
6 Traffic Plans and Distances
between Measures

In this chapter, we consider the irrigation and who goes where problems for the
cost functional Eα introduced at the end of Chapter 3. We prove in Section 6.1 that
for α > 1 − 1

N
where N is the dimension of the ambient space, the optimal cost

to transport μ+ to μ− is finite. More precisely, if μ+ and μ− are two nonnegative
measures on a domain X with the same total mass M and α > 1 − 1/N , set

Eα(μ+, μ−) := min
χ∈TP(μ+,μ−)

Eα(χ). (6.1)

Then Eα(μ+, μ−) can be bounded by

Eα(μ+, μ−) ≤ Cα,NMαdiam(X).

The proof of this property, first proven in [94], follows from the explicit construction
of a dyadic tree connecting any probability measure on X to a Dirac mass. If α is
under this threshold it may happen that the infimum is in fact +∞.

Section 6.3 compares Eα with the so called Wasserstein distance associated with
the Monge-Kantorovich model. The sharp quantitative estimate that is obtained
takes the form

W1(μ
+, μ−) ≤ Eα(μ+, μ−) ≤ cW1(μ

+, μ−)β

for some β > 0. The question of the existence of such an equality was raised by
Cédric Villani and its proof given in [63]. This inequality gives a quantitative proof
of the fact that Eα and W1 induce the same topology on the set P(X) of probability
measures on X. This topology is the weak convergence topology.

Because the topology induced by Eα induces the weak topology for α > 1− 1
N

,

we have Eα(νn, ν) → 0 when νn is a sequence of probability measures on the

compact X ⊂ RN weakly converging to ν. As a consequence the limit of a converging

sequence of optimal traffic plans for Eα is still optimal. This settles the stability of

optima with respect to μ+ and μ−.

Lemma 6.1. Let us denote W1 the Wasserstein distance of order 1 and let
μ+ and μ− be two probability measures. We have W1(μ+, μ−) ≤ Eα(μ+, μ−)
for all α ∈ [0, 1].

Proof. Indeed,

Eα(μ+, μ−) := inf
χ∈TP(μ+,μ−)

∫
Ω

∫
t

|χ(ω, t)|α−1
χ |χ̇(ω, t)|dωdt,
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56 6 Traffic Plans and Distances between Measures

where the infimum is taken over all parameterizations transporting μ+ to μ−.
In particular,

E1(μ+, μ−) := inf
χ∈TP(μ+,μ−)

∫
Ω

∫
t

|χ̇(ω, t)|dωdt

is precisely W1(μ+, μ−). Since |χ(ω, t)|α−1
χ ≥ 1, we obtain

W1(μ+, μ−) ≤ Eα(μ+, μ−).

Proposition 6.2. Eα is a pseudo-distance on the space of probability mea-
sures on X.

Proof. Because of Lemma 6.1, we have Eα(ν1, ν2) = 0 if and only if ν1 = ν2.
Next, the triangular inequality is easily proved as follows: let P1 and P2

be optimal traffic plans respectively from ν1 to ν2 and from ν2 to ν3. By
definition of Eα, we have

Eα(ν1, ν3) ≤ Eα(P),

where P is the concatenation of P1 and P2 defined in Lemma 5.5. Thus

Eα(ν1, ν3) ≤ Eα(P1) + Eα(P2) = Eα(ν1, ν2) + Eα(ν2, ν3).

6.1 All Measures can be Irrigated for α > 1 − 1
N

Let C be a cube with edge length L and center c. Let ν be a probability
measure on X ⊂ C. One can approximate ν by atomic measures as follows.
For each i, let

Ci
j : j ∈ ZN ∩ [0, 2i)N

be a partition of C into cubes of edge length L
2i . For j ∈ ZN ∩ [0, 2i)N call xi

j

the center of Ci
j and let mi

j = ν(Ci
j) be the ν-mass of the cube Ci

j .

Definition 6.3. With the above notation we call dyadic approximation of a
measure ν supported by a cube the atomic measure

μi = μi(ν) =
∑

j∈ZN∩[0,2i)N

mi
jδxi

j
.

The following lemma is very classical.

Lemma 6.4. The atomic measures μi weakly converge to ν.

Lemma 6.5. Let ν be a probability measure on a cube C of edge length L.
Then for n > m,

Eα(μm, μn) ≤ Eα(Pm,n) ≤
√

NL

2
2m(N(1−α)−1)

21−N(1−α) − 1
.
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Proof. This a direct application of Corollary 5.9. The number ki of collectors
at scale 2−i is equal to 2Ni and the length of the segments connecting them to
the collectors at scale 2−i+1 is equal to li = L

√
N2−i−1. Thus (see Figure 6.1),

Eα(Pm,n) ≤
n∑

i=m+1

k1−α
i li

≤
∞∑

i=m+1

L
√

N

2
2i(N(1−α)−1)

=
L
√

N

2
2m(N(1−α)−1)

21−N(1−α) − 1
.

Fig. 6.1. To transport μi to μi+1, all the mass at the center of a cube with edge
length L

2i−1 is transported to the centers of its sub-cubes with edge length L
2i .

Proposition 6.6. Let α ∈ (1− 1
N , 1]. Let ν be a probability measure supported

in a cube centered at c with edge length L. Then

Eα(μn(ν), ν) ≤ 2n(N(1−α)−1)

21−N(1−α) − 1

√
NL

2
.

In particular, Eα(μn(ν), ν) → 0 uniformly for all ν when n → ∞

Proof. By construction, the traffic plan Pm,n converges to a traffic plan
Pm irrigating the measure ν from μm. (All fibers of Pm,n converge uni-
formly to fibers whose length is less than

√
NL.) Thus by Lemma 6.5 and

Proposition 3.40,

Eα(μm, ν) ≤ lim inf
n

Eα(Pm,n) ≤ 2n(N(1−α)−1)

21−N(1−α) − 1

√
NL

2
. (6.2)
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Since μ0 = δc, we obtain directly from the previous proposition applied
with n = 0 the following uniform bound on the energy required to irrigate
a measure. Notice that a set with diameter L is contained in a cube with
edge 2L.

Corollary 6.7. Let α ∈ (1 − 1
N , 1] and ν be a probability measure on a set

X with diameter L. There exists P ∈ TP(δc, ν) such that

Eα(P) ≤ 1
21−N(1−α) − 1

√
NL.

Remark 6.8. The work of Devillanova and Solimini [78] refines widely the
result of Corollary 6.7 by giving precise conditions on ν to be α−irrigable
(see chapter 10).

Finally, combining a transport from μ+ to δc with a transport from δc

to μ−, it is possible to obtain any transference plan, so that the who goes
where problem has a solution at finite cost in the case α > 1 − 1

N .

Corollary 6.9. Let α ∈ (1 − 1
N , 1]. Let μ+ and μ− be probability measures

on X, and π a prescribed transference plan with marginals μ+ and μ−. There
exists P ∈ TP(π) such that

Eα(P) ≤ 1
21−N(1−α) − 1

2
√

NL.

Proof. Indeed, we can find a traffic plan P1 transporting μ+ to δc and a
traffic plan P2 transporting δc to μ− such that

Eα(P1) + Eα(P2) ≤
2

21−N(1−α) − 1

√
NL.

By concatenating P1 and P2 one obtains a traffic plan P with a transference
plan πP̃ that can be any transference plan with marginal laws μ+ and μ−.
Since |x|P̃ ≤ |x|P1 + |x|P2 , we have

Eα(P̃) ≤ Eα(P1) + Eα(P2) ≤
2

21−N(1−α) − 1

√
NL.

Corollary 6.10. If the transported measure has mass M , the uniform bounds
obtained in Corollaries 6.7 and 6.9 scale as Mα and we have

Eα(μ+, μ−) ≤ Cα,NMαdiam(X) (6.3)

6.2 Stability with Respect to μ+ and μ−

In this section we partially answer the stability question, i.e. “is the limit of a
sequence of optimal traffic plans optimal?”. The property of the Eα pseudo-
distance in the case α∈ (1 − 1

N , 1] permits to answer yes (Proposition 6.12).
However, in the case α ≤ 1 − 1

N this stability is conjectural.
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Lemma 6.11. Let α ∈ (1− 1
N , 1]. If νn is a sequence of probability measures

on the compact X ⊂ RN weakly converging to ν, then Eα(νn, ν) → 0 when
n → ∞.

Proof. Let us adopt the notation of Definition 6.3 and Proposition 6.6 and
let us assume that X is contained in a cube with edge length L subdivided
into dyadic cubes Ci

j with edge length 2−iL. The weak convergence of νn

to ν applied to the characteristic functions of the cubes Ci
j implies that

mi
j(νn) converges to mi

j(ν) when n → ∞, where mi
j(ν) denotes the mass of

ν contained in the cube Ci
j . Thus for any ε > 0 and for n large enough,

∑
j

|mi
j(νn) − mi

j(ν)| < ε.

By Proposition 6.6, Eα(μi(ν), ν) ≤ ε and Eα(μi(νn), νn) ≤ ε for i large
enough, independently of n. We are left to evaluate Eα(μi(νn), μi(ν)). Since
these measures are concentrated at the centers of cubes Ci

j , this amounts to
transport in the whole cube a mass less than

∑
j |mi

j(νn) − mi
j(ν)| < ε. By

(6.3), we deduce that Eα(μi(ν), μi(νn)) ≤ Cεα for a constant C depending
only on X and α. The triangular inequality for Eα yields

Eα(ν, νn) ≤ Eα(ν, μi(ν)) + Eα(μi(ν), μi(νn)) + Eα(μi(νn), νn) ≤ 2ε + Cεα.

Proposition 6.12. Let α ∈ (1− 1
N , 1]. If Pn is a sequence of optimal traffic

plans for the irrigation problem and Pn is converging to P, then P is optimal.

Proof. Since Eα(Pn) = Eα(Pn) and Eα(P) ≤ Eα(P), using the lower semi-
continuity of Eα, we have

Eα(P) ≤ lim inf
n

Eα(Pn) = lim inf
n

Eα(μ+
n , μ−

n )

≤ lim inf
n

(
Eα(μ+

n , μ+) + Eα(μ+, μ−) + Eα(μ−, μ−
n )

)
≤ Eα(μ+, μ−) since μ+

n → μ+ and μ+
n → μ+.

Thus, P is optimal.

Remark 6.13. In the case α < 1 − 1
N , the stability of optimal traffic plans

remains an open question (see Chapter 15). Of course, only the case when
Pn is a sequence of optimal traffic plans with Eα(Pn) < ∞ is of interest. The
stability in the case of the who goes where problem is also an open problem.

6.3 Comparison of Distances between Measures

Proposition 6.12 implies that the topology induced by the distance Eα on
P(X) is exactly the weak-* topology.
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Proposition 6.14. If α ∈ (1 − 1
N , 1], Eα is a metric of the weak-* topology

of probability measures P(X).

Proof. Indeed, Proposition 6.12 asserts that if νn weakly converges to ν then
Eα(νn, ν) → 0. Conversely, if Eα(νn, ν) → 0, then Lemma 6.1 asserts that
W1(νn, ν) → 0, so that νn weakly converges to ν.

Remark 6.15. If α ≤ 1 − 1
N , then it is no longer true that if νn weakly con-

verges to ν then Eα(νn, ν) → 0. Indeed, let us consider νn := 1
vn

1lB(0, 1
n ),

where vn is the volume of a ball with radius 1
n . In that case νn ⇀ δ0 but, by

Theorem 10.26, Eα(νn, δ0) = ∞ if α ≤ 1 − 1
N .

The following proposition gives a quantitative version of Proposition 6.14.
To fix ideas, we consider two probability measures μ+ and μ− with support
in an N -dimensional cube C with edge 1, say C = [0, 1]N . It is not difficult
to scale the result to any bounded domain in RN .

Proposition 6.16. Let α ∈ (1 − 1
N , 1], then

Eα(μ+, μ−) ≤ cW1(μ+, μ−)N(α−(1−1/N)),

where c denotes a suitable constant depending only on N and α.

Proof. Let us denote X+ and X− the two projections from C × C onto C,
so that X+(x, y) = x, X−(x, y) = y.

Let π0 be an optimal transport plan between μ+ and μ−, i.e. a probability
measure on C × C such that X±

� π0 = μ± and with cost w := W1(μ+, μ−).
We denote by

Λi =
{

(x, y) ∈ C × C : (2i − 1)
w

2
≤ |x − y| < (2i+1 − 1)

w

2

}
.

We can limit ourselves to consider those indices i which are not too large,
i.e. up to (2i − 1)w

2 ≤
√

N (where
√

N is the diameter of C). Let I be the
maximal index i so that this inequality is satisfied. The set Λ = ∪I

i=0Λi is a
disjoint union and

I∑
i=0

(2i − 1)
w

2
π0(Λi) ≤ W1(μ+, μ−) = w ≤

I∑
i=0

(2i+1 − 1)
w

2
π0(Λi). (6.4)

We call cube with edge e any translate of [0, e[N . For each i = 0, · · · , I,
using a regular grid in RN , one can cover C with disjoint cubes Ci,k with
edge (2i+1−1)w. The number of the cubes in the i−th covering may be easily
estimated by

(
1

(2i+1 − 1)w
+ 1

)N

≤
(

c

(2i+1 − 1)w

)N

= K(i). (6.5)
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For each index i, C is included in the disjoint union ⊂ ∪K(i)
k=1 Ci,k. Let us set

Λi,k = (Ci,k × C) ∩ Λi, μ+
i,k = X+

� (π01lΛi,k
) and μ−

i,k = X−
� (π01lΛi,k

).

We have just cut μ+ and μ− into pieces. Let us call informally μ+
i the

pieces of μ+ for which the Wasserstein distance to the corresponding part μ−
i

of μ− is of order 2i w
2 . Then μ+

i,k is the part of μ+
i whose support is in the cube

Ci,k. What we have now gained is that each μ+
i,k has a specified diameter of

order 2iw and is at a distance to its corresponding μ−
i,k which is of the same

order 2iw (see picture 6.2). Let us be a bit more precise. The support of μ+
i,k

is a cube with edge (2i − 1)w. By definition of Λi, the maximum distance of
a point of μ−

i,k to a point of μ+
i,k is less than (2i+1 − 1)w

2 . Thus the supports
of μ−

i,k and μ+
i,k are both contained in a same cube with edge 6 · 2iw.

+=

Fig. 6.2. Decomposition of Monge’s transportation into the sets Λi,k.

By the scaling property of the Eα distance (6.3), we deduce that for some
constant c, depending only on α and N , holds:

Eα(μ+
i,k, μ−

i,k) ≤ c2iwπ0(Λi,k)α.

From this last relation, the sub-additivity of Eα, Hölder inequality, (6.4)
and the bound on K(i) given in (6.5), one obtains in turn

Eα(μ+, μ−) ≤
∑
i,k

Eα(μ+
i,k, μ−

i,k)

≤
∑
i,k

c2iwπ0(Λi,k)α = c
∑
i,k

(2iwπ0(Λi,k))α(2iw)1−α

≤ c

⎛
⎝∑

i,k

(2iwπ0(Λi,k))

⎞
⎠

α ⎛
⎝∑

i,k

2iw

⎞
⎠

1−α

≤ c

(∑
i

(2iwπ0(Λi))

)α (
I∑

i=0

K(i)2iw

)1−α

≤ cwα

(
I∑

i=0

(
c

(2i+1 − 1)w

)N

2iw

)1−α
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≤ cwα+(1−N)(1−α)

(
I∑

i=0

2i(1−N)

)1−α

≤ cwαN−(N−1) = cW1(μ+, μ−)αN−(N−1),

where c denotes various constants depending only on N and α and where
the last two inequalities are valid if N ≥ 2 so that the series

∑∞
i=0 2i(1−N) is

convergent.
In the case N = 1 a different proof is needed. In this case we know

how does an optimal transportation for Eα(μ+, μ−) look like. In the one-
dimensional setting, we have

Eα(μ+, μ−) =
∫ 1

0

|θ(x)|αdx.

The function θ plays the role of the multiplicity and it is given by

θ(x) = μ([0, x]), μ := μ+ − μ−,

as a consequence of its constraint on the derivative. Hence we have

Eα(μ+, μ−) =
∫ 1

0

|μ([0, x])|αdx ≤
[∫ 1

0

|μ([0, x])|dx

]α

,

where the inequality comes from Jensen’s inequality. Then we set

A = {x ∈ [0, 1] : μ([0, x]) > 0}

and h(x) = 1lA(x) − 1l[0,1]\A(x) and we have∫ 1

0

|μ([0, x])|dx =
∫ 1

0

μ([0, x])h(x)dx =
∫ 1

0

h(x)dx

∫ 1

0

1l{t ≤ x}μ(dt)

=
∫ 1

0

μ(dt)
∫ 1

t

h(x)dx =
∫ 1

0

u(t)μ(dt) ≤ W1(μ+, μ−),

where u(t) =
∫ 1

t
h(x)dx is a Lipschitz continuous function whose Lipschitz

constant does not exceed 1 as a consequence of |h(x)| ≤ 1. Thus the last
inequality is justified by the duality formula (see [86], Theorem 1.14, page 34):

W1(μ+, μ−) = sup
v∈Lip1

∫ 1

0

v d(μ+ − μ−).

Hence it follows easily Eα(μ+, μ−) ≤ W1(μ+, μ−)α, which is the thesis for
the one dimensional case.

Remark 6.17. The assumption α > 1 − 1/N cannot be removed since, for
N ≥ 2, if we remove this assumption, the quantity Eα could be infinite
while W1 is always finite. In dimension 1 the only uncovered case is α = 0.
In this case Eα is in fact always finite but, for instance if μ+ = w0 and
μ− = (1 − ε)w0 + εw1 one has Eα(μ+, μ−) = 1 while W1(μ+, μ−) = ε. As ε
is as small as we want, this excludes any desired inequality.
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Remark 6.18. The exponent N(α− (1− 1/N)) cannot be improved as can be
seen from the following example.

Example 6.19. There exists a sequence (μ+
n , μ−

n ) of pairs of probability mea-
sures on the cube C such that

Eα(μ+
n , μ−

n ) = cn−N(α−(1−1/N)) and W1(μ+
n , μ−

n ) = c/n.

Proof. It is sufficient to divide the cube C into nN small cubes of edge 1/n

and to set μ+
n =

∑nN

i=1
1

nN δxi
and μ−

n =
∑nN

i=1
1

nN δyi
, where each xi is a

vertex of one of the nN cubes (let us say the one with minimal sum of the N
coordinates) and the corresponding yi is the center of the same cube. In this
way yi realizes the minimal distance to xi among the yj ’s. Thus the optimal
configuration both for Eα and W1 is given by linking any xi directly to the
corresponding yi. In this way we have

Eα(μ+
n , μ−

n ) = nN

(
1

nN

)α
c

n
= cn−N(α−(1−1/N))

W1(μ+
n , μ−

n ) = nN 1
nN

c

n
=

c

n
,

where c =
√

N
2 .

Remark 6.20. One can deduce easily inequalities between Eα and Wp by
using standard inequalities between W1 and Wp, namely cW p

p ≤ Eα ≤
cW

N(α−(1−1/N))
p . The right hand inequality is sharp by using again exam-

ple 6.19. It is not clear instead whether the left-hand inequality is optimal.

Remark 6.21. Since the W1 distance between two probability measures is al-
ways finite, Proposition 6.16 gives another proof of the fact that there is a
traffic plan at finite cost for α ∈ (1 − 1

N , 1].


