Skip to main content

Dirichlet Forms on Noncommutative Spaces

  • Chapter
Quantum Potential Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1954))

Abstract

We show how Dirichlet forms provide an approach to potential theory of noncommutative spaces based on the notion of energy. The correspondence with KMS-symmetric Markovian semigroups is explained in details and applied to the dynamical approach to equilibria of quantum spin systems. Second part focuses on the differential calculus underlying a Dirichlet form. Applications are given in Riemannian Geometry to a potential theoretic characterization of spaces with positive curvature and to the construction of Fredholm modules in Noncommutative Geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [Abk] W. Abikoff, The uniformization theorem, Am. Math. Montly, 88, n. 8, (1981), 574–592.

    Article  MATH  MathSciNet  Google Scholar 

  • [AC] L. Accardi, C. Cecchini, Conditional expectations in von Neuman algebras and a theorem of Takesaki. J. Funct. Anal. 45 (1982), 245–273.

    Article  MATH  MathSciNet  Google Scholar 

  • [AFLe] L. Accardi, A. Frigerio, J.T. Lewis, Quantum stochastic processes, Publ. Res. Inst. Math. Sci. 18, n. 1, (1982), 97–133.

    Article  MATH  MathSciNet  Google Scholar 

  • [AFLu] L. Accardi, A. Frigerio, Y. G. Lu, The weak coupling limit as a quantum functional central limit, Comm. Math. Phys., 131, n. 3, (1990), 537570.

    Article  MathSciNet  Google Scholar 

  • [AHK1] S. Albeverio, R. Hoegh-Krohn, Dirichlet forms and Markovian semigroups on C*-algebras, Comm. Math. Phys. 56 (1977), 173–187.

    Article  MATH  MathSciNet  Google Scholar 

  • [AHK2] S. Albeverio, R. Hoegh-Krohn, Frobenius theory for positive maps on von Neumann algebras, Comm. Math. Phys. 64 (1978), 83–94.

    Article  MATH  MathSciNet  Google Scholar 

  • [A1] R. Alicki, On the detailed balance condition for non-Hamiltonian systems, Rep. Math. Phys. 10 (1976), 249–258.

    Article  MATH  MathSciNet  Google Scholar 

  • [Ara] H. Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, Pacific J. Math., 50 (1974), 309–354

    MATH  MathSciNet  Google Scholar 

  • [Arv] W. Arveson, “An invitation to C*-algebra”, Graduate Text in Mathematics 39, x+106 pages, Springer-Verlag, Berlin, Heidelber, New York, 1976.

    Google Scholar 

  • [At] M.F. Atiyah, Global theory of elliptic operators, Proc. Internat. Conf. on Proc. Internat. Conf. on Functional Analysis and Related Topics, (Tokyo, 1969) (1970), 21–30, Univ. of Tokyo Press, Tokyo.

    Google Scholar 

  • [AtS] M.F. Atiyah, G. B. Singer, The Index of elliptic operators on compact manifolds, Bull. A.M.S. 69 (1963), 422–433.

    Article  MATH  MathSciNet  Google Scholar 

  • [BKP1] C. Bahn, C.K. Ko, Y.M. Park, Dirichlet forms and symmetric Markovian semigroups on ℤ2 von Neumann algebras. Rev. Math. Phys. 15 (2003), no. 8, 823–845.

    Article  MATH  MathSciNet  Google Scholar 

  • [BKP2] C. Bahn, C.K. Ko, Y.M. Park, Dirichlet forms and symmetric Markovian semigroups on CCR Algebras with quasi-free states. Rev. Math. Phys. 44, (2003), 723–753.

    Article  MATH  MathSciNet  Google Scholar 

  • [B] A. Barchielli, Continual measurements in quantum mechanics and quantum stochastic calculus, Lectures Notes Math. 1882 (2006), 207–292.

    Article  MathSciNet  Google Scholar 

  • [BD1] A. Beurling and J. Deny, Espaces de Dirichlet I: le cas élémentaire, Acta Math. 99 (1958), 203–224.

    Article  MATH  MathSciNet  Google Scholar 

  • [BD2] A. Beurling and J. Deny, Dirichlet spaces, Proc. Nat. Acad. Sci. 45 (1959), 208–215.

    Article  MATH  MathSciNet  Google Scholar 

  • [B1] P. Biane, Logarithmic Sobolev Inequalities, Matrix Models and Free Entropy, Acta Math. Sinica, English Series. 19 (2003), 497–506.

    Article  MATH  MathSciNet  Google Scholar 

  • [Boz] M. Bozejko, Positive definite functions on the free group and the noncommutative Riesz product, Bollettino U.M.I. 5-A (1986), 13–21.

    MathSciNet  Google Scholar 

  • [BR1] Bratteli O., Robinson D.W., “Operator algebras and Quantum Statistical Mechanics 1”, Second edition, 505 pages, Springer-Verlag, Berlin, Heidelberg, New York, 1887.

    Google Scholar 

  • [BR2] Bratteli O., Robinson D.W., “Operator algebras and Quantum Statistical Mechanics 2”, Second edition, 518 pages, Springer-Verlag, Berlin, Heidelberg, New York, 1997.

    MATH  Google Scholar 

  • [Cip1] F. Cipriani, Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras, J. Funct. Anal. 147 (1997), 259–300.

    Article  MATH  MathSciNet  Google Scholar 

  • [Cip2] F. Cipriani, The variational approach to the Dirichlet problem in C*-algebras, Banach Center Publications 43 (1998), 259–300.

    MathSciNet  Google Scholar 

  • [Cip3] F. Cipriani, Perron theory for positive maps and semigroups on von Neumann algebras, CMS Conf. Proc., Amer. Math. Soc., Providence, RI 29 (2000), 115–123.

    MathSciNet  Google Scholar 

  • [Cip4] F. Cipriani, Dirichlet forms as Banach algebras and applications, Pacific J. Math. 223 (2006), no. 2, 229–249.

    Article  MATH  MathSciNet  Google Scholar 

  • [CFL] F. Cipriani, F. Fagnola, J.M. Lindsay, Spectral analysis and Feller property for quantum Ornstein-Uhlenbeck semigroups, Comm. Math. Phys. 210 (2000), 85–105.

    Article  MATH  MathSciNet  Google Scholar 

  • [CS1] F. Cipriani, J.-L. Sauvageot, Derivations as square roots of Dirichlet forms, J. Funct. Anal. 201 (2003), no. 1, 78–120.

    Article  MATH  MathSciNet  Google Scholar 

  • [CS2] F. Cipriani, J.-L. Sauvageot, Noncommutative potential theory and the sign of the curvature operator in Riemannian geometry, Geom. Funct. Anal. 13 (2003), no. 3, 521–545.

    Article  MATH  MathSciNet  Google Scholar 

  • [CS3] F. Cipriani, J.-L. Sauvageot, Strong solutions to the Dirichlet problem for differential forms: a quantum dynamical semigroup approach, Contemp. Math, Amer. Math. Soc., Providence, RI 335 (2003), 109–117.

    MathSciNet  Google Scholar 

  • [CS4] F. Cipriani, J.-L. Sauvageot, Fredholm modules on p.c.f. self-similar fractals and their conformal geometry, arXiv:0707.0840v 1 [math.FA] (5 Jul 2007), 16 pages.

    Google Scholar 

  • [Co1] A. Connes, Caracterisation des espaces vectoriels ordonnés sous-jacents aux algbres de von Neumann, Ann. Inst. Fourier (Grenoble) 24 (1974), 121–155.

    MATH  MathSciNet  Google Scholar 

  • [Co2] A. Connes, “Noncommutative Geometry”, Academic Press, 1994.

    Google Scholar 

  • [Co3] A. Connes, On the cohomology of operator algebras, J. Funct. Anal. 28 (1978), no. 2, 248–253.

    Article  MATH  MathSciNet  Google Scholar 

  • [CST] A. Connes, D. Sullivan, N. Teleman, Quasconformal mappings, operators on Hilbert space, and local formulae for characteristic classes, Preprint I.H.E.S. M/38 (1993).

    Google Scholar 

  • [CE] E. Christensen, D.E. Evans, Cohomology of operator algebras and quantum dynamical semigroups, J. London. Math. Soc. 20 (1979), 358–368.

    Article  MATH  MathSciNet  Google Scholar 

  • [D1] E.B. Davies, (1976), “Quantum Theory of Open Systems”, 171 pages, Academic Press, London U.K.

    MATH  Google Scholar 

  • [D2] E.B. Davies, Analysis on graphs and noncommutative geometry, J. Funct. Anal. 111 (1993), 398–430.

    Article  MATH  MathSciNet  Google Scholar 

  • [DL1] E.B. Davies, J.M. Lindsay, Non-commutative symmetric Markov semigroups, Math. Z. 210 (1992), 379–411.

    Article  MATH  MathSciNet  Google Scholar 

  • [DL2] E.B. Davies, J.M. Lindsay, Superderivations and symmetric Markov semigroups, Comm. Math. Phys. 157 (1993), 359–370.

    Article  MATH  MathSciNet  Google Scholar 

  • [DR1] E.B. Davies, O.S. Rothaus, Markov semigroups on C*-bundles, J. Funct. Anal. 85 (1989), 264–286.

    Article  MATH  MathSciNet  Google Scholar 

  • [DR2] E.B. Davies, O.S. Rothaus, A BLW inequality for vector bundles and applications to spectral bounds, J. Funct. Anal. 86 (1989), 390–410.

    Article  MATH  MathSciNet  Google Scholar 

  • [Del] G.F. DelľAntonio, Structure of the algebras of some free systems, Comm. Math. Phys. 9 (1968), 81–117.

    Article  MathSciNet  Google Scholar 

  • [Den] J. Deny, Méthodes hilbertien en thorie du potentiel, Potential Theory (C.I.M.E., I Ciclo, Stresa), Ed. Cremonese Roma, 1970, 85, 121–201.

    Google Scholar 

  • [Dir] P.A.M. Dirac, The quantum theory of the electron, Pro. Roy. Soc. of London A 117 (1928), 610–624.

    Article  Google Scholar 

  • [Do] J.L. Doob, “Classical potential theory and its probabilistic counterpart”, Springer-Verlag, New York, 1984.

    MATH  Google Scholar 

  • [Dix1] J. Dixmier, “Les C*-algèbres et leurs représentations”, Gauthier-Villars, Paris, 1969.

    Google Scholar 

  • [Dix2] J. Dixmier, “Les algébres ďoperateurs dans les espaces hilbertienne (algébres de von Neumann)”, Gauthier-Villars, Paris, 1969.

    Google Scholar 

  • [F] W. Faris, Invariant cones and uniqueness of the ground state for Fermion systems, J. Math. Phys. 13 (1972), 1285–1290.

    Article  MATH  MathSciNet  Google Scholar 

  • [FU] F. Fagnola, V. Umanita', Generators of detailed balance quantum Markov semigroups, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10 (2007), 335–363.

    Article  MATH  MathSciNet  Google Scholar 

  • [FOT] M. Fukushima, Y. Oshima, M. Takeda, “Dirichlet Forms and Symmetric Markov Processes”, de Gruyter Studies in Mathematics, 1994.

    Google Scholar 

  • [GL1] S. Goldstein, J.M. Lindsay, Beurling-Deny conditions for KMS-symmetric dynamical semigroups, C. R. Acad. Sci. Paris, Ser. I 317 (1993), 1053–1057.

    MATH  MathSciNet  Google Scholar 

  • [GL2] S. Goldstein, J.M. Lindsay, KMS-symmetric Markov semigroups, Math. Z. 219 (1995), 591–608.

    Article  MATH  MathSciNet  Google Scholar 

  • [GL3] S. Goldstein, J.M. Lindsay, Markov semigroup KMS-symmetric for a weight, Math. Ann. 313 (1999), 39–67.

    Article  MATH  MathSciNet  Google Scholar 

  • [GKS] V. Gorini, A. Kossakowski, E.C.G. Sudarshan, Completely positive dynamical semigroups of N-level systems, J. Math. Phys. 17 (1976), 821–825.

    Article  MathSciNet  Google Scholar 

  • [GS] D. Goswami, K.B. Sinha, “Quantum stochastic processes and noncommutative geometry”, Cambridge Tracts in Mathematics 169, 290 pages, Cambridge University press, 2007.

    Google Scholar 

  • [G1] L. Gross, Existence and uniqueness of physical ground states, J. Funct. Anal. 10 (1972), 59–109.

    Article  Google Scholar 

  • [G2] L. Gross, Hypercontractivity and logarithmic Sobolev inequalities for the Clifford-Dirichlet form, Duke Math. J. 42 (1975), 383–396.

    Article  MATH  MathSciNet  Google Scholar 

  • [GIS] D. Guido, T. Isola, S. Scarlatti, Non-symmetric Dirichlet forms on semifinite von Neumann algebras, J. Funct. Anal. 135 (1996), 50–75.

    Article  MATH  MathSciNet  Google Scholar 

  • [H1] U. Haagerup, Standard forms of von Neumann algebras, Math. Scand. 37 (1975), 271–283.

    MathSciNet  Google Scholar 

  • [H2] U. Haagerup, Lp-spaces associated with an arbitrary von Neumann algebra, Algebre ďopérateurs et leur application en Physique Mathematique. Colloques Internationux du CNRS 274, Ed. du CNRS, Paris 1979, 175–184.

    Google Scholar 

  • [H3] U. Haagerup, All nuclear C *-algebras are amenable, Invent. Math. 74 (1983), no. 2, 305–319.

    Article  MATH  MathSciNet  Google Scholar 

  • [HHW] R. Haag, N.M. Hugenoltz, M. Winnink, On the equilibrium states in quantum statistical mechanics, Comm. Math. Phys. 5 (1967), 215–236.

    Article  MATH  MathSciNet  Google Scholar 

  • [Io] B. Iochum, “Cones autopolaires et algebres de Jordan”, Lecture Notes in Mathematics, vol. 1049, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  • [Ki] J. Kigami, “Analysis on Fractals,”, Cambridge Tracts in Mathematics vol. 143, Cabridge: Cambridge University Press, 2001.

    Google Scholar 

  • [KP] C.K. Ko, Y.M. Park, Construction of a family of quantum Ornstein-Uhlenbeck semigroups, J. Math. Phys. 45, (2004), 609–627.

    Article  MATH  MathSciNet  Google Scholar 

  • [Ko] H. Kosaki, Application of the complex interpolation method to a von Neumann algebra: non-commutative Lp-spaces, J. Funct. Anal. 56 (1984), 29–78.

    Article  MATH  MathSciNet  Google Scholar 

  • [KFGV] A. Kossakowski, A. Frigerio, V. Gorini, M. Verri, Quantum detailed balance and the KMS condition, Comm. Math. Phys. 57 (1977), 97–110.

    Article  MATH  MathSciNet  Google Scholar 

  • [Kub] R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Japan 12 (1957), 570–586.

    Article  MathSciNet  Google Scholar 

  • [LM] H.B. Lawson JR., M.-L. Michelson, “Spin Geometry”, Princeton University Press, Princeton New Jersey, 1989.

    MATH  Google Scholar 

  • [LJ] Y, Le Jan, Mesures associés a une forme de Dirichlet. Applications., Bull. Soc. Math. France 106 (1978), 61–112.

    Google Scholar 

  • [Lig] T.M. Liggett, “Interacting Particle Systems”, Grund. math. Wissen., 276. Springer-Verlag, Berlin, 1985.

    Google Scholar 

  • [Lin] G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48 (1976), 119–130.

    Article  MATH  MathSciNet  Google Scholar 

  • [LR] E.H. Lieb, D.W. Robinson, The finite group velocity of quantum spin systems, Comm. Math. Phys. 28 (1972), 251–257.

    Article  MathSciNet  Google Scholar 

  • [MZ1] A. Majewski, B. Zegarlinski, Quantum stochastic dynamics. I. Spin systems on a lattice, Math. Phys. Electron. J. 1 (1995), Paper 2, 1–37.

    MathSciNet  Google Scholar 

  • [MZ2] A. Majewski, B. Zegarlinski, On Quantum stochastic dynamics on noncommutative L p -spaces, Lett. Math. Phys. 36 (1996), 337–349.

    Article  MATH  MathSciNet  Google Scholar 

  • [MOZ] A. Majewski, R. Olkiewicz, B. Zegarlinski, Dissipative dynamics for quantum spin systems on a lattice, J. Phys. A 31 (1998), no. 8, 2045–2056.

    Article  MATH  MathSciNet  Google Scholar 

  • [Mat1] T. Matsui, Markov semigroups on UHF algebras, Rev. Math. Phys. 5 (1993), no. 3, 587–600.

    Article  MATH  MathSciNet  Google Scholar 

  • [Mat2] T. Matsui, Markov semigroups which describe the time evolution of some higher spin quantum models, J. Funct. Anal. 116 (1993), no. 1, 179–198.

    Article  MATH  MathSciNet  Google Scholar 

  • [Mat3] T. Matsui, Quantum statistical mechanics and Feller semigroups, Quantum probability communications QP-PQ X 31 (1998), 101–123.

    MathSciNet  Google Scholar 

  • [Mok] G. Mokobodzki, Fermabilité des formes de Dirichlet et inégalité de type Poincaré, Pot. Anal. 4 (1995), 409–413.

    Article  MATH  MathSciNet  Google Scholar 

  • [MS] D.C. Martin, J. Schwinger, Theory of many-particle systems. I., J. Phys. Rev. 115 (1959), 1342–1373.

    Article  MATH  MathSciNet  Google Scholar 

  • [MvN] F.J. Murray, J. von Neumann, On rings of operators, Ann. Math. 37 (1936), 116–229. On rings of operators II, Trans. Amer. Math. Soc. 41 (1937), 208–248. On rings of operators IV, Ann. Math. 44 (1943), 716–808.

    Article  Google Scholar 

  • [Ne] E. Nelson, Notes on non-commutative integration, Ann. Math. 15 (1974), 103–116.

    MATH  Google Scholar 

  • [OP] M. Ohya, D. Petz, “Quantum Entropy and its use”, viii+335 pages, Springer-Verlag, Berlin, Heidelberg, New York, 1993.

    MATH  Google Scholar 

  • [P1] Y.M. Park, Construction of Dirichlet forms on standard forms of von Neumann algebras. Infinite Dim. Anal., Quantum. Prob. and Related Topics 3 (2000), 1–14.

    Article  MATH  Google Scholar 

  • [P2] Y.M. Park, Ergodic property of Markovian semigroups on standard forms of von Neumann algebras J. Math. Phys. 46 (2005), 113507.

    Article  MathSciNet  Google Scholar 

  • [P3] Y.M. Park, Remarks on the structure of Dirichlet forms on standard forms of von Neumann algebras Infin. Dimens. Anal. Quantum Probab. Relat. 8 no. 2 (2005), 179–197.

    Article  MATH  MathSciNet  Google Scholar 

  • [Pa4r] K.R. Parthasarathy, “An introduction to quantum stochastic calculus”, Monographs in Mathematics, 85. Birkhuser Verlag, Basel, 1992.

    Google Scholar 

  • [Ped] G. Pedersen, “C*-algebras and their authomorphisms groups”, London Mathematical Society Monographs, 14. Academic Press, Inc., London-New York, 1979.

    Google Scholar 

  • [Pen] R.C. Penney, Self-dual cones in Hilbert space., J. Funct. Anal. 21 (1976), 305–315.

    Article  MATH  MathSciNet  Google Scholar 

  • [Pet] P. Petersen, “Riemannian Geometry”, Graduate Text in Mathematics 171, xii +432 pages, Springer-Verlag, Berlin, Heidelberg, New York, 1998.

    Google Scholar 

  • [Petz] D. Petz, A dual in von Neumann algebra Quart. J. Math. Oxford 35 (1984), 475–483.

    Article  MATH  MathSciNet  Google Scholar 

  • [RS] M. Reed, B. Simon, “Methods of modern mathematical physics. II. Fourier Analysis, Self-adjointness”, Academic Press, xi+361 pages, New York-London, 1975.

    Google Scholar 

  • [Ric] C.E. Rickart, “General Theory of Banach Algebras”, D. van Nostrand Company Inc. Princeton New Jersey, 1960.

    MATH  Google Scholar 

  • [S1] J.-L. Sauvageot, Sur le produit tensoriel relatif ďespaces de Hilbert, J. Operator Theory. 9 (1983), 237–252.

    MATH  MathSciNet  Google Scholar 

  • [S2] J.-L. Sauvageot, Tangent bimodule and locality for dissipative operators on C*-algebras, Quantum Probability and Applications IV, Lecture Notes in Math. 1396 (1989), 322–338.

    Article  MathSciNet  Google Scholar 

  • [S3] J.-L. Sauvageot, Quantum differential forms, differential calculus and semigroups, Quantum Probability and Applications V, Lecture Notes in Math. 1442 (1990), 334–346.

    Article  MathSciNet  Google Scholar 

  • [S4] J.-L. Sauvageot, Semi-groupe de la chaleur transverse sur la C*-algèbre ďun feulleitage riemannien, C.R. Acad. Sci. Paris Sér. I Math. 310 (1990), 531–536.

    MATH  MathSciNet  Google Scholar 

  • [S5] J.-L. Sauvageot, Le probleme de Dirichlet dans les C*-algèbres, J. Funct. Anal. 101 (1991), 50–73.

    Article  MATH  MathSciNet  Google Scholar 

  • [S6] J.-L. Sauvageot, From classical geometry to quantum stochastic flows: an example, Quantum probability and related topics, QP-PQ, VII, 299–315, World Sci. Publ., River Edge, NJ, 1992.

    Google Scholar 

  • [S7] J.-L. Sauvageot, Semi-groupe de la chaleur transverse sur la C*-algèbre ďun feulleitage riemannien, J. Funct. Anal. 142 (1996), 511–538.

    Article  MATH  MathSciNet  Google Scholar 

  • [S8] J.-L. Sauvageot, Strong Feller semigroups on C*-algebras, J. Op. Th. 42 (1999), 83–102.

    MATH  MathSciNet  Google Scholar 

  • [Se] E.A. Segal, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401–457.

    Article  MathSciNet  Google Scholar 

  • [SU] R. Schrader, D. A. Uhlenbrock, Markov structures on Clifford algebras, Jour. Funct. Anal. 18 (1975), 369–413.

    Article  MATH  MathSciNet  Google Scholar 

  • [Sew] G. Sewell, “Quantum Mechanics and its Emergent Macrophysics”, Princeton University Press, 292 pages, Princeton and Oxford, 2002.

    Google Scholar 

  • [Sti] W.F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1975), 211–216.

    Article  MathSciNet  Google Scholar 

  • [T1] M. Takesaki, “Structure of factors and automorphism groups”, CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, R.I. 51 (1983).

    Google Scholar 

  • [T2] M. Takesaki, “Theory of Operator Algebras I”, Encyclopedia of Mathematical Physics, 415 pages, Springer-Verlag, Berlin, Heidelberg, New York, 2000.

    Google Scholar 

  • [Te] M. Terp, Interpolation spaces between a von Neumann algebra and its predual, J. Operator Theory 8 (1982), 327–360.

    MATH  MathSciNet  Google Scholar 

  • [V] A. Van Daele, A new approach to the Tomita-Takesaki theory of generalized Hilbert algebras, J. Funct. Anal. 15 (1974), 379–393.

    Google Scholar 

  • [Voi1] D.V. Voiculescu, Lectures on Free Probability theory., Lecture Notes in Math. 1738 (2000), 279–349.

    MathSciNet  Google Scholar 

  • [Voi2] D.V. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory, Invent. Math. 132 (1998), 189–227.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cipriani, F. (2008). Dirichlet Forms on Noncommutative Spaces. In: Franz, U., Schürmann, M. (eds) Quantum Potential Theory. Lecture Notes in Mathematics, vol 1954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69365-9_5

Download citation

Publish with us

Policies and ethics