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Cryptographic Attacks and Signal Clustering

Typical public-key encryption methods involve variations on the RSA proce-
dure devised by Rivest, Shamir and Adleman [174]. This employs modular
arithmetic with a very large modulus in the following manner. We compute

R =1y (modm) or R=y" (modm) (8.1)

depending respectively on whether we are encoding or decoding a message .
The (very large) modulus m and the encryption key e are made public; the
decryption key d is kept private. The modulus m is chosen to be the product
of two large prime numbers p, ¢ which are also kept secret and we choose d, e
such that

ed=1 (mod(p—1)(g—1)). (8.2)

8.1 Cryptographic Attacks

It is evident that both encoding and decoding will involve repeated exponen-
tiation procedures. Then, some knowledge of the design of an implementation
and information on the timing or power consumption during the various stages
could yield clues to the decryption key d. Canvel and Dodson [38, 37] have
shown how timing analyses of the modular exponentiation algorithm quickly
reveal the private key, regardless of its length. In principle, an incorporation
of obscuring procedures could mask the timing information but that may not
be straightforward for some devices. Nevertheless, it is important to be able
to assess departures from Poisson randomness of underlying or overlying pro-
cedures that are inherent in devices used for encryption or decryption and
here we outline some information geometric methods to add to the standard
tests [179].

In a review, Kocher et al. [119] showed the effectiveness of Differential
Power Analysis (DPA) in breaking encryption procedures using correlations
between power consumption and data bit values during processing, claiming
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that most smartcards reveal their keys using fewer than 15 power traces.
Power consumption information can be extracted from even noisy recordings
using inductive probes external to the device.

Chari et al. [41] provided a probabilistic encoding (secret sharing) scheme
for effectively secure computation. They obtained lower bounds on the number
of power traces needed to distinguish distributions statistically, under certain
assumptions about Gaussian noise functions. DPA attacks depend on the as-
sumption that power consumption in a given clock cycle will have a distribution
depending on the initial state; the attacker needs to distinguish between differ-
ent ‘nearby’ distributions in the presence of noise. Zero-Knowledge proofs allow
verification of secret-based actions without revealing the secrets. Goldreich
et al. [94] discussed the class of promise problems in which interaction may give
additional information in the context of Statistical Zero-Knowlege (SZK). They
invoked two types of difference between distributions: the ‘statistical difference’
and the ‘entropy difference’ of two random variables. In this context, typically,
one of the distributions is the uniform distribution.

Thus, in the contexts of DPA and SZK tests, it is necessary to compare
two nearby distributions on bounded domains. This involves discrimination
between noisy samples drawn from pairs of closely similar distributions. In
some cases the distributions resemble truncated Gaussians; sometimes one
distribution is uniform. Dodson and Thompson [77] have shown that infor-
mation geometry can help in evaluating devices by providing a metric on a
suitable space of distributions.

8.2 Information Geometry of the Log-gamma Manifold

The log-gamma family of probability density functions §3.6 provides a 2-
dimensional metric space of distributions with compact support on [0, 1], rang-
ing from the uniform distribution to symmetric unimodular distributions of
arbitrarily small variance, as may be seen in Figure 3.3 and Figure 3.4.
Information geometry provided the metric for a discrimination procedure
reported by Dodson and Thompson [77] exploiting the geometry of the man-
ifold of log-gamma distributions, which we have seen above has these useful
properties:
e it contains the uniform distribution
e it contains approximations to truncated Gaussian distributions
e as a Riemannian 2-manifold it is an isometric isomorph of the manifold of
gamma distributions.
The log-gamma probability density functions discussed in § 3.6 for random
variable N € (0, 1] were given in equation (3.38), Figure 8.1,

T T—1
1 T 1
g(N;v,7) = m (;) 51 (log N) fory >0and 7 >0. (8.3)

These coordinates (v,7) are actually orthogonal for the Fisher information
metric on the parameter space £ = {(v,7) € (0,00) x (0,00)}. Its arc length
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Fig. 8.1. Mean value N = (TL{> as a surface with a horizontal section at the

central value N = 1, which intersects the N surface in the curve y = (V7T —1).

function is given from equation (3.39) by

. d? 1
ds® = Zgij dx'da’? = % dy? + (ﬁ log(I") — ;) dr?. (8.4)
ij

In fact, (8.3) arises from the gamma family, §1.4.1,

f(.T,’}/,T) =75 ¢ K (85)

for the non-negative random variable x = log % with mean T = ~. It is known
that the gamma family (8.5) has also the information metric (8.4) so the
identity map on the space of coordinates (v, 7) is not only a diffeomorphism
but also an isometry of Riemannian manifolds.

8.3 Distinguishing Nearby Unimodular Distributions

Log-gamma examples of unimodular distributions resembling truncated
Gaussians are shown on the right of Figure 8.3. Such kinds of distributions
can arise in practical situations for bounded random variables. A measure of
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information distance between nearby distributions is obtained from (8.4) for
small variations Avy, Ar, near (y0,79) € L; it is approximated by

TO d2 1
Asp ~ (| — Ay2 —— log(I" — — | A2 .
Sc \/73 ve+ (de og(I') |70 To> T (8.6)

Note that, as 7y increases from 1, the factor in brackets in the second part of
the sum under the square root decreases monotonically from %2 — 1. So, in
the information metric, the difference Avy has increasing prominence over At
as the standard deviation (cf. Figure 8.2) reduces with increasing 79, as we

see in the Table.

To (% log(I")|70 — %) con (7o)
1 0.6449340 0.577350
2 0.1449340 0.443258
3 0.0616007 0.373322
4 0.0338230 0.328638
5 0.0213230 0.296931
6 0.0146563 0.272930
7 0.0106880 0.253946
8 0.0081370 0.238442
9 0.0064009 0.225472

10 0.0051663 0.214411

TAt N =1

Fig. 8.2. Coefficient of variation coy = %" for the log-gamma distribution as a
smooth surface with a hatched surface at the central mean case N = %
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Fig. 8.3. Examples from the log-gamma family of probability densities with central
mean N = % Left: 7=1,1.2,1.4,1.6,1.8. Right: 7 =4,6,8, 10.

For example,some data on power measurements from a smartcard leaking
information during processing of a ‘0’ and a ‘1’, at a specific point in process
time, yielded two data sets C, D. These had maximum likelihood parameters
(yve = 0.7246, 7¢ = 1.816) and (yp = 0.3881, 7p = 1.757). We see that
here the dominant parameter in the information metric is . In terms of the
underlying gamma distribution, from which the log-gamma is obtained, =y is
the mean.

8.4 Difference From a Uniform Distribution

The situation near to the uniform distribution 7 = 1 is shown on the left
in Figure 8.3. In this case we have (y0,79) = (1,1) and for nearby distribu-
tions, (8.6) is approximated by

2
Asp =~ \/Any + (7; - 1> AT2 (8.7)

We see from (8.7) that, in the information metric, A7 is given about 80% of
the weight of Ay, near the uniform distribution.

The information-theoretic metric and these approximations may be an
improvement on the areal-difference comparator used in some recent SZK
studies [57, 94] and as an alternative in testing security of devices like smart-
cards.

8.5 Gamma Distribution Neighbourhoods
of Randomness
In a variety of contexts in cryptology for encoding, decoding or for obscur-

ing procedures, sequences of pseudorandom numbers are generated. Tests for
randomness of such sequences have been studied extensively and the NIST
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Fig. 8.4. Maximum likelihood gamma parameter 7 fitted to separation statistics
for simulations of Poisson random sequences of length 100000 for an element with
expected parameters (y,7) = (511,1). These simulations used the pseudorandom
number generator in Mathematica [215].

Suite of tests [179] for cryptological purposes is widely employed. Informa-
tion theoretic methods also are used, for example see Grzegorzewski and
Wieczorkowski [101] also Ryabko and Monarev [180] and references therein for
recent work. Here we can show how pseudorandom sequences may be tested
using information geometry by using distances in the gamma manifold to
compare maximum likelihood parameters for separation statistics of sequence
elements.

Mathematica [215] simulations were made of Poisson random sequences
with length n = 100000 and spacing statistics were computed for an element
with abundance probability p = 0.00195 in the sequence. Figure 8.4 shows
maximum likelihood gamma parameter 7 data points from such simulations.
In the data from 500 simulations the ranges of maximum likelihood gamma
distribution parameters were 419 <~ < 643 and 0.62 < 7 < 1.56.

The surface height in Figure 8.5 represents upper bounds on information
geometric distances from (v,7) = (511,1) in the gamma manifold. This em-
ploys the geodesic mesh function we developed in the previous Chapter (7.10)

511

2log I
d” log (1)‘+‘log7’. (8.8)

dr?

d*log I’
dr?

Distance[(511,1), (v,7)] < (1)

Also shown in Figure 8.5 are data points from the Mathematica simulations
of Poisson random sequences of length 100000 for an element with expected
separation v = 511.
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Fig. 8.5. Distances in the space of gamma models, using a geodesic mesh. The
surface height represents upper bounds on distances from (v,7) = (511,1) from
Equation (8.8). Also shown are data points from simulations of Poisson random
sequences of length 100000 for an element with expected separation v = 511. In the
limit as the sequence length tends to infinity and the element abundance tends to
zero we expect the gamma parameter 7 to tend to 1.

In the limit, as the sequence length tends to infinity and the abundance
of the element tends to zero, we expect the gamma parameter 7 to tend
to 1. However, finite sequences must be used in real applications and then
provision of a metric structure allows us, for example, to compare real sequence
generating procedures against an ideal Poisson random model.





