
Chapter 3
Robust Shape Directions

Abstract This chapter deals with shape affine normalization. This method associates
with all shapes deduced from each other by an affine distortion a single normalized
shape. A crucial ingredient for normalization is the computation of a small affine
covariant set of robust straight lines associated with a shape. The set of all tangent
lines to a shape has this covariance property, but it is too large. A very successful
idea is to use bitangent lines, that is, lines tangent to a shape at two different points.
If the shape has a finite number of inflexion points it also has a finite number of
bitangent lines. In Sect. 3.3 a well-established curve affine invariant smoothing al-
gorithm will be briefly described. This smoothing permits a drastic reduction of the
number of bitangent lines. Yet, not all shapes can be encoded by using bitangents.
Convex shapes have no bitangents and simple shapes have only a few. This explains
why shape recognition algorithms compute other robust straight lines associated
with the shape. Flat parts of curves are informally defined as intervals of the curve
along which the direction of the tangent line does not vary too much. For instance,
large enough polygons show as many reliable flat parts as sides. This chapter will
present a simple parameterless definition of flat parts, based again on the Helmholtz
principle.

3.1 Flat Parts of Level Lines

Flatness of a part of curve will be measured by comparing its direction at each point
with the direction of the underlying chord (see Fig. 3.1).

Although flatness may look like a rather intuitive geometric concept, it is in fact
quite complex. Our aim is to define a unique measurement, the flatness for very
diverse phenomena: A long very oscillating curve may look flat seen at a distance.
In another way, a short and very smooth curve can look locally very flat. One can
therefore figure out that at least two parameters are involved in a flatness measure-
ment. One measures the length of the flat part and the other gives the amplitude of
the oscillations. Thus, the flatness definition problem can be viewed as the question
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Fig. 3.1 A piece of discrete curve with the underlying chord C (thick segment line)

of reducing two parameters to a more abstract one, the flatness. The detection of flat
parts of a curve should meet the following requirements:

• It should not detect just points around which the curve is flat, but the precise
straight intervals on the curve.

• Long flat parts should be allowed to move farther from their underlying chord
than short ones.

• The detection should be intrinsic to the curve, and not depend on other curves in
the image.

• Detected flat parts should not overlap.
• Since detecting flat parts is generally the first step of a recognition algorithm, it

deals with a huge amount of information. Therefore, computational complexity
should be low.

3.1.1 Flat Parts Detection Algorithm

Consider a chord from a given curve C: its endpoints delimitate a piece of curve of
length l (measured in pixels). Since one would like to measure how much the piece
turns with respect to the direction −→u given by the chord, let us define

α = max
i∈{0...n−1}

{∣∣∣angle(
−−−−−−−−−→
C(si)C(si+1),−→u )

∣∣∣} ,
where the discrete piece of curve is made of the n consecutive points C(si).

Suppose that α is below some fixed threshold α∗. Following the discussion on
independence in Sect. 2.5, consider that points at a geodesic distance (along the
curve) larger than 2 are statistically independent. Thus, there are l/2 statistically
independent segments of the type (C(si), C(si+1)) along a curve with length l. The
probability of the event that l/2 statistically independent points on a piece of curve
show a tangent line which makes an angle lower than α among all the pieces of
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curve for which α < α∗ is given by:

p(α, l) =
( α
α∗

)l/2

.

Of course, the lower p(α, l) the flatter the piece of curve.
This straightforward computation is valid under the assumption that among all

the pieces of curves such that α < α∗, α is uniformly distributed over [0, α∗], and
that the tangents are independent at Nyquist distance 2. Flat parts are now defined
as rare events with regard to this a contrario model.

For each piece of the curve for which α < α∗, the probability p(α, l) is com-
puted. Only pieces such that p(α, l) is under a predetermined threshold p∗ are kept
(these parts are called candidates). Such pieces can of course overlap. So some of
them must be selected to be the flat parts of the curves. A greedy algorithm will be
used: the piece of curve with the lowest p is marked as a flat part, then all candi-
dates that share a common part with this best flat part are eliminated. The process is
iterated with the remaining candidates.

3.1.2 Reduction to a Parameterless Method

The computation of α clearly depends on the discretization. The curves which the
proposed algorithm deals with are level lines of images. Their natural discretization
is the pixel.
The whole algorithm involves two thresholds. The first one, α∗, is not critical. In-
deed, since one is interested in detecting flat parts, it is natural to a priori reject
all pieces of curve where α is above a large threshold. We set α∗ = 1 radian once
for all, which is not a strong constraint. More specifically, a change of α∗ multi-
plies all probabilities p(α, l) by a constant factor. Thus, the flatness measurement
is just scaled and the ordering maintained. Moreover, changing α∗ also multiplies
the threshold p∗ by the same constant. Thus, there are not two parameters here, but
just one, namely p∗. This last parameter will be eliminated by Helmholtz principle.
It can be fixed in such a way that almost no flat part occurs in the level curves of a
white noise.
Experimental evidence shows that p∗ = 10−3 is the maximum value for which only
a few detections (on average one) occur on level lines extracted from a white noise
image containing the same amount of level lines as a standard natural image. So
with this value for p∗ the proposed algorithm satisfies the Helmholtz principle in
that there is almost no detection of flat parts in a white noise image.
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3.1.3 The Algorithm

Consider a Jordan curve on which flat parts are searched for.

Part I: Candidate identification.

For each chord of the curve with length 10, 20, 30, . . . , 180, 200, and then an
exponential progression1:

1. Compute the maximum angle α between the chord and the piece of curve de-
limited by both ends of the chord. If n denotes the number of independent
points C(si) on this piece of discrete curve:

α = max
i∈{1...n−1}

{∣∣∣angle(
−−−−−−−−−→
C(si)C(si+1),−→u )

∣∣∣} .
2. If α > 1 rad, a priori reject the piece; else compute p(α, l) =

(
α
α∗
)l/2 = αl/2,

where l is the length of the considered piece of curve.
3. If p(α, l) > p∗ = 10−3, reject the piece.

Part II: Greedy algorithm

1. Keep the candidate for which αl/2 is minimal, mark it as flat part, and discard
it from the list of candidates.

2. Reject all candidates that meet this best candidate.
3. Iterate until no candidate is available anymore.

3.1.4 Some Properties of the Detected Flat Parts

The condition defining the candidates (αl/2 < p∗) is not a real constraint for long
curves. For example, if p∗ = 10−3 and l = 200, all curve parts such that α < 0.97
are accepted as candidates. Nevertheless, long pieces of curves often show subparts
with a lower probability and a greedy algorithm will therefore prefer them. In the
case of circles, however, this does not occur. Let us compute the arcs of circle which
will be marked as flat parts. Figure 3.2 illustrates the following computations.

Proposition 3. A circle of radius R has flat parts if and only if R � −e log(p∗).
In such a case, the length of the detected flat parts is L = 2R sin(1/e).

1 There is a complexity issue here. All chords are not tested, but only a subsample of them so
that the algorithm does not waste too much time for long curves. The only consequence of this
discretization procedure is that long straight lines (in practice, lines whose length is larger than
100 pixels) can be split into two pieces (see Fig. 3.14 for an example). This is not an important
drawback since the goal is to use flat parts as robust directions.
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α L

2R

Fig. 3.2 Illustration of the flat parts computation on a circle

Proof. A circle of radius R being given, let us consider a chord of length L defining
a maximum angle α with the corresponding piece of curve (0 � α � π/2). The
values of α and L are related by L = 2R sin(α). The probability defined ear-
lier is p(α,L) = αRα (expressed as a function of L, it writes down p(α,L) =
arcsin(L/2R)R arcsin(L/2R)). The function α �→ αRα attains a minimum for the
value α = 1/e. Consequently, ∀α, αRα � e−R/e.

Thus, if the probability threshold is set to p∗, and if R < −e log(p∗), then the
circles of length R will show no flat part. On the contrary, if R � −e log(p∗), the
detected flat parts (after the greedy step) in circles of radius R will always show a
maximum angle α = 1/e (that is to say 21 degrees, corresponding to an arc of 1/9
of the total circle), and their length will be L = 2R sin(1/e). �

Notice that p∗ only controls the minimum radius under which no flat part will
be detected: −e log(p∗). It appears only through its logarithm and small variations
of it will not influence the final result. Although for symmetry reasons no piece of
circle should be favored by the algorithm, the position of the detected flat parts over
a circle strongly depends on the starting point of the discrete curve describing this
circle. This makes flat parts of circular curves unreliable in position. However, this
will not hinder the recognition of circles, as a a circle matches well with itself, up to
any rotation.

3.2 Experiments

3.2.1 Experimental Validation of the Flat Part Algorithm

Experimental results are shown in Figs. 3.4 to 3.9 (original images can be seen on
Fig. 3.3). For each image, the computation time is less than 10 seconds, for a 2GHz
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Fig. 3.3 Left column: original images. Right column: meaningful level lines detected with the
method described in Chap. 2 (right). Top: Bretagne, 413 level lines. Middle: Evian, 481 level lines.
Bottom: Vasarely, 172 level lines
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standard PC. When images do not show long level lines, the computation time is
less than a second.

Fig. 3.4 Flat parts detection: Bretagne. 1004 detections. Flat parts as small as the ones in the
letters of the name of the street are detected (about 10 pixels high). Flat parts in the boundaries of
the shadows can be eliminated by dropping the probability threshold, as can be seen on Fig. 3.5.
Nevertheless these detections actually correspond to small flat parts

3.2.2 Flat Parts Correspond to Salient Features

Figures 3.10 and 3.11 show the result of the proposed flat parts detector over all level
lines in an image. By all, we mean that all level lines at all levels with quantization
step equal to 1 have been extracted. This allows for an exact reconstruction of the
original image from the level lines and their corresponding gray levels [135]. Some
segments are detected over level lines corresponding to quantization noise (i.e. not
contrasted level lines over perceptually uniform areas), but these segments actually
correspond to small pieces of straight lines. They are no longer detected when the
probability threshold p∗ is set to 10−10 instead of the standard value (10−3). Flat
parts are concentrated along edges. This experiment confirms that segment lines are
actually salient image features.

Comparing Fig. 3.3 to Figs. 3.4 to 3.7 shows that almost all detected flat parts
belong to maximal meaningful boundaries.
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Fig. 3.5 Flat parts detection: Bretagne, with p∗ = 10−10, 417 detections. Letters are too small to
be detected but the remaining flat parts are very accurate

Fig. 3.6 Flat parts detection: Evian. 448 detections
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Fig. 3.7 Flat parts detection: Evian, with p∗ = 10−10, 64 detections

In his PhD thesis, Lisani [108] used a flat points detector to build robust semi-
local normalization. Figures 3.12 to 3.15 show a comparison between the flat parts
proposed in this chapter and flat points in the sense of Lisani. See captions for
details.

3.3 Curve Smoothing and the Reduction of the Number
of Bitangent Lines

Level lines may be subject to noise, and can have details that are too fine in rela-
tion to the essential shape information. Hence, a good shape representation requires
a previous smoothing. Is this smoothing necessary? Quite, from the technological
viewpoint, as otherwise there would be too many bitangent lines to level lines and
therefore too many geometric codes to a level line. The general framework by which
an image or a shape is smoothed at several scales in order to eliminate spurious or
textural details and extract its main features is called Scale Space. The main devel-
opments of Scale Space theory in the past ten years involve invariance arguments.
Indeed, a scale space will be useful for shape recognition only if it is invariant. Let
us summarize a series of arguments given in [5]. A scale space computing contrast
invariant information must in fact deal directly with the image level lines; in order
to be local (not dependent upon occlusions), it must be in fact a partial differential
equation (PDE). In order to be a smoothing, this PDE must be parabolic. The affine
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Fig. 3.8 Flat parts detection: Vasarely, 774 detections. Each triangle side is correctly detected as a
single flat part

Fig. 3.9 Flat parts detection: Serena Williams & Puma (original image shown in Fig. 2.6). Left:
Original level lines (425 lines). Middle: p∗ = 10−3 (675 detections). Right: p∗ = 10−10 (156

detections). Flat parts on letters are correctly extracted
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.10 Flat parts detection. (a) original image (size: 512×384); (b) 25,755 level lines (quantiza-
tion step: 1 gray level). They cover the whole image. (c) 20,065 flat parts detected over these level
lines (probability threshold p∗ has here its standard value: 10−3); (d) flat parts of length larger than
100 pixels among the previous ones; (e) 6,233 flat parts detected over these level lines, when the
probability threshold p∗ is set to 10−10; (f) flat parts of length larger than 100 pixels among the
previous ones. Flat parts appear to be concentrated along edges in thick bundles
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(a) (b)

(c) (d)

Fig. 3.11 Flat parts detection. (a) 90,078 level lines from Evian image (quantization step: 1 gray
level); (b) flat parts detections over these level lines (16,533 detections); (c) flat parts detection with
p∗ = 10−6 (4,659 detections); and (d) flat parts detection with p∗ = 10−10 (2,041 detections).
Flat parts are concentrated along edges
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Fig. 3.12 Lisani’s flat points: Serena Williams & Puma. Only 15 flat points (in black) are detected.
To be compared to the results in Fig. 3.9

invariance requirement and the invariance with respect to reverse contrast lead to a
single PDE [5]. This PDE, characterizing the unique contrast, contrast reversal and
special affine invariant scale space is{

∂u
∂t = |Du|(curv u)1/3,

u(x, t) = u0(x).
(3.1)

It is called Affine Morphological Scale-Space (AMSS). Here u(t, 0) = u0 is the
initial image, u(t, x) is the image smoothed at scale t and curv(u)(x) = div( Du

|Du| )
denotes the signed curvature of the level line passing by x. This equation is equiva-
lent to the affine curve shortening [155] of all of the level lines of the image, given
by the equation

∂x

∂t
= |Curv(x)| 13 n, (3.2)

where x denotes a point of a level line, Curv(x) its curvature and n the signed
normal to the curve, always pointing towards the concavity.
Moisan [127] found a fast algorithm for this curvature motion. For more details on
this scheme, refer to [127, 99] and to the book [29]. The invariants mentioned mean
that the evolution of a shape does not depend upon any affine distortion of the plane.
This corresponds to an invariance to all orthographic projections of a planar shape.
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Fig. 3.13 Flat points vs flat parts: Serena Williams & Puma. From left to right and from top to
bottom: considered level line, flat points (7 detections), flat parts with p∗ = 10−3 (9 detections),
flat parts with p∗ = 10−10 (7 detections). One of the flat parts in the legs of the character M is not
detected since these curve pieces are too small and pose a sampling problem. Since not all chords
are tested but a subset of them, endpoints may sometimes be not conveniently distributed

Figure 3.16 shows that a slight smoothing by the affine scale space eliminates the
sampling effects of a digital image and reduces drastically the number of inflexion
points of a shape without altering its overall aspect. Numerically, the smoothing is
slight and stops at the scale t = 0.5 at which a circle with radius 0.5 collapses. So
the smoothing roughly eliminates details of 1 pixel size.

3.4 Bibliographic Notes

3.4.1 Detecting Flat Parts in Curves

In their seminal paper [65], Fischler and Bowles argue that any curve partition-
ing technique must satisfy two general principles: stability of the description, and
a complete and concise explanation. Smooth sections of curves play a major role
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Fig. 3.14 Flat points vs flat parts: character V in Evian. Top: no smoothing. From left to right:
original level line, flat parts with p∗ = 10−3 (4 detections) and with p∗ = 10−10 (3 detections).
The flat points algorithm does not provide any detection. Bottom: after smoothing. From left to
right: original level line, flat parts with p∗ = 10−3 (5 detections) and flat parts with p∗ = 10−10

(4 detections). With p∗ = 10−3, one of the segments is split because of the discretization procedure
in the multi-scale test of chords. Again here the Lisani flat points algorithm misses the segments

Fig. 3.15 Flat points vs flat parts: a triangle in Vasarely. Top: no smoothing. From left to right:
original level line, flat parts with p∗ = 10−3 (3 detections) and flat parts with p∗ = 10−10

(3 detections), and flat points (4 detections). Bottom: after smoothing (see Sect. 3.3). From left to
right: original level line, flat parts with p∗ = 10−3 (5 detections) and flat parts with p∗ = 10−10

(2 detections), and flat points (1 detection)

because they fit both principles. For instance, Guy and Medioni [78] consider seg-
ment lines as salient features in images. Flat part multiscale detection has been
used for the more general problem of polygonal approximation of digitized curves
(see [164]).
Segment or straight line detection is one of the cornerstones of computer vision. In-
deed, it is often a preprocessing step of shape recognition, shape tracking [48],
vanishing point detection [2], convex shape detection [92], etc. Most of the time,
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Fig. 3.16 Some level lines of a gray level image. Quantization effects and noise are seen. After a
slight smoothing these effects disappear (right)

straight lines in images are conceived as contiguous edges. Many line detection al-
gorithms therefore require a previous local edge extraction step, such as a Canny’s
filtering [28]. Hough Transform [85] and algorithms derived from it [91] have been
widely studied for this purpose. The goal of these methods is to identify clusters
in a particular space (the parameter space of a straight line, either (ρ, θ) with ρ
the distance of the line to the origin, and θ the angle between a vector normal to
the line and a fixed direction, or (a, b) where a is the slope and b the ordinate of the
intersection between the straight line and the ordinate axis). The Hough transform
is a voting procedure: every pixel votes for the parameters of the straight line go-
ing through it. Another method consists in first chaining the local edges by taking
into account connectivity (see for an example [70]), and then in identifying seg-
ments among the discrete curves [107]. The main drawbacks of these methods are
the number of thresholds (edge detection needs at least a gradient threshold, and the
Hough Transform needs a quantization step for the parameter space discretization
and a threshold for the voting procedure) and their computational burden and insta-
bility (due to local edges chaining). A fuzzy segment concept was proposed in [45].
In this method the primary detection is still based on a set of points derived from a
local edge detector.
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The method presented in this chapter can be viewed as an adaptation to the level
lines of Desolneux et al. [50], who proposed an a contrario method detecting mean-
ingful alignments in images. A meaningful alignment is a segment where a large
enough proportion of points have their gradient orthogonal to the segment. More
precisely a length l segment is ε-meaningful in a N × N image if it contains at
least k(l) points having their direction aligned with the one of the segment, where:

• k(l) is given by: k(l) = min{k ∈ N,Pr(Sl � k) � ε/N4}, and
• Pr(S(l) � k) is the probability that, in at least k points in a straight segment of

length l, the gradient of the image is orthogonal to the segment, up to a predeter-
mined precision.

Estimating the probability that k points among l have a tangent with the same di-
rection as the chord is not relevant to detect flat parts. In such a model, consecutive
alignments are indeed not favored. They are instead crucial for shape normalization.

In his PhD thesis [108], Lisani defined flat points on curves by using two arbitrary
parameters. A flat point is the center of a curve segment for which the sum of the an-
gle variations of tangents is small enough (less than 0.2 radian) over a large enough
piece of curve (larger than 15 pixels). This algorithm misses many flat points, and
does not really detect segments, as several experiments have shown clearly.

Figure 3.17 shows the results for some of the algorithms which were just dis-
cussed. As far as flat parts detection is concerned, Desolneux’s alignments are suit-
able neither for detecting accurate segment directions nor for detecting segment
lengths. The naive segment detector based on Hough transform which illustrates
the discussion is certainly not the best that can be done using Hough techniques.
Nevertheless even a more clever algorithm would face the same problem as this
one. It involves numerous critical parameters (different parameters would drasti-
cally change the results). Some isolated points are detected as segments because
they fall by chance on the same straight line as another more distant segment and
therefore collect its votes. Both algorithms (alignments and the Hough transform-
based algorithm) are not local enough: that is why segments over the characters in
the test image are not detected. Canny’s edge detector is well known to suffer from
lack of accuracy at edge junctions (where the gradient is badly estimated). Here, this
would not be a real issue, since segment lines are searched for between junctions,
where edges are more accurately detected. Nevertheless those edge detectors need
several critical thresholds.

3.4.2 Scale-Space and Curve Smoothing

Since the seminal work of Lamdan et al. [101], bitangent lines are well-known to be
of high interest to build up semi-local invariant curve descriptions. The reduction of
the number of bitangent lines is linked to curve smoothing, or curve scale space. The
modern concept of scale space comes from Witkin [181] and is mainly related to the
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.17 Segment detection. (a) original image; (b) maximal meaningful alignments [50]; (c)
Canny’s edge detector; (d) Points that correspond to an edge and that lie at the same time on a
direction detected by voting in the Hough space; (e) local maximal meaningful level lines; (f)
result of the proposed algorithm. See text for discussion.
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Gaussian scale space, given by the heat equation [98]. An interesting shape recogni-
tion method using the mean curvature motion was discovered by Mocktharian and
Mackworth [132]. The use of curvature-based smoothing for shape analysis is by
now well established. The seminal papers are [10], [132] and [62]. These authors
define a multi-scale curvature which is similarity invariant, but not affine invariant.
Abbasi et al. [1] used the mean curvature motion and an affine length parame-
terization of the boundary of the solid shapes in order to get an approximately
affine shape encoding. Sapiro and Tannenbaum [155] and Alvarez, Guichard, Li-
ons and Morel [5] independently discovered the affine scale space with different
approaches. Alvarez et al. proved existence of viscosity solutions to the affine scale
space. An existence and regularity theorem was later proved by Angenent, Sapiro
and Tannenbaum [7] from which it can be derived that the number of inflexion
points decreases under the affine scale space. This result is crucial for shape en-
coding. Moisan [127] found a fast and fully affine invariant scheme implementing
the affine scale space. He also proved the uniform consistency, which by a Barles
and Souganidis [16] result is sufficient for convergence. The numerical scheme of
Moisan was later extended by Cao and Moisan [34] to more general motions by cur-
vature. Very recently the affine erosion scheme was used by Niethammer et al. [142]
to compute an affine invariant skeleton of plane curves.




