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Mathematical Statistics
and Information Theory

There are many easily found good books on probability theory and math-
ematical statistics (eg [84, 85, 87, 117, 120, 122, 196]), stochastic processes
(eg [31, 161]) and information theory (eg [175, 176]); here we just outline
some topics to help make the sequel more self contained. For those who have
access to the computer algebra package Mathematica [215], the approach to
mathematical statistics and accompanying software in Rose and Smith [177]
will be particularly helpful.

The word stochastic comes from the Greek stochastikos, meaning skillful
in aiming and stochazesthai to aim at or guess at, and stochos means target or
aim. In our context, stochastic colloquially means involving chance variations
around some event—rather like the variation in positions of strikes aimed at
a target. In its turn, the later word statistics comes through eighteenth cen-
tury German from the Latin root status meaning state; originally it meant
the study of political facts and figures. The noun random was used in the
sixteenth century to mean a haphazard course, from the Germanic randir to
run, and as an adjective to mean without a definite aim, rule or method, the
opposite of purposive. From the middle of the last century, the concept of a
random variable has been used to describe a variable that is a function of the
result of a well-defined statistical experiment in which each possible outcome
has a definite probability of occurrence. The organization of probabilities of
outcomes is achieved by means of a probability function for discrete random
variables and by means of a probability density function for continuous ran-
dom variables. The result of throwing two fair dice and summing what they
show is a discrete random variable.

Mainly, we are concerned with continuous random variables (here mea-
surable functions defined on some R

n) with smoothly differentiable probabil-
ity density measure functions, but we do need also to mention the Poisson
distribution for the discrete case. However, since the Poisson is a limiting
approximation to the Binomial distribution which arises from the Bernoulli
distribution (which everyone encountered in school!) we mention also those
examples.

K. Arwini, C.T.J. Dodson, Information Geometry. 1
Lecture Notes in Mathematics 1953,
c© Springer-Verlag Berlin Heidelberg 2008



2 1 Mathematical Statistics and Information Theory

1.1 Probability Functions for Discrete Variables

For discrete random variables we take the domain set to be N∪ {0}. We may
view a probability function as a subadditive measure function of unit weight
on N ∪ {0}

p : N ∪ {0} → [0, 1) (nonnegativity) (1.1)
∞
∑

k=0

p(k) = 1 (unit weight) (1.2)

p(A ∪B) ≤ p(A) + p(B), ∀A,B ⊂ N ∪ {0}, (subadditivity) (1.3)
with equality ⇐⇒ A ∩B = ∅.

Formally, we have a discrete measure space of total measure 1 with σ-algebra
the power set and measure function induced by p

sub(N ∪ {0}) → [0, 1) : A 
→
∑

k∈A

p(k)

and as we have anticipated above, we usually abbreviate
∑

k∈A p(k) = p(A).
We have the following expected values of the random variable and its

square

E(k) = k =
∞
∑

k=0

k p(k) (1.4)

E(k2) = k2 =
∞
∑

k=0

k2 p(k). (1.5)

Formally, statisticians are careful to distinguish between a property of the
whole population—such as these expected values—and the observed values
of samples from the population. In practical applications it is quite common
to use the bar notation for expectations and we shall be clear when we are
handling sample quantities. With slight but common abuse of notation, we call

k the mean, k2− (k)2 the variance, σk = +
√

k2 − (k)2 the standard deviation
and σk/k the coefficient of variation, respectively, of the random variable k.
The variance is the square of the standard deviation.

The moment generating function Ψ(t) = E(etX), t ∈ R of a distribution
generates the rth moment as the value of the rth derivative of Ψ evaluated at
t = 0. Hence, in particular, the mean and variance are given by:

E(X) = Ψ ′(0) (1.6)
V ar(X) = Ψ ′′(0) − (Ψ ′(0))2, (1.7)

which can provide an easier method for their computation in some cases.
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1.1.1 Bernoulli Distribution

It is said that a random variable X has a Bernoulli distribution with parameter
p (0 ≤ p ≤ 1) if X can take only the values 0 and 1 and the probabilities are

Pr(X = 1) = p (1.8)

Pr(X = 0) = 1 − p (1.9)

Then the probability function of X can be written as follows:

f(x|p) =
{

px(1 − p)1−x if x = 0, 1
0 otherwise (1.10)

If X has a Bernoulli distribution with parameter p, then we can find its
expectation or mean value E(X) and variance V ar(X) as follows.

E(X) = 1 · p + 0 · (1 − p) = p (1.11)

V ar(X) = E(X2) − (E(X))2 = p− p2 (1.12)

The moment generating function of X is the expectation of etX ,

Ψ(t) = E(etX) = pet + q (1.13)

which is finite for all real t.

1.1.2 Binomial Distribution

If n random variables X1,X2, . . . , Xn are independently identically distrib-
uted, and each has a Bernoulli distribution with parameter p, then it is said
that the variables X1,X2, . . . , Xn form n Bernoulli trials with parameter p.

If the random variables X1,X2, . . . , Xn form n Bernoulli trials with para-
meter p and if X = X1 + X2 + . . . + Xn, then X has a binomial distribution
with parameters n and p.

The binomial distribution is of fundamental importance in probability and
statistics because of the following result for any experiment which can have
outcome only either success or failure. The experiment is performed n times
independently and the probability of the success of any given performance is p.
If X denotes the total number of successes in the n performances, then X has
a binomial distribution with parameters n and p. The probability function of
X is:

P (X = r) = P (
n
∑

i=1

Xi = r) =
(

n
r

)

pr(1 − p)n−r (1.14)

where r = 0, 1, 2, . . . , n.
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We write

f(r|p) =

⎧

⎨

⎩

(

n
r

)

pr(1 − p)n−r if r=0, 1, 2, . . . , n

0 otherwise
(1.15)

In this distribution n must be a positive integer and p must lie in the interval
0 ≤ p ≤ 1. If X is represented by the sum of n Bernoulli trials, then it is easy
to get its expectation, variance and moment generating function by using the
properties of sums of independent random variables—cf. §1.3.

E(X) =
n
∑

i=1

E(Xi) = np (1.16)

V ar(X) =
n
∑

i=1

V ar(Xi) = np(1 − p) (1.17)

Ψ(t) = E(etX) =
n
∏

i=1

E(etXi) = (pet + q)n. (1.18)

1.1.3 Poisson Distribution

The Poisson distribution is widely discussed in the statistical literature; one
monograph devoted to it and its applications is Haight [102].

Take t, τ ∈ (0,∞)

p : N ∪ {0} → [0, 1) : k 
→
(

t

τ

)k 1
k!

e−t/τ (1.19)

k = t/τ (1.20)

σk = t/τ. (1.21)

This probability function is used to model the number k of events in a
region of measure t when the mean number of events per unit region is τ and
the probability of an event occurring in a region depends only on the measure
of the region, not its shape or location. Colloquially, in applications it is very
common to encounter the usage of ‘random’ to mean the specific case of a
Poisson process; formally in statistics the term random has a more general
meaning: probabilistic, that is dependent on random variables. Figure 1.1
depicts a simulation of a ‘random’ array of 2000 line segments in a plane; the
centres of the lines follow a Poisson process and the orientations of the lines
follow a uniform distribution, cf. §1.2.1. So, in an intuitive sense, this is the
result of the least choice, or maximum uncertainty, in the disposition of these
line segments: the centre of each line segment is equally likely to fall in every
region of given area and its angle of axis orientation is equally likely to fall in
every interval of angles of fixed size. This kind of situation is representative
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Fig. 1.1. Simulation of a random array of 2000 line segments in a plane; the centres
of the lines follow a Poisson process and the orientations of the lines follow a uniform
distribution. The grey tones correspond to order of deposition.

of common usage of the term ‘random process’ to mean subordinate to a
Poisson process. A ‘non-random’ processes departs from Poisson by having
constraints on the probabilities of placing of events or objects, typically as a
result of external influence or of interactions among events or objects.

Importantly, the Poisson distribution can give a good approximation to
the binomial distribution when n is large and p is close to 0. This is easy to
see by making the correspondences:

e−pn −→ (1 − (n− r)p) (1.22)
n!/(n− r)! −→ nr. (1.23)

Much of this monograph is concerned with the representation and classifi-
cation of deviations from processes subordinate to a Poisson random variable,
for example for a line process via the distribution of inter-event (nearest neigh-
bour, or inter-incident) spacings. Such processes arise in statistics under the
term renewal process [150].

We shall see in Chapter 9 that, for physical realisations of stochastic fibre
networks, typical deviations from Poisson behaviour arise when the centres of
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the fibres tend to cluster, Figure 9.1, or when the orientations of their axes
have preferential directions, Figure 9.15. Radiographs of real stochastic fibre
networks are shown in Figure 9.3 from Oba [156]; the top network consists of
fibres deposited approximately according to a Poisson planar process whereas
in the lower networks the fibres have tended to cluster to differing extents.

1.2 Probability Density Functions for Continuous
Variables

We are usually concerned with the case of continuous random variables defined
on some Ω ⊆ R

m. For our present purposes we may view a probability density
function (pdf) on Ω ⊆ R

m as a subadditive measure function of unit weight,
namely, a nonnegative map on Ω

f : Ω → [0,∞) (nonnegativity) (1.24)
∫

Ω

f = f(Ω) = 1 (unit weight) (1.25)

f(A ∪B) ≤ f(A) + f(B), ∀A,B ⊂ Ω, (subadditivity) (1.26)

with equality ⇐⇒ A ∩B = ∅.

Formally, we have a measure space of total measure 1 with σ-algebra typically
the Borel sets or the power set and the measure function induced by f

sub(Ω) → [0, 1] : A 
→
∫

A

f = integral of f over A

and as we have anticipated above, we usually abbreviate
∫

A
f = f(A). Given

an integrable (ie measurable in the σ-algebra) function u : Ω → R, the
expectation or mean value of u is defined to be

E(u) = u =
∫

Ω

uf.

We say that f is the joint pdf for the random variables x1, x2, . . . , xm, be-
ing the coordinates of points in Ω, or that these random variables have the
joint probability distribution f. If x is one of these random variables, and in
particular for the important case of a single random variable x, we have the
following

x =
∫

Ω

xf (1.27)

x2 =
∫

Ω

x2f. (1.28)
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Again with slight abuse of notation, we call x the mean and the variance is
the mean square deviation

σ2
x = (x− x)2 = x2 − (x)2.

Its square root is the standard deviation σx = +
√

x2 − (x)2 and the ratio
σx/x is the coefficient of variation, of the random variable x. Some inequalities
for the probability of a random variable exceeding a given value are worth
mentioning.

Markov’s Inequality: If x is a nonnegative random variable with probabil-
ity density function f then for all a > 0, the probability that x > a is

∫ ∞

a

f ≤ x̄

a
. (1.29)

Chebyshev’s Inequality: If x is a random variable having probability den-
sity function f with zero mean and finite variance σ2, then for all a > 0,
the probability that x > a is

∫ ∞

a

f ≤ σ2

σ2 + a2
. (1.30)

Bienaymé-Chebyshev’s Inequality: If x is a random variable having
probability density function f and u is a nonnegative non-decreasing
function on (0,∞), then for all a > 0 the probability that |x| > a is

1 −
∫ a

−a

f ≤ ū

u(a)
. (1.31)

The cumulative distribution function (cdf) of a nonnegative random variable x
with probability density function f is the function defined by

F : [0,∞) → [0, 1] : x 
→
∫ x

0

f(t) dt. (1.32)

It is easily seen that if we wish to change from random variable x with
density function f to a new random variable ξ when x is given as an invertible
function of ξ, then the probability density function for ξ is represented by

g(ξ) = f(x(ξ))
∣

∣

∣

∣

dx

dξ

∣

∣

∣

∣

. (1.33)

If independent real random variables x and y have probability density func-
tions f, g respectively, then the probability density function h of their sum
z = x + y is given by

h(z) =
∫ ∞

−∞
f(x) g(z − x) dx (1.34)
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and the probability density function p of their product r = xy is given by

p(r) =
∫ ∞

−∞
f(x) g

( r

x

) 1
|x|dx. (1.35)

Usually, a probability density function depends on a set of parameters,
θ1, θ2, . . . , θn and we say that we have an n-dimensional family. Then the
corresponding change of variables formula involves the n× n Jacobian deter-
minant for the multiple integrals, so generalizing (1.33).

1.2.1 Uniform Distribution

This is the simplest continuous distribution, with constant probability density
function for a bounded random variable:

u : [a, b] → [0,∞) : x 
→ 1
b− a

(1.36)

x =
a + b

2
(1.37)

σx =
b− a

2
√

3
. (1.38)

The probability of an event occurring in an interval [α, β] � [a, b] is simply
proportional to the length of the interval:

P (x ∈ [α, β]) =
β − α

b− a
.

1.2.2 Exponential Distribution

Take λ ∈ R
+; this is called the parameter of the exponential probability

density function

f : [0,∞) → [0,∞) : [a, b] 
→
∫

[a,b]

1
λ
e−x/λ (1.39)

x = λ (1.40)
σx = λ. (1.41)

The parameter space of the exponential distribution is R
+, so exponential

distributions form a 1-parameter family. In the sequel we shall see that quite
generally we may provide a Riemannian structure to the parameter space of
a family of distributions. Sometimes we call a family of pdfs a parametric
statistical model.

Observe that, in the Poisson probability function (1.19) for events on the
real line, the probability of zero zero events in an interval t is

p(0) = e−t/τ
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and it is not difficult to show that the probability density function for the
Poisson inter-event (or inter-incident) distance t on [0,∞) is an exponential
probability density function (1.39) given by

f : [0,∞) → [0,∞) : t 
→ 1
τ
e−t/τ

where τ is the mean number of events per unit interval. Thus, the occurrence
of an exponential distribution has associated with it a complementary Poisson
distribution, so the exponential distribution provides for continuous variables
an identifier for Poisson processes. Correspondingly, departures from an ex-
ponential distribution correspond to departures from a Poisson process. We
shall see below in §1.4.1 that in rather a strict sense the gamma distribution
generalises the exponential distribution.

1.2.3 Gaussian, or Normal Distribution

This has real random variable x with mean µ and variance σ2 and the familiar
bell-shaped probability density function given by

f(x) =
1√
2πσ

e
−(x−µ)2

2σ2 . (1.42)

The Gaussian distribution has the following uniqueness property: For indepen-
dent random variables x1, x2, . . . , xn with a common continuous probability
density function f, having independence of the sample mean x̄ and sample
standard deviation S is equivalent to f being a Gaussian distribution [110].

The Central Limit Theorem states that for independent and identically
distributed real random variables xi each having mean µ and variance σ2, the
random variable

w =
(x1 + x2 + . . . + xn) − nµ√

nσ
(1.43)

tends as n → ∞ to a Gaussian random variable with mean zero and unit
variance.

1.3 Joint Probability Density Functions

Let f be a probability density function, defined on R
2 (or some subset thereof).

This is an important case since here we have two variables, X,Y, say, and we
can extract certain features of how they interact. In particular, we define their
respective mean values and their covariance, σxy:

x =
∫ ∞

−∞

∫ ∞

−∞
x f(x, y) dxdy (1.44)

y =
∫ ∞

−∞

∫ ∞

−∞
y f(x, y) dxdy (1.45)

σxy =
∫ ∞

−∞

∫ ∞

−∞
xy f(x, y) dxdy − x y = xy − x y. (1.46)



10 1 Mathematical Statistics and Information Theory

The marginal probability density function of X is fX , obtained by inte-
grating f over all y,

fX(x) =
∫ ∞

v=−∞
fX,Y (x, v) dv (1.47)

and similarly the marginal probability density function of Y is

fY (y) =
∫ ∞

u=−∞
fX,Y (u, y) du (1.48)

The jointly distributed random variables X and Y are called independent
if their marginal density functions satisfy

fX,Y (x, y) = fX(x)fY (y) for all x, y ∈ R (1.49)

It is easily shown that if the variables are independent then their covariance
(1.46) is zero but the converse is not true. Feller [84] gives a simple coun-
terexample: let X take values −1,+1,−2,+2, each with probability 1

4 and
let Y = X2; then the covariance is zero but there is evidently a (nonlinear)
dependence.

The extent of dependence between two random variables can be measured
in a normalised way by means of the correlation coefficient: the ratio of the
covariance to the product of marginal standard deviations:

ρxy =
σxy

σxσy
. (1.50)

Note that by the Cauchy-Schwartz inequality, −1 ≤ ρxy ≤ 1, whenever it
exists, the limiting values corresponding to the case of linear dependence be-
tween the variables. Intuitively, ρxy < 0 if y tends to increase as x decreases,
and ρxy > 0 if x and y tend to increase together.

A change of random variables from (x, y) with density function f to say
(u, v) with density function g and x, y given as invertible functions of u, v
involves the Jacobian determinant:

g(u, v) = f(x(u, v), y(u, v))
∂(x, y)
∂(u, v)

. (1.51)

1.3.1 Bivariate Gaussian Distributions

The probability density function of the two-dimensional Gaussian distribution
has the form:

f(x, y) =
1

2π
√
σ1 σ2 − σ12

2
eW (1.52)



1.4 Information Theory 11

with

W = − 1

2 (σ1 σ2 − σ12
2)

(

σ2(x − µ1)
2 − 2 σ12 (x − µ1) (y − µ2) + σ1(y − µ2)

2
)

,

where

−∞ < x1 < x2 < ∞, −∞ < µ1 < µ2 < ∞, 0 < σ1, σ2 < ∞.

This contains the five parameters (µ1, µ2, σ1, σ12, σ2) = (ξ1, ξ2, ξ3, ξ4, ξ5) ∈ Θ.
So we have a five-dimensional parameter space Θ.

1.4 Information Theory

Information theory owes its origin in the 1940s to Shannon [186], whose in-
terest was in modelling the transfer of information stored in the form of
binary on-off devices, the basic unit of information being one bit: 0 or 1.
The theory provided a representation for the corruption by random electronic
noise of transferred information streams, and for quantifying the effective-
ness of error-correcting algorithms by the incorporation of redundancy in the
transfer process. His concept of information theoretic entropy in communica-
tion theory owed its origins to thermodynamics but its effectiveness in general
information systems has been far reaching. Information theory worked out by
the communication theorists, and entropy in particular, were important in
providing a conceptual and mathematical framework for the development of
chaos theory [93]. There the need was to model the dynamics of adding small
extrinsic noise to otherwise deterministic systems. In physical theory, entropy
provides the uni-directional ‘arrow of time’ by measuring the disorder in an
irreversible system [164]. Intuitively, we can see how the entropy of a state
modelled by a point in a space of probability density functions would be ex-
pected to be maximized at a density function that represented as nearly as
possible total disorder, colloquially, randomness.

Shannon [186] considered an information source that generates symbols
from a finite set {xi|i = 1, 2, · · ·n} and transmits them as a stationary sto-
chastic process. He defined the ‘entropy’ function for the process in terms of
the probabilities {pi|i = 1, 2, · · ·n} for generation of the different symbols:

S = −
i=n
∑

i=1

pi log(pi). (1.53)

This entropy (1.53) is essentially the same as that of Gibbs and Boltzmann in
statistical mechanics but here it is viewed as a measure of the ‘uncertainty’ in
the process; for example S is greater than or equal to the entropy conditioned
by the knowledge of a second random variable. If the above symbols are gener-
ated mutually independently, then S is a measure of the amount of information
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available in the source for transmission. If the symbols in a sequence are not
mutually independently generated, Shannon introduced the information ‘ca-
pacity’ of the transmission process as C = limT→∞ logN(T )/T , where N(T )
is the maximum number of sequences of symbols that can be transmitted in
time T. It follows that, for given entropy S and capacity C, the symbols can
be encoded in such a way that C

S−ε symbols per second can be transmitted
over the channel if ε > 0 but not if ε < 0. So again, we have a maximum
principle from entropy.

Given a set of observed values < gα(x) > for functions gα of the random
variable x, we seek a ‘least prejudiced’ set of probability values for x on the
assumption that it can take only a finite number of values, xi with probabilities
p1, p2, · · · , pn such that

< gα(x) > =
i=n
∑

i=1

pi gα(xi) for α = 1, 2, . . . , N (1.54)

1 =
i=n
∑

i=1

pi. (1.55)

Jaynes [107], a strong proponent of Shannon’s approach, showed that this
occurs if we choose those pi that maximize Shannon’s entropy function (1.53).
In the case of a continuous random variable x ∈ R with probability density p
parametrized by a finite set of parameters, the entropy becomes an integral
and the maximizing principle is applied over the space of parameters, as we
shall see below.

It turns out [201] that if we have no data on observed functions of x, (so
the set of equations (1.54) is empty) then the maximum entropy choice gives
the exponential distribution. If we have estimates of the first two moments
of the distribution of x, then we obtain the (truncated) Gaussian. If we have
estimates of the mean and mean logarithm of x, then the maximum entropy
choice is the gamma distribution.

Jaynes [107] provided the foundation for information theoretic methods in,
among other things, Bayes hypothesis testing—cf. Tribus et al. [200, 201]. For
more theory, see also Slepian [190] and Roman [175, 176]. It is fair to point
out that in the view of some statisticians, the applicability of the maximum
entropy approach has been overstated; we mention for example the reserva-
tions of Ripley [173] in the case of statistical inference for spatial Gaussian
processes.

In the sequel we shall consider the particular case of the gamma distribu-
tion for several reasons:

• the exponential distributions form a subclass of gamma distributions and
exponential distributions represent Poisson inter-event distances

• the sum of n independent identical exponential random variables follows
a gamma distribution
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• the sum of n independent identical gamma random variables follows a
gamma distribution

• lognormal distributions may be well-approximated by gamma distributions
• products of gamma distributions are well-approximated by gamma distri-

butions
• stochastic porous media have been modelled using gamma distribu-

tions [72].

Other parametric statistical models based on different distributions may be
treated in a similar way. Our particular interest in the gamma distribution
and a bivariate gamma distribution stems from the fact that the exponential
distribution is a special case and that corresponds to the standard model for
an underlying Poisson process.

Let Θ be the parameter space of a parametric statistical model, that is an
n-dimensional smooth family of probability density functions defined on some
fixed event space Ω of unit measure,

∫

Ω

pθ = 1 for all θ ∈ Θ.

For each sequence X = {X1,X2, . . . , Xn}, of independent identically distrib-
uted observed values, the likelihood function likX on Θ which measures the
likelihood of the sequence arising from different pθ ∈ S is defined by

likX : Θ → [0, 1] : θ 
→
n
∏

i=1

pθ(Xi).

Statisticians use the likelihood function, or log-likelihood its logarithm l =
log lik, in the evaluation of goodness of fit of statistical models. The so-called
‘method of maximum likelihood’, or ‘maximum entropy’ in Shannon’s terms,
is used to obtain optimal fitting of the parameters in a distribution to observed
data.

1.4.1 Gamma Distribution

The family of gamma distributions is very widely used in applications with
event space Ω = R

+. It has probability density functions given by

Θ ≡ {f(x; γ, κ)|γ, κ ∈ R
+}

so here Θ = R
+ × R

+ and the random variable is x ∈ Ω = R
+ with

f(x; γ, κ) =
(

κ

γ

)κ
xκ−1

Γ (κ)
e−xκ/γ (1.56)

Then x̄ = γ and V ar(x) = γ2/κ and we see that γ controls the mean of the
distribution while κ controls its variance and hence the shape. Indeed, the
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property that the variance is proportional to the square of the mean, §1.2,
actually characterizes gamma distributions as shown recently by Hwang and
Hu [106] (cf. their concluding remark).

Theorem 1.1 (Hwang and Hu [106]). For independent positive random
variables with a common probability density function f, having independence
of the sample mean and the sample coefficient of variation is equivalent to f
being the gamma distribution.

The special case κ = 1 in (1.56) corresponds to the situation of the random or
Poisson process along a line with mean inter-event interval γ, then the distri-
bution of inter-event intervals is exponential. In fact, the gamma distribution
has an essential generalizing property of the exponential distribution since it
represents inter-event distances for generalizations of the Poisson process to
a ‘censored’ Poisson process. Precisely, for integer κ = 1, 2, . . . , (1.56) mod-
els a process that is Poisson but with intermediate events removed to leave
only every κth. Formally, the gamma distribution is the κ-fold convolution
of the exponential distribution, called also the Pearson Type III distribution.
The Chi-square distribution with n = 2κ degrees of freedom models the dis-
tribution of a sum of squares of n independent random variables all having
the Gaussian distribution with zero mean and standard deviation σ; this is a
gamma distribution with mean γ = nσ2 if κ = 1, 2, . . . . Figure 1.2 shows a
family of gamma distributions, all of unit mean, with κ = 1

2 , 1, 2, 5.

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
f(x; 1, κ)

κ = 1
2

(Clustered)

κ = 1 (Poisson)

κ = 2 (Smoothed)

κ = 5 (More Smoothed)

Inter-event interval x

Fig. 1.2. Probability density functions, f(x; γ, κ), for gamma distributions of inter-
event intervals x with unit mean γ = 1, and κ = 1

2
, 1, 2, 5. The case κ = 1

corresponds to an exponential distribution from an underlying Poisson process. Some
organization—clustering (κ < 1) or smoothing (κ > 1)—is represented by κ �= 1.
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Shannon’s information theoretic entropy or ‘uncertainty’ is given, up to a
factor, by the negative of the expectation of the logarithm of the probability
density function (1.56), that is

Sf (γ, κ) = −
∫ ∞

0

log(f(x; γ, κ)) f(x; γ, κ) dx

= κ + (1 − κ)
Γ ′(κ)
Γ (κ)

+ log
γ Γ (κ)

κ
. (1.57)

Part of the entropy function (1.57) is depicted in Figure 1.3 as a contour plot.
At unit mean, the maximum entropy (or maximum uncertainty) occurs at

κ = 1, which is the random case, and then Sf (γ, 1) = 1 + log γ. So, a Poisson
process of points on a line is such that the points are as disorderly as possible
and among all homogeneous point processes with a given density, the Poisson
process has maximum entropy. Figure 1.4 shows a plot of Sf (γ, κ), for the
case of unit mean γ = 1. Figure 1.5 shows some integral curves of the entropy
gradient field in the space of gamma probability density functions.

We can see the role of the log-likelihood function in the case of a set
X = {X1,X2, . . . , Xn} of measurements, drawn from independent identically

0 1 2 3 4 5
0.0
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1.0

1.5

2.0

γ

κ

Fig. 1.3. Contour plot of information theoretic entropy Sf (γ, κ), for gamma distri-
butions from (1.57). The cases with κ = 1 correspond to exponential distributions
related to underlying Poisson processes.
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Fig. 1.4. Information theoretic entropy Sf (γ, κ), for gamma distributions of inter-
event intervals with unit mean γ = 1. The maximum at κ = 1 corresponds to an
exponential distribution from an underlying Poisson process. The regime κ < 1
corresponds to clustering of events and κ > 1 corresponds to smoothing out of
events, relative to a Poisson process. Note that, at constant mean, the variance of x
decays like 1/κ.
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Fig. 1.5. A selection of integral curves of the entropy gradient field for gamma
probability density functions, with initial points having small values of γ. The cases
with κ = 1 correspond to exponential distributions related to underlying Poisson
processes.
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distributed random variables, to which we wish to fit the maximum likelihood
gamma distribution. The procedure to optimize the choice of γ, κ is as follows.
For independent events Xi, with identical distribution p(x; γ, κ), their joint
probability density is the product of the marginal densities so a measure of
the ‘likelihood’ of finding such a set of events is

likX(γ, κ) =
n
∏

i=1

f(Xi; γ, κ).
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Fig. 1.6. Probability histogram plot with unit mean for the spacings between the
first 100, 000 prime numbers and the maximum likelihood gamma fit, κ = 1.09452,
(large points).
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Fig. 1.7. Probability histogram plot with unit mean for the spacings between the
first 100, 000 prime numbers and the gamma distribution having the same variance,
so κ = 1.50788, (large points).
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We seek a choice of γ, κ to maximize this product and since the log function
is monotonic increasing it is simpler to maximize the logarithm

lX(γ, κ) = log likX(γ, κ) = log[
n
∏

i=1

f(Xi; γ, κ)].

Substitution gives us

lX(γ, κ) =
n
∑

i=1

[κ(log κ− log γ) + (κ− 1) logXi −
κ

γ
Xi − logΓ (κ)]

= nκ(log κ− log γ) + (κ− 1)
n
∑

i=1

logXi −
κ

γ

n
∑

i=1

Xi − n logΓ (κ).

Then, solving for ∂γ lX(γ, κ) = ∂κlX(γ, κ) = 0 in terms of properties of the
Xi, we obtain the maximum likelihood estimates γ̂, κ̂ of γ, κ in terms of the
mean and mean logarithm of the Xi

γ̂ = X̄ =
1
n

n
∑

i=1

Xi

log κ̂− Γ ′(κ̂)
Γ (κ̂)

= logX − log X̄

where logX = 1
n

∑n
i=1 logXi.

For example, the frequency distribution of spacings between the first
100, 000 prime numbers has mean approximately 13.0, and variance 112,
and 99% of the probability is achieved by spacings up to 4 times the
mean. Figure 1.6 shows the maximum likelihood fit gamma distribution with
κ = 1.09452, as points, on the probability histogram of the prime spacings nor-
malized to unit mean; the range of the abscissa is 4 times the mean. Figure 1.7
shows as points the gamma distribution with κ = 1.50788, which has the same
variance as the prime spacings normalized to unit mean. Of course, neither fit
is very good and nor is the geometric distribution approximation that might
be expected, cf. Schroeder [184] §4.12, in light of The Prime Number Theo-
rem, which says that the average spacing between adjacent primes near n is
approximately log n.




