## 6 Traffic Plans and Distances between Measures

In this chapter, we consider the irrigation and who goes where problems for the cost functional $E^{\alpha}$ introduced at the end of Chapter 3. We prove in Section 6.1 that for $\alpha>1-\frac{1}{N}$ where $N$ is the dimension of the ambient space, the optimal cost to transport $\mu^{+}$to $\mu^{-}$is finite. More precisely, if $\mu^{+}$and $\mu^{-}$are two nonnegative measures on a domain $X$ with the same total mass $M$ and $\alpha>1-1 / N$, set

$$
\begin{equation*}
E^{\alpha}\left(\mu^{+}, \mu^{-}\right):=\min _{\chi \in \operatorname{TP}\left(\mu^{+}, \mu^{-}\right)} E^{\alpha}(\chi) \tag{6.1}
\end{equation*}
$$

Then $E^{\alpha}\left(\mu^{+}, \mu^{-}\right)$can be bounded by

$$
E^{\alpha}\left(\mu^{+}, \mu^{-}\right) \leq C_{\alpha, N} M^{\alpha} \operatorname{diam}(X)
$$

The proof of this property, first proven in [94], follows from the explicit construction of a dyadic tree connecting any probability measure on $X$ to a Dirac mass. If $\alpha$ is under this threshold it may happen that the infimum is in fact $+\infty$.

Section 6.3 compares $E^{\alpha}$ with the so called Wasserstein distance associated with the Monge-Kantorovich model. The sharp quantitative estimate that is obtained takes the form

$$
W_{1}\left(\mu^{+}, \mu^{-}\right) \leq E^{\alpha}\left(\mu^{+}, \mu^{-}\right) \leq c W_{1}\left(\mu^{+}, \mu^{-}\right)^{\beta}
$$

for some $\beta>0$. The question of the existence of such an equality was raised by Cédric Villani and its proof given in [63]. This inequality gives a quantitative proof of the fact that $E^{\alpha}$ and $W_{1}$ induce the same topology on the set $\mathcal{P}(X)$ of probability measures on $X$. This topology is the weak convergence topology.

Because the topology induced by $E^{\alpha}$ induces the weak topology for $\alpha>1-\frac{1}{N}$, we have $E^{\alpha}\left(\nu_{n}, \nu\right) \rightarrow 0$ when $\nu_{n}$ is a sequence of probability measures on the compact $X \subset \mathbb{R}^{N}$ weakly converging to $\nu$. As a consequence the limit of a converging sequence of optimal traffic plans for $E^{\alpha}$ is still optimal. This settles the stability of optima with respect to $\mu^{+}$and $\mu^{-}$.

Lemma 6.1. Let us denote $W_{1}$ the Wasserstein distance of order 1 and let $\mu^{+}$and $\mu^{-}$be two probability measures. We have $W_{1}\left(\mu^{+}, \mu^{-}\right) \leq E^{\alpha}\left(\mu^{+}, \mu^{-}\right)$ for all $\alpha \in[0,1]$.

Proof. Indeed,

$$
E^{\alpha}\left(\mu^{+}, \mu^{-}\right):=\inf _{\chi \in \operatorname{TP}\left(\mu^{+}, \mu^{-}\right)} \int_{\Omega} \int_{t}|\chi(\omega, t)|_{\chi}^{\alpha-1}|\dot{\chi}(\omega, t)| d \omega d t
$$

where the infimum is taken over all parameterizations transporting $\mu^{+}$to $\mu^{-}$. In particular,

$$
E^{1}\left(\mu^{+}, \mu^{-}\right):=\inf _{\chi \in \operatorname{TP}\left(\mu^{+}, \mu^{-}\right)} \int_{\Omega} \int_{t}|\dot{\chi}(\omega, t)| d \omega d t
$$

is precisely $W_{1}\left(\mu^{+}, \mu^{-}\right)$. Since $|\chi(\omega, t)|_{\chi}^{\alpha-1} \geq 1$, we obtain

$$
W_{1}\left(\mu^{+}, \mu^{-}\right) \leq E^{\alpha}\left(\mu^{+}, \mu^{-}\right)
$$

Proposition 6.2. $E^{\alpha}$ is a pseudo-distance on the space of probability measures on $X$.

Proof. Because of Lemma 6.1, we have $E^{\alpha}\left(\nu_{1}, \nu_{2}\right)=0$ if and only if $\nu_{1}=\nu_{2}$. Next, the triangular inequality is easily proved as follows: let $\boldsymbol{P}_{1}$ and $\boldsymbol{P}_{2}$ be optimal traffic plans respectively from $\nu_{1}$ to $\nu_{2}$ and from $\nu_{2}$ to $\nu_{3}$. By definition of $E^{\alpha}$, we have

$$
E^{\alpha}\left(\nu_{1}, \nu_{3}\right) \leq E^{\alpha}(\boldsymbol{P})
$$

where $\boldsymbol{P}$ is the concatenation of $\boldsymbol{P}_{1}$ and $\boldsymbol{P}_{2}$ defined in Lemma 5.5. Thus

$$
E^{\alpha}\left(\nu_{1}, \nu_{3}\right) \leq E^{\alpha}\left(\boldsymbol{P}_{1}\right)+E^{\alpha}\left(\boldsymbol{P}_{2}\right)=E^{\alpha}\left(\nu_{1}, \nu_{2}\right)+E^{\alpha}\left(\nu_{2}, \nu_{3}\right)
$$

### 6.1 All Measures can be Irrigated for $\alpha>1-\frac{1}{N}$

Let $C$ be a cube with edge length $L$ and center $c$. Let $\nu$ be a probability measure on $X \subset C$. One can approximate $\nu$ by atomic measures as follows. For each $i$, let

$$
C_{j}^{i}: j \in \mathbb{Z}^{N} \cap\left[0,2^{i}\right)^{N}
$$

be a partition of $C$ into cubes of edge length $\frac{L}{2^{i}}$. For $j \in \mathbb{Z}^{N} \cap\left[0,2^{i}\right)^{N}$ call $x_{j}^{i}$ the center of $C_{j}^{i}$ and let $m_{j}^{i}=\nu\left(C_{j}^{i}\right)$ be the $\nu$-mass of the cube $C_{j}^{i}$.

Definition 6.3. With the above notation we call dyadic approximation of a measure $\nu$ supported by a cube the atomic measure

$$
\mu_{i}=\mu_{i}(\nu)=\sum_{j \in \mathbb{Z}^{N} \cap\left[0,2^{i}\right)^{N}} m_{j}^{i} \delta_{x_{j}^{i}}
$$

The following lemma is very classical.
Lemma 6.4. The atomic measures $\mu_{i}$ weakly converge to $\nu$.
Lemma 6.5. Let $\nu$ be a probability measure on a cube $C$ of edge length $L$. Then for $n>m$,

$$
E^{\alpha}\left(\mu_{m}, \mu_{n}\right) \leq \mathcal{E}^{\alpha}\left(\boldsymbol{P}_{m, n}\right) \leq \frac{\sqrt{N} L}{2} \frac{2^{m(N(1-\alpha)-1)}}{2^{1-N(1-\alpha)}-1}
$$

Proof. This a direct application of Corollary 5.9. The number $k_{i}$ of collectors at scale $2^{-i}$ is equal to $2^{N i}$ and the length of the segments connecting them to the collectors at scale $2^{-i+1}$ is equal to $l_{i}=L \sqrt{N} 2^{-i-1}$. Thus (see Figure 6.1),

$$
\begin{aligned}
\mathcal{E}^{\alpha}\left(\boldsymbol{P}_{m, n}\right) & \leq \sum_{i=m+1}^{n} k_{i}^{1-\alpha} l_{i} \\
& \leq \sum_{i=m+1}^{\infty} \frac{L \sqrt{N}}{2} 2^{i(N(1-\alpha)-1)} \\
& =\frac{L \sqrt{N}}{2} \frac{2^{m(N(1-\alpha)-1)}}{2^{1-N(1-\alpha)}-1}
\end{aligned}
$$



Fig. 6.1. To transport $\mu_{i}$ to $\mu_{i+1}$, all the mass at the center of a cube with edge length $\frac{L}{2^{i-1}}$ is transported to the centers of its sub-cubes with edge length $\frac{L}{2^{i}}$.

Proposition 6.6. Let $\alpha \in\left(1-\frac{1}{N}, 1\right]$. Let $\nu$ be a probability measure supported in a cube centered at $c$ with edge length $L$. Then

$$
E^{\alpha}\left(\mu_{n}(\nu), \nu\right) \leq \frac{2^{n(N(1-\alpha)-1)}}{2^{1-N(1-\alpha)}-1} \frac{\sqrt{N} L}{2}
$$

In particular, $E^{\alpha}\left(\mu_{n}(\nu), \nu\right) \rightarrow 0$ uniformly for all $\nu$ when $n \rightarrow \infty$
Proof. By construction, the traffic plan $\boldsymbol{P}_{m, n}$ converges to a traffic plan $\boldsymbol{P}^{m}$ irrigating the measure $\nu$ from $\mu_{m}$. (All fibers of $\boldsymbol{P}_{m, n}$ converge uniformly to fibers whose length is less than $\sqrt{N} L$.) Thus by Lemma 6.5 and Proposition 3.40,

$$
\begin{equation*}
E^{\alpha}\left(\mu_{m}, \nu\right) \leq \lim \inf _{n} \mathcal{E}^{\alpha}\left(\boldsymbol{P}_{m, n}\right) \leq \frac{2^{n(N(1-\alpha)-1)}}{2^{1-N(1-\alpha)}-1} \frac{\sqrt{N} L}{2} \tag{6.2}
\end{equation*}
$$

Since $\mu_{0}=\delta_{c}$, we obtain directly from the previous proposition applied with $n=0$ the following uniform bound on the energy required to irrigate a measure. Notice that a set with diameter $L$ is contained in a cube with edge $2 L$.

Corollary 6.7. Let $\alpha \in\left(1-\frac{1}{N}, 1\right]$ and $\nu$ be a probability measure on a set $X$ with diameter $L$. There exists $\boldsymbol{P} \in \operatorname{TP}\left(\delta_{c}, \nu\right)$ such that

$$
E^{\alpha}(\boldsymbol{P}) \leq \frac{1}{2^{1-N(1-\alpha)}-1} \sqrt{N} L
$$

Remark 6.8. The work of Devillanova and Solimini [78] refines widely the result of Corollary 6.7 by giving precise conditions on $\nu$ to be $\alpha$-irrigable (see chapter 10).

Finally, combining a transport from $\mu^{+}$to $\delta_{c}$ with a transport from $\delta_{c}$ to $\mu^{-}$, it is possible to obtain any transference plan, so that the who goes where problem has a solution at finite cost in the case $\alpha>1-\frac{1}{N}$.
Corollary 6.9. Let $\alpha \in\left(1-\frac{1}{N}, 1\right]$. Let $\mu^{+}$and $\mu^{-}$be probability measures on $X$, and $\pi$ a prescribed transference plan with marginals $\mu^{+}$and $\mu^{-}$. There exists $\boldsymbol{P} \in \mathrm{TP}(\pi)$ such that

$$
E^{\alpha}(\boldsymbol{P}) \leq \frac{1}{2^{1-N(1-\alpha)}-1} 2 \sqrt{N} L
$$

Proof. Indeed, we can find a traffic plan $\boldsymbol{P}_{1}$ transporting $\mu^{+}$to $\delta_{c}$ and a traffic plan $\boldsymbol{P}_{2}$ transporting $\delta_{c}$ to $\mu^{-}$such that

$$
E^{\alpha}\left(\boldsymbol{P}_{1}\right)+E^{\alpha}\left(\boldsymbol{P}_{2}\right) \leq \frac{2}{2^{1-N(1-\alpha)}-1} \sqrt{N} L
$$

By concatenating $\boldsymbol{P}_{1}$ and $\boldsymbol{P}_{2}$ one obtains a traffic plan $\boldsymbol{P}$ with a transference plan $\pi_{\tilde{P}}$ that can be any transference plan with marginal laws $\mu^{+}$and $\mu^{-}$. Since $|x|_{\tilde{P}} \leq|x|_{P_{1}}+|x|_{P_{2}}$, we have

$$
E^{\alpha}(\tilde{\boldsymbol{P}}) \leq E^{\alpha}\left(\boldsymbol{P}_{1}\right)+E^{\alpha}\left(\boldsymbol{P}_{2}\right) \leq \frac{2}{2^{1-N(1-\alpha)}-1} \sqrt{N} L
$$

Corollary 6.10. If the transported measure has mass $M$, the uniform bounds obtained in Corollaries 6.7 and 6.9 scale as $M^{\alpha}$ and we have

$$
\begin{equation*}
E^{\alpha}\left(\mu^{+}, \mu^{-}\right) \leq C_{\alpha, N} M^{\alpha} \operatorname{diam}(X) \tag{6.3}
\end{equation*}
$$

### 6.2 Stability with Respect to $\boldsymbol{\mu}^{+}$and $\boldsymbol{\mu}^{-}$

In this section we partially answer the stability question, i.e. "is the limit of a sequence of optimal traffic plans optimal?". The property of the $E^{\alpha}$ pseudodistance in the case $\alpha \in\left(1-\frac{1}{N}, 1\right]$ permits to answer yes (Proposition 6.12). However, in the case $\alpha \leq 1-\frac{1}{N}$ this stability is conjectural.

Lemma 6.11. Let $\alpha \in\left(1-\frac{1}{N}, 1\right]$. If $\nu_{n}$ is a sequence of probability measures on the compact $X \subset \mathbb{R}^{N}$ weakly converging to $\nu$, then $E^{\alpha}\left(\nu_{n}, \nu\right) \rightarrow 0$ when $n \rightarrow \infty$.

Proof. Let us adopt the notation of Definition 6.3 and Proposition 6.6 and let us assume that $X$ is contained in a cube with edge length $L$ subdivided into dyadic cubes $C_{j}^{i}$ with edge length $2^{-i} L$. The weak convergence of $\nu_{n}$ to $\nu$ applied to the characteristic functions of the cubes $C_{j}^{i}$ implies that $m_{j}^{i}\left(\nu_{n}\right)$ converges to $m_{j}^{i}(\nu)$ when $n \rightarrow \infty$, where $m_{j}^{i}(\nu)$ denotes the mass of $\nu$ contained in the cube $C_{j}^{i}$. Thus for any $\varepsilon>0$ and for $n$ large enough,

$$
\sum_{j}\left|m_{j}^{i}\left(\nu_{n}\right)-m_{j}^{i}(\nu)\right|<\varepsilon
$$

By Proposition 6.6, $E^{\alpha}\left(\mu_{i}(\nu), \nu\right) \leq \varepsilon$ and $E^{\alpha}\left(\mu_{i}\left(\nu_{n}\right), \nu_{n}\right) \leq \varepsilon$ for $i$ large enough, independently of $n$. We are left to evaluate $E^{\alpha}\left(\mu_{i}\left(\nu_{n}\right), \mu_{i}(\nu)\right)$. Since these measures are concentrated at the centers of cubes $C_{j}^{i}$, this amounts to transport in the whole cube a mass less than $\sum_{j}\left|m_{j}^{i}\left(\nu_{n}\right)-m_{j}^{i}(\nu)\right|<\varepsilon$. By (6.3), we deduce that $E^{\alpha}\left(\mu_{i}(\nu), \mu_{i}\left(\nu_{n}\right)\right) \leq C \varepsilon^{\alpha}$ for a constant $C$ depending only on $X$ and $\alpha$. The triangular inequality for $E^{\alpha}$ yields

$$
E^{\alpha}\left(\nu, \nu_{n}\right) \leq E^{\alpha}\left(\nu, \mu_{i}(\nu)\right)+E^{\alpha}\left(\mu_{i}(\nu), \mu_{i}\left(\nu_{n}\right)\right)+E^{\alpha}\left(\mu_{i}\left(\nu_{n}\right), \nu_{n}\right) \leq 2 \varepsilon+C \varepsilon^{\alpha}
$$

Proposition 6.12. Let $\alpha \in\left(1-\frac{1}{N}, 1\right]$. If $\boldsymbol{P}_{n}$ is a sequence of optimal traffic plans for the irrigation problem and $\boldsymbol{P}_{n}$ is converging to $\boldsymbol{P}$, then $\boldsymbol{P}$ is optimal.

Proof. Since $E^{\alpha}\left(\boldsymbol{P}_{n}\right)=\mathcal{E}^{\alpha}\left(\boldsymbol{P}_{n}\right)$ and $E^{\alpha}(\boldsymbol{P}) \leq \mathcal{E}^{\alpha}(\boldsymbol{P})$, using the lower semicontinuity of $\mathcal{E}^{\alpha}$, we have

$$
\begin{aligned}
E^{\alpha}(\boldsymbol{P}) & \leq \liminf _{n} E^{\alpha}\left(\boldsymbol{P}_{n}\right)=\underset{n}{\liminf } E^{\alpha}\left(\mu_{n}^{+}, \mu_{n}^{-}\right) \\
& \leq \liminf _{n}\left(E^{\alpha}\left(\mu_{n}^{+}, \mu^{+}\right)+E^{\alpha}\left(\mu^{+}, \mu^{-}\right)+E^{\alpha}\left(\mu^{-}, \mu_{n}^{-}\right)\right) \\
& \leq E^{\alpha}\left(\mu^{+}, \mu^{-}\right) \text {since } \mu_{n}^{+} \rightarrow \mu^{+} \text {and } \mu_{n}^{+} \rightarrow \mu^{+} .
\end{aligned}
$$

Thus, $\boldsymbol{P}$ is optimal.
Remark 6.13. In the case $\alpha<1-\frac{1}{N}$, the stability of optimal traffic plans remains an open question (see Chapter 15). Of course, only the case when $\boldsymbol{P}_{n}$ is a sequence of optimal traffic plans with $E^{\alpha}\left(\boldsymbol{P}_{n}\right)<\infty$ is of interest. The stability in the case of the who goes where problem is also an open problem.

### 6.3 Comparison of Distances between Measures

Proposition 6.12 implies that the topology induced by the distance $E^{\alpha}$ on $\mathcal{P}(X)$ is exactly the weak-* topology.

Proposition 6.14. If $\alpha \in\left(1-\frac{1}{N}, 1\right], E^{\alpha}$ is a metric of the weak-* topology of probability measures $\mathcal{P}(X)$.

Proof. Indeed, Proposition 6.12 asserts that if $\nu_{n}$ weakly converges to $\nu$ then $E^{\alpha}\left(\nu_{n}, \nu\right) \rightarrow 0$. Conversely, if $E^{\alpha}\left(\nu_{n}, \nu\right) \rightarrow 0$, then Lemma 6.1 asserts that $W_{1}\left(\nu_{n}, \nu\right) \rightarrow 0$, so that $\nu_{n}$ weakly converges to $\nu$.

Remark 6.15. If $\alpha \leq 1-\frac{1}{N}$, then it is no longer true that if $\nu_{n}$ weakly converges to $\nu$ then $E^{\alpha}\left(\nu_{n}, \nu\right) \rightarrow 0$. Indeed, let us consider $\nu_{n}:=\frac{1}{v_{n}} \mathbb{1}_{B\left(0, \frac{1}{n}\right)}$, where $v_{n}$ is the volume of a ball with radius $\frac{1}{n}$. In that case $\nu_{n} \rightharpoonup \delta_{0}$ but, by Theorem $10.26, E^{\alpha}\left(\nu_{n}, \delta_{0}\right)=\infty$ if $\alpha \leq 1-\frac{1^{n}}{N}$.

The following proposition gives a quantitative version of Proposition 6.14. To fix ideas, we consider two probability measures $\mu^{+}$and $\mu^{-}$with support in an $N$-dimensional cube $C$ with edge 1 , say $C=[0,1]^{N}$. It is not difficult to scale the result to any bounded domain in $\mathbb{R}^{N}$.

Proposition 6.16. Let $\alpha \in\left(1-\frac{1}{N}, 1\right]$, then

$$
E^{\alpha}\left(\mu^{+}, \mu^{-}\right) \leq c W_{1}\left(\mu^{+}, \mu^{-}\right)^{N(\alpha-(1-1 / N))}
$$

where $c$ denotes a suitable constant depending only on $N$ and $\alpha$.
Proof. Let us denote $X^{+}$and $X^{-}$the two projections from $C \times C$ onto $C$, so that $X^{+}(x, y)=x, X^{-}(x, y)=y$.

Let $\pi_{0}$ be an optimal transport plan between $\mu^{+}$and $\mu^{-}$, i.e. a probability measure on $C \times C$ such that $X_{\sharp}^{ \pm} \pi_{0}=\mu^{ \pm}$and with cost $w:=W_{1}\left(\mu^{+}, \mu^{-}\right)$. We denote by

$$
\Lambda_{i}=\left\{(x, y) \in C \times C:\left(2^{i}-1\right) \frac{w}{2} \leq|x-y|<\left(2^{i+1}-1\right) \frac{w}{2}\right\}
$$

We can limit ourselves to consider those indices $i$ which are not too large, i.e. up to $\left(2^{i}-1\right) \frac{w}{2} \leq \sqrt{N}$ (where $\sqrt{N}$ is the diameter of $C$ ). Let $I$ be the maximal index $i$ so that this inequality is satisfied. The set $\Lambda=\cup_{i=0}^{I} \Lambda_{i}$ is a disjoint union and

$$
\begin{equation*}
\sum_{i=0}^{I}\left(2^{i}-1\right) \frac{w}{2} \pi_{0}\left(\Lambda_{i}\right) \leq W_{1}\left(\mu^{+}, \mu^{-}\right)=w \leq \sum_{i=0}^{I}\left(2^{i+1}-1\right) \frac{w}{2} \pi_{0}\left(\Lambda_{i}\right) \tag{6.4}
\end{equation*}
$$

We call cube with edge $e$ any translate of $\left[0, e\left[^{N}\right.\right.$. For each $i=0, \cdots, I$, using a regular grid in $\mathbb{R}^{N}$, one can cover $C$ with disjoint cubes $C_{i, k}$ with edge $\left(2^{i+1}-1\right) w$. The number of the cubes in the $i-$ th covering may be easily estimated by

$$
\begin{equation*}
\left(\frac{1}{\left(2^{i+1}-1\right) w}+1\right)^{N} \leq\left(\frac{c}{\left(2^{i+1}-1\right) w}\right)^{N}=K(i) \tag{6.5}
\end{equation*}
$$

For each index $i, C$ is included in the disjoint union $\subset \cup_{k=1}^{K(i)} C_{i, k}$. Let us set

$$
\Lambda_{i, k}=\left(C_{i, k} \times C\right) \cap \Lambda_{i}, \quad \mu_{i, k}^{+}=X_{\sharp}^{+}\left(\pi_{0} \mathbb{1}_{\Lambda_{i, k}}\right) \quad \text { and } \mu_{i, k}^{-}=X_{\sharp}^{-}\left(\pi_{0} \mathbb{1}_{\Lambda_{i, k}}\right) .
$$

We have just cut $\mu^{+}$and $\mu^{-}$into pieces. Let us call informally $\mu_{i}^{+}$the pieces of $\mu^{+}$for which the Wasserstein distance to the corresponding part $\mu_{i}^{-}$ of $\mu^{-}$is of order $2^{i} \frac{w}{2}$. Then $\mu_{i, k}^{+}$is the part of $\mu_{i}^{+}$whose support is in the cube $C_{i, k}$. What we have now gained is that each $\mu_{i, k}^{+}$has a specified diameter of order $2^{i} w$ and is at a distance to its corresponding $\mu_{i, k}^{-}$which is of the same order $2^{i} w$ (see picture 6.2). Let us be a bit more precise. The support of $\mu_{i, k}^{+}$ is a cube with edge $\left(2^{i}-1\right) w$. By definition of $\Lambda_{i}$, the maximum distance of a point of $\mu_{i, k}^{-}$to a point of $\mu_{i, k}^{+}$is less than $\left(2^{i+1}-1\right) \frac{w}{2}$. Thus the supports of $\mu_{i, k}^{-}$and $\mu_{i, k}^{+}$are both contained in a same cube with edge $6 \cdot 2^{i} w$.


Fig. 6.2. Decomposition of Monge's transportation into the sets $\Lambda_{i, k}$.

By the scaling property of the $E^{\alpha}$ distance (6.3), we deduce that for some constant $c$, depending only on $\alpha$ and $N$, holds:

$$
E^{\alpha}\left(\mu_{i, k}^{+}, \mu_{i, k}^{-}\right) \leq c 2^{i} w \pi_{0}\left(\Lambda_{i, k}\right)^{\alpha} .
$$

From this last relation, the sub-additivity of $E^{\alpha}$, Hölder inequality, (6.4) and the bound on $K(i)$ given in (6.5), one obtains in turn

$$
\begin{aligned}
E^{\alpha}\left(\mu^{+}, \mu^{-}\right) & \leq \sum_{i, k} E^{\alpha}\left(\mu_{i, k}^{+}, \mu_{i, k}^{-}\right) \\
& \leq \sum_{i, k} c 2^{i} w \pi_{0}\left(\Lambda_{i, k}\right)^{\alpha}=c \sum_{i, k}\left(2^{i} w \pi_{0}\left(\Lambda_{i, k}\right)\right)^{\alpha}\left(2^{i} w\right)^{1-\alpha} \\
& \leq c\left(\sum_{i, k}\left(2^{i} w \pi_{0}\left(\Lambda_{i, k}\right)\right)\right)^{\alpha}\left(\sum_{i, k} 2^{i} w\right)^{1-\alpha} \\
& \leq c\left(\sum_{i}\left(2^{i} w \pi_{0}\left(\Lambda_{i}\right)\right)\right)^{\alpha}\left(\sum_{i=0}^{I} K(i) 2^{i} w\right)^{1-\alpha} \\
& \leq c w^{\alpha}\left(\sum_{i=0}^{I}\left(\frac{c}{\left(2^{i+1}-1\right) w}\right)^{N} 2^{i} w\right)^{1-\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& \leq c w^{\alpha+(1-N)(1-\alpha)}\left(\sum_{i=0}^{I} 2^{i(1-N)}\right)^{1-\alpha} \\
& \leq c w^{\alpha N-(N-1)}=c W_{1}\left(\mu^{+}, \mu^{-}\right)^{\alpha N-(N-1)}
\end{aligned}
$$

where $c$ denotes various constants depending only on $N$ and $\alpha$ and where the last two inequalities are valid if $N \geq 2$ so that the series $\sum_{i=0}^{\infty} 2^{i(1-N)}$ is convergent.

In the case $N=1$ a different proof is needed. In this case we know how does an optimal transportation for $E^{\alpha}\left(\mu^{+}, \mu^{-}\right)$look like. In the onedimensional setting, we have

$$
E^{\alpha}\left(\mu^{+}, \mu^{-}\right)=\int_{0}^{1}|\theta(x)|^{\alpha} d x
$$

The function $\theta$ plays the role of the multiplicity and it is given by

$$
\theta(x)=\mu([0, x]), \quad \mu:=\mu^{+}-\mu^{-},
$$

as a consequence of its constraint on the derivative. Hence we have

$$
E^{\alpha}\left(\mu^{+}, \mu^{-}\right)=\int_{0}^{1}|\mu([0, x])|^{\alpha} d x \leq\left[\int_{0}^{1}|\mu([0, x])| d x\right]^{\alpha},
$$

where the inequality comes from Jensen's inequality. Then we set

$$
A=\{x \in[0,1]: \mu([0, x])>0\}
$$

and $h(x)=\mathbb{1}_{A}(x)-\mathbb{1}_{[0,1] \backslash A}(x)$ and we have

$$
\begin{aligned}
\int_{0}^{1}|\mu([0, x])| d x & =\int_{0}^{1} \mu([0, x]) h(x) d x=\int_{0}^{1} h(x) d x \int_{0}^{1} \mathbb{1}\{t \leq x\} \mu(d t) \\
& =\int_{0}^{1} \mu(d t) \int_{t}^{1} h(x) d x=\int_{0}^{1} u(t) \mu(d t) \leq W_{1}\left(\mu^{+}, \mu^{-}\right)
\end{aligned}
$$

where $u(t)=\int_{t}^{1} h(x) d x$ is a Lipschitz continuous function whose Lipschitz constant does not exceed 1 as a consequence of $|h(x)| \leq 1$. Thus the last inequality is justified by the duality formula (see [86], Theorem 1.14, page 34):

$$
W_{1}\left(\mu^{+}, \mu^{-}\right)=\sup _{v \in L i p_{1}} \int_{0}^{1} v d\left(\mu^{+}-\mu^{-}\right) .
$$

Hence it follows easily $E^{\alpha}\left(\mu^{+}, \mu^{-}\right) \leq W_{1}\left(\mu^{+}, \mu^{-}\right)^{\alpha}$, which is the thesis for the one dimensional case.

Remark 6.17. The assumption $\alpha>1-1 / N$ cannot be removed since, for $N \geq 2$, if we remove this assumption, the quantity $E^{\alpha}$ could be infinite while $W_{1}$ is always finite. In dimension 1 the only uncovered case is $\alpha=0$. In this case $E^{\alpha}$ is in fact always finite but, for instance if $\mu^{+}=w_{0}$ and $\mu^{-}=(1-\varepsilon) w_{0}+\varepsilon w_{1}$ one has $E^{\alpha}\left(\mu^{+}, \mu^{-}\right)=1$ while $W_{1}\left(\mu^{+}, \mu^{-}\right)=\varepsilon$. As $\varepsilon$ is as small as we want, this excludes any desired inequality.

Remark 6.18. The exponent $N(\alpha-(1-1 / N))$ cannot be improved as can be seen from the following example.

Example 6.19. There exists a sequence $\left(\mu_{n}^{+}, \mu_{n}^{-}\right)$of pairs of probability measures on the cube $C$ such that

$$
E^{\alpha}\left(\mu_{n}^{+}, \mu_{n}^{-}\right)=c n^{-N(\alpha-(1-1 / N))} \text { and } W_{1}\left(\mu_{n}^{+}, \mu_{n}^{-}\right)=c / n
$$

Proof. It is sufficient to divide the cube $C$ into $n^{N}$ small cubes of edge $1 / n$ and to set $\mu_{n}^{+}=\sum_{i=1}^{n^{N}} \frac{1}{n^{N}} \delta_{x_{i}}$ and $\mu_{n}^{-}=\sum_{i=1}^{n^{N}} \frac{1}{n^{N}} \delta_{y_{i}}$, where each $x_{i}$ is a vertex of one of the $n^{\text {N }}$ cubes (let us say the one with minimal sum of the $N$ coordinates) and the corresponding $y_{i}$ is the center of the same cube. In this way $y_{i}$ realizes the minimal distance to $x_{i}$ among the $y_{j}$ 's. Thus the optimal configuration both for $E^{\alpha}$ and $W_{1}$ is given by linking any $x_{i}$ directly to the corresponding $y_{i}$. In this way we have

$$
\begin{aligned}
& E^{\alpha}\left(\mu_{n}^{+}, \mu_{n}^{-}\right)=n^{N}\left(\frac{1}{n^{N}}\right)^{\alpha} \frac{c}{n}=c n^{-N(\alpha-(1-1 / N))} \\
& W_{1}\left(\mu_{n}^{+}, \mu_{n}^{-}\right)=n^{N} \frac{1}{n^{N}} \frac{c}{n}=\frac{c}{n}
\end{aligned}
$$

where $c=\frac{\sqrt{N}}{2}$.
Remark 6.20. One can deduce easily inequalities between $E^{\alpha}$ and $W_{p}$ by using standard inequalities between $W_{1}$ and $W_{p}$, namely $c W_{p}^{p} \leq E^{\alpha} \leq$ $c W_{p}^{N(\alpha-(1-1 / N))}$. The right hand inequality is sharp by using again example 6.19. It is not clear instead whether the left-hand inequality is optimal.

Remark 6.21. Since the $W_{1}$ distance between two probability measures is always finite, Proposition 6.16 gives another proof of the fact that there is a traffic plan at finite cost for $\alpha \in\left(1-\frac{1}{N}, 1\right]$.

