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Bohr’s type real part estimates

6.1 Introduction

This chapter is connected with two classical assertions of the analytic functions
theory, namely, with Hadamard-Borel-Carathéodory inequality

|f(z) − f(0)| ≤ 2r

R − r
sup
|ζ|<R

�
{
f(ζ) − f(0)

}
, (6.1.1)

and with Bohr’s inequality

∞∑

n=0

|cnzn| ≤ sup
|ζ|<R

|f(ζ)| (6.1.2)

for the majorant of the Taylor’s series

f(z) =
∞∑

n=0

cnzn, (6.1.3)

where |z| ≤ R/3 in (6.1.2) and the value R/3 cannot be improved.
In the chapter we deal, similarly to Aizenberg, Grossman and Korobeinik

[6], Bénéteau, Dahlner and Khavinson [13], Djakov and Ramanujan [35], with
the value of lq-norm (quasi-norm, for 0 < q < 1) of the remainder of the
Taylor series (6.1.3). The particular case q = ∞ in all subsequent inequalities
of the chapter can be obtained by passage to the limit as q → ∞.

In Section 2 we prove the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ rm

πRm(Rq − rq)1/q
||�f ||1 (6.1.4)

with the sharp constant, where r = |z| < R, m ≥ 1, 0 < q ≤ ∞.
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Section 3 contains corollaries of (6.1.4) for analytic functions f in DR

with bounded �f , with �f bounded from above, with �f > 0, as well as for
bounded analytic functions. In particular, we obtain the estimate

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

�{f(ζ) − f(0)},

with the best possible constant. This estimate, taken with q = 1, m = 1, is
a refinement of (6.1.1). Other inequalities, which follow from (6.1.4), contain
the supremum of |�f(ζ)| − |�f(0)| or |f(ζ)| − |f(0)| in DR, as well as �f(0)
in the case �f > 0 on DR. Each of these estimates specified for q = 1 and
m = 1 refines a certain Hadamard-Borel-Carathéodory type inequality with
a sharp constant.

Note that a sharp estimate of the full majorant series by the supremum
modulus of f was obtained by Bombieri [19] for r ∈ [R/3, R/

√
2].

In Section 4 we give modifications of Bohr’s theorem as consequences of
our inequalities with sharp constants derived in Section 3. For example, if the
function (6.1.3) is analytic on DR, then for any q ∈ (0,∞], integer m ≥ 1 and
|z| ≤ Rm,q the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ sup
|ζ|<R

�{e−i arg f(0)f(ζ)} − |f(0)| (6.1.5)

holds, where Rm,q = rm,qR, and rm,q is the root of the equation

2qrmq + rq − 1 = 0

in the interval (0, 1) if 0 < q < ∞, and rm,∞ = 2−1/m. In particular,

r1,q = (1 + 2q)−1/q and r2,q = 21/q
(
1 +

√
1 + 2q+2

)−1/q
. (6.1.6)

Note that Rm,q is the radius of the largest disk centered at z = 0 in which
(6.1.5) takes place.

Some of the inequalities presented in Section 4 contain known analogues
of Bohr’s theorem with �f in the right-hand side (see Aizenberg, Aytuna and
Djakov [3], Paulsen, Popescu and Singh [73], Sidon [85], Tomić [88]).

In Section 5 we give a generalization of assertions in Sections 3 and 4 for
the case q = m = 1. In particular, we prove the so called Bohr’s theorem for
non-concentric circles stated below.

Let the function f , analytic and bounded in DR be given in the neigh-
bourhood of a ∈ DR by the Taylor series

∞∑

n=0

cn(a)(z − a)n,
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and let da = dist (a, ∂DR). Then for any z in the disk

|z − a| ≤ da(2R − da)
4R − da

the inequality
∞∑

n=0

|cn(a)(z − a)n| ≤ sup
|ζ|<R

|f(ζ)| (6.1.7)

holds. Moreover,
da(2R − da)

4R − da

is the radius of the largest disk centered at a in which (6.1.7) takes place for
all f .

Note that passage to the limit as R → ∞ in the above assertion implies an
analogue of Bohr’s theorem for a half-plane H ⊂ C. The radius of the largest
disk centered at a ∈ H with a placed at the distance da from ∂H in which the
inequality

∞∑

n=0

|cn(a)(z − a)n| ≤ sup
ζ∈H

|f(ζ)|

holds for all bounded analytic functions in H is equal to da/2.
Note that Aizenberg [10] recently proved a theorem containing as partic-

ular cases the theorems due to Bohr [18], Sidon [85], Tomić [88], Aizenberg,
Aytuna and Djakov [3], as well as assertions given in Section 4 of the present
chapter for q = 1,m = 1. The following notions are essentially used in [10].
Let G ⊂ C be any domain, and let G̃ be the convex hull of G. A point p ∈ ∂G
is called a point of convexity if p ∈ ∂G̃. A point of convexity p is called regular
if there exists a disk D ⊂ G such that p ∈ ∂D.

Aizenberg’s theorem claims that if the function (6.1.3) is analytic on D1

and f(D1) ⊂ G with G̃ �= C, then the inequality
∞∑

n=1

|cnzn| < dist(c0, ∂G̃)

holds for |z| < 1/3. The constant 1/3 cannot be improved if ∂G contains at
least one regular point of convexity. A multidimensional analog of this theorem
is given in [10] as well.

6.2 Estimate for the lq-norm of the Taylor series
remainder by ||�f ||1

In the sequel, we use the notation r = |z| and D
 = {z ∈ C : |z| < �}.
We start with a sharp inequality for an analytic function f . The right-hand

side of the inequality contains the norm in the space L1(∂DR).
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Proposition 6.1. Let the function (6.1.3) be analytic on DR with �f ∈
h1(DR), and let q > 0, m ≥ R, |z| = r < R. Then the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ rm

πRm(Rq − rq)1/q
||�f ||1 (6.2.1)

holds with the sharp constant.

Proof. 1. Proof of inequality (6.2.1). Let a function f , analytic in DR with
�f ∈ h1(DR) be given by (6.1.3). By Corollary 5.1

|cn| ≤
1

πRn+1
||�f ||1 (6.2.2)

for any n ≥ 1.
Using (6.2.2), we find

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 1
πR

{ ∞∑

n=m

( r

R

)nq
}1/q

||�f ||1

=
rm

πRm(Rq − rq)1/q
||�f ||1

for any z with |z| = r < R.
2. Sharpness of the constant in (6.2.1). By (6.2.1), the sharp constant C(r)

in { ∞∑

n=m

|cnzn|q
}1/q

≤ C(r) ||�f ||1 (6.2.3)

satisfies
C(r) ≤ rm

πRm(Rq − rq)1/q
. (6.2.4)

We show that the converse inequality for C(r) holds as well.
Let ρ > R. Consider the families of analytic functions in DR

fρ(z) =
z

z − ρ
, wρ(z) = fρ(z) − βρ, (6.2.5)

depending on the parameter ρ, with the real constant βρ defined by

||�fρ − βρ||1 = min
c∈R

||�fρ − c||1.

Then, for any real constant c

||�wρ − c||1 ≥ ||�wρ||1.

Setting here
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c = Aρ = max
|ζ|=R

�wρ(ζ)

and taking into account

||�wρ − Aρ||1 =
∫

|ζ|=R

[
Aρ −�wρ(ζ)

]
|dζ|

= 2πR{Aρ −�wρ(0)} = 2πR max
|ζ|=R

�{wρ(ζ) − wρ(0)},

we arrive at
2πR max

|ζ|=R
�{wρ(ζ) − wρ(0)} ≥ ||�wρ||1. (6.2.6)

In view of

cn(ρ) =
w

(n)
ρ (0)
n!

= − 1
ρn

for n ≥ 1,

we find ∞∑

n=m

|cn(ρ)zn|q =
∞∑

n=m

(
r

ρ

)nq

=
rmq

ρ(m−1)q(ρq − rq)
. (6.2.7)

By (6.2.5), (1.4.6) and (1.4.7) we have

max
|ζ|=R

�
{
wρ(ζ) − wρ(0)

}
= max

|ζ|=R
�
{
fρ(ζ) − fρ(0)

}
=

R

ρ + R
. (6.2.8)

It follows from (6.2.3), (6.2.6), (6.2.7) and (6.2.8) that

C(r) ≥ (ρ + R)rm

2πR2ρm−1(ρq − rq)1/q
. (6.2.9)

On passing to the limit as ρ ↓ R this becomes

C(r) ≥ rm

πRm(Rq − rq)1/q
, (6.2.10)

which together with (6.2.4) proves the sharpness of the constant in (6.2.1).�	

6.3 Other estimates for the lq-norm of the Taylor series
remainder

In this section we obtain estimates with sharp constants for the lq-norm (quasi-
norm for 0 < q < 1) of the Taylor series remainder for bounded analytic func-
tions and analytic functions whose real part is bounded or one-side bounded.

We start with a theorem concerning analytic functions with real part
bounded from above which refines Hadamard-Borel-Carathéodory inequality
(6.1.1).
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Theorem 6.1. Let the function (6.1.3) be analytic on DR with �f bounded
from above, and let q > 0, m ≥ 1, |z| = r < R. Then the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

�{f(ζ) − f(0)} (6.3.1)

holds with the sharp constant.

Proof. We write (6.2.1) for the disk D
, � ∈ (r,R), with f replaced by f −ω,
where ω is an arbitrary real constant. Then

{ ∞∑

n=m

|cnzn|q
}1/q

≤ rm

π�m(�q − rq)1/q
||�f − ω||L1(∂D�). (6.3.2)

Putting here
ω = Af (R) = sup

|ζ|<R

�f(ζ)

and taking into account that

||�f −Af (R)||L1(∂D�) = 2πρ{Af (R) −�f(0)} = 2πρ sup
|ζ|<R

�{f(ζ) − f(0)},

we find
{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

�m−1(�q − rq)1/q
sup
|ζ|<R

�{f(ζ) − f(0)},

which implies (6.3.1) after the passage to the limit as � ↑ R.
Hence, the sharp constant C(r) in

{ ∞∑

n=m

|cnzn|q
}1/q

≤ C(r) sup
|ζ|<R

�{f(ζ) − f(0)} (6.3.3)

obeys

C(r) ≤ 2rm

Rm−1(Rq − rq)1/q
. (6.3.4)

To get the lower estimate for C(r), we shall use functions fρ given by
(6.2.5). Taking into account the equality

f (n)
ρ (0) = w(n)

ρ (0),

as well as (6.3.3), (6.2.7) and (6.2.8), we arrive at

C(r) ≥ (ρ + R)rm

Rρm−1(ρq − rq)1/q
. (6.3.5)
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Passing to the limit as ρ ↓ R in the last inequality, we obtain

C(r) ≥ 2rm

Rm−1(Rq − rq)1/q
, (6.3.6)

which together with (6.3.4) proves the sharpness of the constant in (6.3.1). �	

Remark 6.2. Inequality (6.3.1) for q = m = 1 is well known (see, e.g. Polya
and Szegö [76], III, Ch. 5, § 2). Adding |c0| and |f(0)| to the left- and right-
hand sides of (6.3.1) with q = m = 1, respectively, and replacing −�f(0) by
|f(0)| in the resulting relation, we arrive at

∞∑

n=0

|cnz|n ≤ R + r

R − r
|f(0)| + 2r

R − r
sup
|ζ|<R

�f(ζ),

which is a refinement of the Hadamard-Borel-Carathéodory inequality

|f(z)| ≤ R + r

R − r
|f(0)| + 2r

R − r
sup
|ζ|<R

�f(ζ)

(see, e.g., Burckel [23], Ch. 6 and references there, Titchmarsh [87], Ch. 5).

The next assertion contains a sharp estimate for analytic functions on DR

with bounded real part. It is a refinement of the inequality

|f(z) − f(0)| ≤ 2r

R − r
sup
|ζ|<R

{|�f(ζ)| − |�f(0)|}

which follows from (6.1.1).

Theorem 6.2. Let the function (6.1.3) be analytic on DR with bounded real
part, and let q > 0, m ≥ 1, |z| = r < R. Then the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

{|�f(ζ)| − |�f(0)|} (6.3.7)

holds with the sharp constant.

Proof. Setting
ω = Rf (R) = sup

|ζ|<R

|�f(ζ)|

in (6.3.2) and making use of the equalities

||�f −Rf (R)||L1(∂D�) = 2πρ{Rf (R)−�f(0)} = 2πρ sup
|ζ|<R

{|�f(ζ)| −�f(0)},

we arrive at
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{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

�m−1(�q − rq)1/q
sup
|ζ|<R

{|�f(ζ)| − �f(0)}.

This estimate leads to
{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

{|�f(ζ)| − �f(0)} (6.3.8)

after the passage to the limit as � ↑ R. Replacing f by −f in the last inequality,
we obtain

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

{|�f(ζ)| + �f(0)},

which together with (6.3.8) results at (6.3.7).
Let us show that the constant in (6.3.7) is sharp. By C(r) we denote the

best constant in
{ ∞∑

n=m

|cnzn|q
}1/q

≤ C(r) sup
|ζ|<R

{|�f(ζ)| − |�f(0)|}. (6.3.9)

As shown above, C(r) obeys (6.3.4).
We introduce the family of analytic functions in DR

gρ(z) =
ρ

z − ρ
+

ρ2

ρ2 − R2
, (6.3.10)

depending on a parameter ρ > R. By (5.4.22) and (5.4.26) we have

sup
|ζ|<R

{|�gρ(ζ)| − |�gρ(0)|} =
R

ρ + R
. (6.3.11)

Taking into account that the functions (6.2.5) and (6.3.10) differ by a
constant, and using (6.3.9), (6.2.7) and (6.3.11), we arrive at (6.3.5). Passing
there to the limit as ρ ↓ R, we conclude that (6.3.6) holds, which together
with (6.3.4) proves the sharpness of the constant in (6.3.7). �	

The following assertion contains an estimate with the sharp constant for
bounded analytic functions in DR. It gives a refinement of the estimate

|f(z) − f(0)| ≤ 2r

R − r
sup
|ζ|<R

{|f(ζ)| − |f(0)|}

which follows from (6.1.1).
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Theorem 6.3. Let the function (6.1.3) be analytic and bounded on DR, and
let q > 0, m ≥ 1, |z| = r < R. Then the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

{|f(ζ)| − |f(0)|} (6.3.12)

holds with the sharp constant.

Proof. Setting
ω = Mf (R) = sup

|ζ|<R

|f(ζ)|

in (6.3.2) and using the equalities

||�f −Mf (R)||L1(∂D�) = 2πρ{Mf (R)−�f(0)} = 2πρ sup
|ζ|<R

{|f(ζ)| −�f(0)},

we obtain
{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

�m−1(�q − rq)1/q
sup
|ζ|<1

{|f(ζ)| − �f(0)}.

Passage to the limit as � ↑ R gives

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

{|f(ζ)| − �f(0)}.

Replacing f by feiα, we arrive at

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

{|f(ζ)| − �
(
f(0)eiα

)
},

which implies (6.3.12) by the arbitrariness of α.
Let us show that the constant in (6.3.12) is sharp. By C(r) we denote the

best constant in
{ ∞∑

n=m

|cnzn|q
}1/q

≤ C(r) sup
|ζ|<R

{|f(ζ)| − |f(0)|}. (6.3.13)

As shown above, C(r) obeys (6.3.4).
We consider the family hρ of analytic functions in D, defined by (6.3.10).

By (5.4.34) we have

sup
|ζ|<R

{|gρ(ζ)| − |gρ(0)|} =
R

ρ + R
. (6.3.14)
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Taking into account that the functions (6.2.5) and (6.3.10) differ by a
constant, and using (6.3.13), (6.2.7) and (6.3.14), we arrive at (6.2.9). Passing
there to the limit as ρ ↓ R, we obtain (6.2.10), which together with (6.2.4)
proves the sharpness of the constant in (6.3.12). �	

Remark 6.3. We note that a consequence of (5.1.6) is the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ rm

Rm−1(Rq − rq)1/q

[Mf (R)]2 − |f(0)|2
Mf (R)

(6.3.15)

with the constant factor in the right-hand side twice as small as in (6.3.12)
and sharp, which can be checked using the sequence of functions given by
(6.3.10) and the limit passage as ρ ↓ R. Inequality (6.3.15) for q = 1,m = 1
with Mf (R) ≤ 1 was derived by Paulsen, Popescu and Singh [73].

The next assertion refines the inequality

|f(z) − f(0)| ≤ 2r

R − r
�f(0)

resulting from (6.1.1) for analytic functions in DR with �f > 0.

Theorem 6.4. Let the function (6.1.3) be analytic with positive �f on DR,
and let q > 0, m ≥ 1, |z| = r < R. Then the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
�f(0) (6.3.16)

holds with the sharp constant.

Proof. Setting ω = 0 in (6.3.2), with f such that �f > 0 in DR, we obtain

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

�m−1(�q − rq)1/q
�f(0),

which leads to (6.3.16) as � ↑ R.
Thus, the sharp constant C(r) in

{ ∞∑

n=m

|cnzn|q
}1/q

≤ C(r) �f(0) (6.3.17)

obeys the estimate (6.3.4).
To show the sharpness of the constant in (6.3.16), consider the family of

analytic functions in DR
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hρ(z) =
ρ

ρ − z
− ρ

ρ + R
, (6.3.18)

depending on the parameter ρ > R. By (5.4.40), the real part of hρ is positive
in DR. Taking into account that the functions (6.2.5) and (6.3.18) differ by
a constant and using (6.3.17), (6.2.7) and �hρ(0) = R(ρ + 1)−1, we arrive at
(6.3.5). Passing there to the limit as ρ ↓ R, we obtain (6.3.6), which together
with (6.3.4) proves the sharpness of the constant in (6.3.16). �	

6.4 Bohr’s type theorems

In this section we collect some corollaries of the theorems in Sect. 3.

Corollary 6.1. Let the function (6.1.3) be analytic on DR, and let

sup
|ζ|<R

�{e−i arg f(0)f(ζ)} < ∞, (6.4.1)

where arg f(0) is replaced by a real number if f(0) = c0 = 0.
Then for any q ∈ (0,∞], integer m ≥ 1, and |z| ≤ Rm,q the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ sup
|ζ|<R

�{e−i arg f(0)f(ζ)} − |f(0)| (6.4.2)

holds, where Rm,q = rm,qR, and rm,q is the root of the equation 2qrmq + rq −
1 = 0 in the interval (0, 1) if 0 < q < ∞, and rm,∞ = 2−1/m. Moreover, Rm,q

is the radius of the largest disk centered at z = 0 in which (6.4.2) takes place
for all f . In particular, (6.1.6) holds.

Proof. Obviously, the condition

2rm

Rm−1(Rq − rq)1/q
≤ 1

for the sharp constant in (6.3.1) holds if |z| ≤ Rm,q. Therefore, the disk of
radius Rm,q centered at z = 0 is the largest disk, where the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ sup
|ζ|<R

�f(ζ) −�f(0) (6.4.3)

holds for all f .
Suppose first that f(0) �= 0. Setting e−i arg f(0)f in place of f in (6.4.3)

and noting that the coefficients |cn| in the left-hand side of (6.4.3) do not
change, when �f(0) is replaced by |f(0)| = |c0|, we arrive at (6.4.2). In the
case f(0) = c0 we chose the value α of arg f(0) in such a way that ((6.4.1)
holds, then replace f by fe−iα in (6.4.3) and hence arrive at (6.4.2). �	
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Inequality (6.4.2) with q = 1,m = 1 becomes

∞∑

n=1

|cnzn| ≤ sup
|ζ|<R

�{e−i arg f(0)f(ζ)} − |f(0)| (6.4.4)

with |z| ≤ R/3, where R/3 is the radius of the largest disk centered at z = 0 in
which (6.4.4) takes place. Note that (6.4.4) is equivalent to a sharp inequality
obtained by Sidon [85] in his proof of Bohr’s theorem and to the inequality
derived by Paulsen, Popescu and Singh [73].

For q = 1,m = 2 inequality (6.4.2) is

∞∑

n=2

|cnzn| ≤ sup
|ζ|<R

�{e−i arg f(0)f(ζ)} − |f(0)|, (6.4.5)

where |z| ≤ R/2 and R/2 is the radius of the largest disk about z = 0 in
which (6.4.5) takes place.

The next assertion follows from Theorem 6.3. For q = 1,m = 1 it contains
Bohr’s inequality (6.1.2).

Corollary 6.2. Let the function (6.1.3) be analytic and bounded on DR. Then
for any q ∈ (0,∞], integer m ≥ 1, and |z| ≤ Rm,q the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ sup
|ζ|<R

|f(ζ)| − |f(0)| (6.4.6)

holds, where Rm,q is defined in Corollary 6.1. Moreover, Rm,q is the radius
of the largest disk centered at z = 0 in which (6.4.6) takes place for all f . In
particular, (6.1.6) holds.

For q = 1,m = 2 inequality (6.4.6) takes the form

|c0| +
∞∑

n=2

|cnzn| ≤ sup
|ζ|<R

|f(ζ)|, (6.4.7)

where |z| ≤ R/2. The value R/2 of the radius of the disk where (6.4.7) holds
cannot be improved. Note that the inequality

|c0|2 +
∞∑

n=1

|cnzn| ≤ 1, (6.4.8)

was obtained by Paulsen, Popescu and Singh [73] for functions (6.1.3) satisfy-
ing the condition |f(ζ)| ≤ 1 in DR and is valid for |z| ≤ R/2. The value R/2
of the radius of the disk where (6.4.8) holds is sharp. Comparison of (6.4.7)
and (6.4.8) shows that none of these inequalities is a consequence of the other
one.

We conclude this section by an assertion which follows from Theorem 6.4.
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Corollary 6.3. Let the function (6.1.3) be analytic, and �{e−i arg f(0)f} > 0
on DR. Then for any q ∈ (0,∞], integer m ≥ 1, and |z| ≤ Rm,q the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ |f(0)| (6.4.9)

holds, where Rm,q is the same as in Corollary 6.1. Moreover, Rm,q is the
radius of the largest disk centered at z = 0 in which (6.4.9) takes place for all
f . In particular, (6.1.6) holds.

Note that the inequality (6.4.9) for q = 1,m = 1 with |z| ≤ R/3 was
obtained by Aizenberg, Aytuna and Djakov [3] (see also Aizenberg, Grossman
and Korobeinik [6]).

6.5 Variants and extensions

In this section we generalize Theorems 6.1-6.4 and Corollaries 6.1-6.3 restrict-
ing ourselves to the case q = m = 1. We consider analytic functions f in DR

with the Taylor expansion
∞∑

n=0

cn(a)(z − a)n (6.5.1)

in a neighbourhood of an arbitrary point a ∈ DR instead of the expension
around z = 0.

The estimate for the rest of the Taylor series around a ∈ DR follows from
inequality (5.7.2). Its sharpness is demonstrated with the help of the same
families of test functions as in the proof of Theorem 5.1. We use the notation
da = dist(a, ∂DR) as before.

Theorem 6.5. Let f be analytic on DR, and let (6.5.1) be its Taylor expan-
sion in a neighbourhood of a ∈ DR. Then for any z, |z − a| = r < da the
inequality

∞∑

n=1

|cn(a)(z − a)n| ≤ 2Rr

(2R − da)(da − r)
Qa(f) , (6.5.2)

holds with the best possible constant, where Qa(f) is each of the following
expressions:
(i) sup

|ζ|<R

�f(ζ) −�f(a),

(ii) sup
|ζ|<R

|�f(ζ)| − |�f(a)|,

(iii) sup
|ζ|<R

|f(ζ)| − |f(a)|,

(iv) �f(a), if �f > 0 on DR.
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Proof. 1. Proof of inequality (6.5.2). Let a function f , analytic on DR be given
by (6.5.1) in a neighbourhood of a ∈ DR . By 5.7.2,

∞∑

n=1

|cn(a)(z − a)n| =
∞∑

n=1

|f (n)(a)|
n!

rn ≤ 2R

R + ra

{ ∞∑

n=1

(
r

R − ra

)n
}
Qa(f)

=
2rR

(R + ra)(R − ra − r)
Qa(f),

which together with ra = R − da implies (6.5.2).
2. Sharpness of the constant in (6.5.2). Let C(r, ra) stand for the best

constant in ∞∑

n=1

|cn(a)(z − a)n| ≤ C(r, ra)Qa(f). (6.5.3)

We showed in the first part of the proof that

C(r, ra) ≤ 2rR

(R + ra)(R − ra − r)
. (6.5.4)

We now derive the reverse inequality in (6.5.4). Let a = raeiϑ. Consider the
families f

ξ
(z), g

ξ
(z), h

ξ
(z) of analytic functions in DR given by (5.7.8). By

(5.7.9)

|f (n)
ξ (a)| = |g(n)

ξ (a)| = |h(n)
ξ (a)| =

n!ρ
(ρ − ra)n+1

,

which implies

∞∑

n=1

|f (n)
ξ (a)|
n!

rn =
∞∑

n=1

|g(n)
ξ (a)|
n!

rn =
∞∑

n=1

|h(n)
ξ (a)|
n!

rn =
ρr

(ρ − ra)(ρ − ra − r)
.

Combining this with (6.5.3) and (5.7.10)-(5.7.12) we find

C(r, ra) ≥ r(ρ + R)
(R + ra)(ρ − ra − r)

.

Passing here to the limit as ρ ↓ R, we conclude that

C(r, ra) ≥ 2rR

(R + ra)(R − ra − r)
=

2rR

(2R − da)(da − r)
,

which together with (6.5.4) proves sharpness of the constant in (6.5.2). �	

From one hand, estimate (6.5.2) is a refinement of Hadamard-Borel-
Carathéodory inequality (1.7.8) for non-concentric circles and its consequences

max
|z−a|=r

|f(z) − f(a)| ≤ 2Rr

(2R − da)(da − r)
Qa(f)
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with Qa(f) given by (ii)-(iv), from the other hand, (6.5.2) is a generalization
of Theorems 6.1-6.4 with q = 1,m = 1 for any point a ∈ DR.

The next assertion follows from Theorem 6.5 and is a generalization of
Corollaries 6.1-6.3 with q = m = 1 for the series (6.5.1) with an arbitrary
a ∈ DR.

Corollary 6.4. Let f be analytic on DR, and let (6.5.1) be its Taylor expan-
sion in a neighbourhood of a ∈ DR. Then for any z in the disk

|z − a| ≤ da(2R − da)
4R − da

(6.5.5)

the inequality
∞∑

n=0

|cn(a)(z − a)n| ≤ N (f) (6.5.6)

holds, where N (f) is each of the following expressions:
(i) sup

|ζ|<R

|f(ζ)|,

(ii) sup
|ζ|<R

�{e−i arg f(a)f(ζ)},

(iii) sup
|ζ|<R

|�{e−i arg f(a)f(ζ)}|,

(iv) 2|f(a)|, if �{e−i arg f(a)f(ζ)} > 0 on DR.

Moreover, da(2R − da)/(4R − da) is the radius of the largest disk centered
at a in which (6.5.6) takes place for all f . Here arg f(a) is a real number if
f(a) = c0(a) = 0.

Proof. Obviously, the condition

2rR

(2R − da)(da − r)
≤ 1

for the sharp constant in (6.5.2) holds for all r satisfying (6.5.5). Therefore,
the disk of radius da(2R − da)/(4R − da) centered at a ∈ DR is the largest
disk, where the inequality

∞∑

n=1

|cn(a)(z − a)n| ≤ Qa(f) (6.5.7)

holds for all f .
Suppose first that f(a) �= 0. Setting e−i arg f(a)f in place of f in (6.5.7)

and noting that the coefficients |cn(a)| in the left-hand side of (6.5.7) do not
change, when �f(a) is replaced by |f(a)| = |c0(a)|, we arrive at (6.5.6). In
the case f(0) = c0 we choose the value α of arg f(0) so that Qa(e−iαf) < ∞.
Replacing f by fe−iα in (6.5.7), we obtain (6.5.6). �	
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Passing to the limit as R → ∞ in Corollary 6.4, we arrive at the following
Bohr’s type theorem for a half-plane.

Corollary 6.5. Let f be analytic in a half-plane H ⊂ C, and let (6.5.1) be
its Taylor expansion in a neighbourhood of a ∈ H, da = dist(a, ∂H). Then for
any z in the disk

|z − a| ≤ da/2

the inequality
∞∑

n=0

|cn(a)(z − a)n| ≤ S(f) (6.5.8)

holds, where S(f) is each of the following expressions:
(i) sup

ζ∈H

|f(ζ)|,

(ii) sup
ζ∈H

�{e−i arg f(a)f(ζ)},

(iii) sup
ζ∈H

|�{e−i arg f(a)f(ζ)}|,

(iv) 2|f(a)|, if �{e−i arg f(a)f(ζ)} > 0 on H.

Moreover, da/2 is the radius of the largest disk centered at a in which (6.5.8)
takes place for all f . Here arg f(a) is a real number if f(a) = c0(a) = 0.




