Skip to main content

Extracting Meaningful Curves from Images

  • Chapter
A Theory of Shape Identification

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1948))

  • 1127 Accesses

The set of level lines of an image (isophotes) or topographic map is a complete and contrast invariant representation of an image. Level lines are ordered by inclusion in a tree structure. These two structure properties make level lines excellent candidates to shape representatives. However, some complexity issues have to be handled: The number of level lines in eight-bits encoded images of size 512×512 is typically 105. Most of them are very small lines due to noise or micro-texture. So the stable level lines must be selected, namely the ones that are likely to correspond to image contours. The starting point is the MSER method, a variant of the Monasse and Guichard Fast Level Set Transform. The MSER selects a set of level lines which are local extrema of contrast. This method will be put in the Helmholtz framework, following the a contrario boundary detection algorithm by Desolneux, Moisan and Morel [51], [54] and two powerful recent variants. The experiments in this chapter will show that selecting the most meaningful level lines reduces their number by a factor 100 without significant shape contents loss.

A method which selects one out of hundred level lines in the image without significant information loss is necessarily sophisticated. Sect. 2.1 briefly reviews the level line tree of a digital image. Sect. 2.2 describes a first way to extract well contrasted level lines, the MSER method. Sect. 2.3 makes an account of the Desolneux et al. maximal meaningful boundaries and Sect. 2.4 gives a mathematical justification which was actually missing in the original theory. Sect. 2.5 is devoted to a multiscale extension which avoids missing boundaries because of high noise level and Sect. 2.6 deals with the so called “blue sky” effect which can lead to over-detections in textured parts of the image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Extracting Meaningful Curves from Images. In: A Theory of Shape Identification. Lecture Notes in Mathematics, vol 1948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68481-7_2

Download citation

Publish with us

Policies and ethics