A(x0) \ B̃q
r (x0) | θ(x) ≤ θ0

}
∪ B̃q

r (x0).

Then K0 ⊂ K1, and K1 is positively invariant. We set ε := 1
2 infx�∈B̃q

r (x0)
p(x) >

0, pM := maxx∈K1 p(x), cM := maxx∈Ω H(x) = maxx∈Ω V ∗(x) and
cm := minx∈Ω H(x) = minx∈Ω V ∗(x). With θ∗ := cM−cm+(pM+ε)θ0+2

ε > θ0 we
define the following sets

K2 :=
{

x ∈ A(x0) \ B̃q
r (x0) | θ(x) ≤ θ∗

}
∪ B̃q

r (x0),

B :=
{

x ∈ A(x0) \ B̃q
r (x0) | θ(x) < θ∗ + 1

}
∪ B̃q

r (x0).

Then obviously K1 ⊂ K2 ⊂ B, both K2 and B are positively invariant and B
is open, cf. Proposition 2.51; note that supx∈A(x0) ‖f(x)‖ < ∞.

We modify V ∗ in B̃q
r (x0) and outside B such that V ∗ ∈ Cσ

0 (Rn, R) ⊂ F
and V ∗ remains unchanged in B \ B̃q

r (x0), cf. the proof of Theorem 4.1.
We apply Theorem 3.41 to K = B \ B̃q

r (x0) and to grids XN ⊂ B \ B̃q
r (x0)

with fill distance h ≤
(

ε
C∗

) 1
κ =: h∗ and X0

M ⊂ Ω with fill distance h0 ≤
1

C∗
0

=: h∗
0, where C∗ and C∗

0 are as in Theorem 3.41. We obtain a function v ∈
C2k−1(Rn, R) for which the following inequality holds for all x ∈ B \ B̃q

r (x0),
cf. (3.49),

−p(x) − ε ≤ v′(x) ≤ −p(x) + ε < 0. (5.16)

The Extension Theorem 4.8, applied to K = B, q and q = v implies

(v∗)′(x) < 0 for all x ∈ B \ {x0}. (5.17)

Note that for the function v∗ we have then v∗(x) = av(x)+b for all x �∈ B̃q
r (x0).

We set R :=
√

cM + 1 + (pM + ε)θ0 and define

K := {x ∈ B | v∗(x) ≤ aR2 + b =: (R∗)2}
= {x ∈ B \ B̃q

r (x0) | v(x) ≤ R2} ∪ B̃q
r (x0).
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The equation follows from the fact that B̃q
r (x0) is a subset of both sets, for the

proof see below. Note that by (3.50) of Theorem 3.41 we have the following
result for all x ∈ B \ {x0}:

v(Sθ(x)x) ∈ [cm − 1, cM + 1] (5.18)

since Sθ(x)x ∈ Ω.
We will show that K1 ⊂ K ⊂ K2 holds. Note that K1 ⊂ K implies

K0 ⊂ K. K ⊂ K2 ⊂ B, on the other hand, shows that K is a compact set; 2.
then follows from (5.17).

We show K1 ⊂ K: For x ∈ K1 \ B̃q
r (x0), we have with 0 ≤ θ(x) ≤ θ0, the

positive invariance of K1 and (5.18)

cM + 1 ≥ v(Sθ(x)x)

= v(x) +
∫ θ(x)

0

v′(Stx)︸ ︷︷ ︸
≥−p(Stx)−ε

dt by (5.16)

≥ v(x) − (pM + ε)θ(x)
v(x) ≤ cM + 1 + (pM + ε)θ0 = R2,

and hence x ∈ K. For x ∈ B̃q
r (x0), we have by the Extension Theorem 4.8

and (5.18) v∗(x) ≤ maxξ∈Ω v∗(ξ) ≤ a(cM + 1) + b ≤ (R∗)2. Thus, x ∈ K.
We show K ⊂ K2: Assume in contradiction that there is an x ∈ B \ K2

with v(x) ≤ R2 and θ(x) > θ∗ – note that B̃q
r (x0) ⊂ K2 by construction. By

(5.18) we have

cm − 1 ≤ v(Sθ(x)x)

= v(x) +
∫ θ(x)

0

v′(Stx)︸ ︷︷ ︸
≤−p(Stx)+ε

dt by (5.16)

≤ v(x) + (−2ε + ε)θ(x)
v(x) > cm − 1 + εθ∗ = R2

by definition of θ∗. This is a contradiction and thus K ⊂ K2, which proves
the theorem. �

5.2.2 Stepwise Exhaustion of the Basin of Attraction

Using Theorem 5.3 or Theorem 5.5 we can stepwise exhaust the basin of
attraction, cf. also Section 6.3. We assume that supx∈A(x0) ‖f(x)‖ < ∞.

Calculate a local Lyapunov function q and a corresponding local Lyapunov
basin K̃ = K̃q

r (x0). Denote q0 := q, K0 := K̃ and r0 := r, and set B0 = R
n.

This is the departing point for a sequence of compact Lyapunov basins Ki,
i = 1, 2, . . ., with Ki+1 ⊃ Ki and

⋃
i∈N

Ki = A(x0).
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Now assume that a Lyapunov function qi with Lyapunov basin Ki =
K̃qi

ri
(x0) and neighborhood Bi is given. The only information we need of the

Lyapunov function and the Lyapunov basin is the boundary ∂Ki =: Ωi+1.
Hence, if qi is the extension of a function q̃i, it suffices to know the set ∂Ki

either given by ∂K̃ q̃i

r̃i
(x0) = {x ∈ Bi | q̃i(x) = r̃2

i } or by ∂K̃qi
ri

(x0) = {x ∈ Bi |
qi(x) = r2

i }.
Let Bi+1 ⊃ Ki be an open set which will be specified below. Choose

grids XN ⊂ Bi+1 \ Ki – in practical applications we let the grid be slightly
larger, also including points in Ki near ∂Ki – and X0

M ⊂ Ωi+1 := ∂Ki. Now
approximate either Q = T or Q = V ∗ by a mixed approximation with respect
to the grids XN and X0

M and the values Q(ξj) = H(ξj) = 1 for ξj ∈ X0
M .

Make the grids dense enough so that for the reconstruction q there is a set
Si+1 := {x ∈ Bi+1 | 1− εi+1 ≤ q(x) ≤ r̃2

i+1} with εi+1 > 0 such that q′(x) < 0

holds for all x ∈ Si+1 and ∂Ki ⊂
◦
Si+1. Then there is an extension q∗ of q

with q = qi such that qi+1(x) := q∗(x) is a Lyapunov function with Lyapunov
basin Ki+1 := Si+1 ∪ Ki = {x ∈ Bi+1 | q∗(x) ≤ ar̃2

i+1 + b =: r2
i+1}.

We show that with this method
⋃

i∈N
Ki = A(x0) holds and we can thus

stepwise exhaust the basin of attraction, if we choose Bi+1 properly. To show
this, we reprove the induction step from Ki to Ki+1 again. Let K∗

i be a
sequence of compact sets with K∗

i+1 ⊃ K∗
i and

⋃
i∈N

K∗
i = A(x0), e.g. K∗

i =
S−iK̃ where S−i denotes the flow and K̃ is the local Lyapunov basin defined
above. By Proposition 2.44, the sets K∗

i are compact and since for all z ∈
A(x0) there is a finite time T ∗ with ST∗z ∈ K̃, we obtain

⋃
i∈N

K∗
i = A(x0).

Now we reprove the induction step from Ki to Ki+1. For given i choose

li+1 > li so large that Ki ⊂
◦

K∗
li+1

⊂ K∗
li+1

⊂ A(x0) holds. Such an li+1 exists
due to the compactness of Ki. Then Theorem 5.3 or 5.5 with q = qi, K̃ = Ki

and K0 = K∗
li+1

implies that there is an open set B =: Bi+1 and a Lyapunov
function q∗ with Lyapunov basin K =: Ki+1 with Ki+1 ⊃ K∗

li+1
. This shows⋃

i∈N
Ki = A(x0).

For examples of the stepwise exhaustion, cf. Section 6.3 and Figure 5.4 as
well as [23].




