Skip to main content

Schatten Properties for Pseudo-Differential Operators on Modulation Spaces

  • Chapter
Pseudo-Differential Operators

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1949))

Abstract

Let M (ω) p,q be the modulation space with parameters p, q and weight function ω. Also let tR and assume that aM (ω) p,q. We establish sufficient and necessary conditions on p, q ∈ [1, ∞], ω1, ω2, and ω in order to the pseudo-differential operator a t (x,D) should be a Schatten–von Neumann operator from M (ω1) 2,2, to M (ω2) 2,2 of certain order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bergh and J. Löfström Interpolation Spaces, An Introduction, Springer-Verlag, Berlin Heidelberg NewYork, 1976.

    MATH  Google Scholar 

  2. Birman, Solomyak Estimates for the singular numbers of integral operators (Russian), Usbehi Mat. Nauk. 32, (1977), 17–84.

    MATH  MathSciNet  Google Scholar 

  3. P. Boggiatto, E. Cordero, K. Gröchenig Generalized Anti-Wick Operators with Symbols in Distributional Sobolev spaces, Integr. equ. oper. theory (4), textbf48 (2004), 427–442.

    Article  Google Scholar 

  4. P. Boggiatto, J. Toft Embeddings and compactness for generalized Sobolev-Shubin spaces and modulation spaces, Appl. Anal. (3) 84 (2005), 269–282.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Boulkemair Remarks on a Wiener type pseudodifferential algebra and Fourier integral operators, Math. Res. L. 4 (1997), 53–67.

    Google Scholar 

  6. A. Boulkemair L 2 estimates for Weyl quantization, J. Funct. Anal. 165 (1999), 173–204.

    Article  MathSciNet  Google Scholar 

  7. E. Cordero, K. Gröchenig Time–Frequency Analysis of Localization Operators, J. Funct. Anal. (1) 205 (2003), 107–131.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Dimassi, J. Sjöstrand Spectral Asymptotics in the Semi-Classical Limit, vol 268, London Math. Soc. Lecture Note Series, Cambridge University Press, Cambridge, New York, Melbourne, Madrid, 1999.

    MATH  Google Scholar 

  9. H. G. Feichtinger Un espace de Banach de distributions tempérés sur les groupes localement compacts abéliens (French), C. R. Acad. Sci. Paris Sér. A-B 290 17 (1980), A791–A794.

    MathSciNet  Google Scholar 

  10. H. G. Feichtinger Banach spaces of distributions of Wiener’s type and interpolation, in: Ed. P. Butzer, B. Sz. Nagy and E. Görlich (Eds), Proc. Conf. Oberwolfach, Functional Analysis and Approximation, August 1980 , Int. Ser. Num. Math. 69 Birkhäuser Verlag, Basel, Boston, Stuttgart, 1981, pp. 153–165.

    Google Scholar 

  11. H. G. Feichtinger Banach convolution algebras of Wiener’s type, in: Proc. Functions, Series, Operators in Budapest , Colloquia Math. Soc. J. Bolyai, North Holland Publ. Co., Amsterdam Oxford NewYork, 1980.

    Google Scholar 

  12. H. G. Feichtinger Modulation spaces on locally compact abelian groups. Technical report, University of Vienna, Vienna, 1983; also in: M. Krishna, R. Radha, S. Thangavelu (Eds) Wavelets and their applications, Allied Publishers Private Limited, NewDehli Mumbai Kolkata Chennai Hagpur Ahmedabad Bangalore Hyderbad Lucknow, 2003, pp.99–140.

    Google Scholar 

  13. H. G. Feichtinger Atomic characterizations of modulation spaces through Gabor-type representations, in: Proc. Conf. on Constructive Function Theory, Rocky Mountain J. Math. 19 (1989), 113–126.

    Google Scholar 

  14. H. G. Feichtinger and P. Gröbner Banach Spaces of Distributions Defined by Decomposition Methods, I, Math. Nachr. 123 (1985), 97–120.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. G. Feichtinger and K. H. Gröchenig Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal. 86 (1989), 307–340.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. G. Feichtinger and K. H. Gröchenig Banach spaces related to integrable group representations and their atomic decompositions, II, Monatsh. Math. 108 (1989), 129–148.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. G. Feichtinger and K. H. Gröchenig Gabor frames and time–frequency analysis of distributions, J. Functional Anal. (2) 146 (1997), 464–495.

    Article  MATH  Google Scholar 

  18. G. B. Folland Harmonic analysis in phase space, Princeton U. P., Princeton, 1989.

    Google Scholar 

  19. I. C. Gohberg, M. G. Krein Introduction to the theory of linear non-selfadjoint operators in Hilbert space (Russian), Izdat. Nauka, Moscow, 1965.

    Google Scholar 

  20. K. H. Gröchenig Describing functions: atomic decompositions versus frames, Monatsh. Math.112 (1991), 1–42.

    Article  MATH  MathSciNet  Google Scholar 

  21. K. H. Gröchenig Foundations of Time–Frequency Analysis, Birkhäuser, Boston, 2001.

    MATH  Google Scholar 

  22. K. H. Gröchenig and C. Heil Modulation spaces and pseudo-differential operators, Integral Equations Operator Theory (4) 34 (1999), 439–457.

    Article  MathSciNet  Google Scholar 

  23. K. H. Gröchenig and C. Heil Modulation spaces as symbol classes for pseudodifferential operators in: M. Krishna, R. Radha, S. Thangavelu (Eds) Wavelets and their applications , Allied Publishers Private Limited, NewDehli Mumbai Kolkata Chennai Hagpur Ahmedabad Bangalore Hyderbad Lucknow, 2003, pp. 151–170.

    Google Scholar 

  24. L. Hörmander The Analysis of Linear Partial Differential Operators, vol I, III, Springer-Verlag, Berlin Heidelberg NewYork Tokyo, 1983, 1985.

    Google Scholar 

  25. S. Pilipović, N. Teofanov Wilson Bases and Ultramodulation Spaces, Math. Nachr. 242 (2002), 179–196.

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Pilipović, N. Teofanov On a symbol class of Elliptic Pseudodifferential Operators, Bull. Acad. Serbe Sci. Arts 27 (2002), 57–68.

    Google Scholar 

  27. M. Reed, B. Simon Methods of modern mathematical physics, Academic Press, London New York, 1979.

    MATH  Google Scholar 

  28. R. Schatten Norm ideals of completely continuous operators, Springer, Berlin, 1960.

    MATH  Google Scholar 

  29. B. W. Schulze, N. N. Tarkhanov Pseudodifferential operators with operator-valued symbols. Israel Math. Conf. Proc. 16, 2003.

    Google Scholar 

  30. B. Simon Trace ideals and their applications I, London Math. Soc. Lecture Note Series, Cambridge University Press, Cambridge London New York Melbourne, 1979.

    MATH  Google Scholar 

  31. J. Sjöstrand An algebra of pseudodifferential operators, Math. Res. L. 1 (1994), 185–192.

    MATH  Google Scholar 

  32. J. Sjöstrand Wiener type algebras of pseudodifferential operators, Séminaire Equations aux Dérivées Partielles, Ecole Polytechnique, 1994/1995, Exposé n IV.

    Google Scholar 

  33. K. Tachizawa The boundedness of pseudo-differential operators on modulation spaces, Math. Nachr. 168 (1994), 263–277.

    Article  MATH  MathSciNet  Google Scholar 

  34. N. Teofanov Ultramodulation spaces and pseudodifferential operators, Endowment Andrejević, Beograd, 2003.

    Google Scholar 

  35. J. Toft Continuity and Positivity Problems in Pseudo-Differential Calculus, Thesis, Department of Mathematics, University of Lund, Lund, 1996.

    Google Scholar 

  36. J. Toft Subalgebras to a Wiener type Algebra of Pseudo-Differential operators, Ann. Inst. Fourier (5) 51 (2001), 1347–1383.

    MATH  MathSciNet  Google Scholar 

  37. J. Toft Continuity properties for non-commutative convolution algebras with applications in pseudo-differential calculus, Bull. Sci. Math. (2) 126 (2002), 115–142.

    Article  MATH  MathSciNet  Google Scholar 

  38. J. Toft Modulation spaces and pseudo-differentianl operators, Research Report 2002:05 , Blekinge Institute of Technology, Karlskrona, 2002.

    Google Scholar 

  39. J. Toft Continuity properties for modulation spaces with applications to pseudo-differential calculus, I, J. Funct. Anal. (2), 207 (2004), 399–429.

    Article  MATH  MathSciNet  Google Scholar 

  40. J. Toft Continuity properties for modulation spaces with applications to pseudo-differential calculus, II, Ann. Global Anal. Geom., 26 (2004), 73–106.

    Article  MATH  MathSciNet  Google Scholar 

  41. J. Toft Convolution and embeddings for weighted modulation spaces in: P. Boggiatto, R. Ashino, M. W. Wong (eds) Advances in Pseudo-Differential Operators, Operator Theory: Advances and Applications 155, Birkhäuser Verlag, Basel 2004, pp. 165–186.

    Google Scholar 

  42. J. Toft Continuity and Schatten–von Neumann properties for Pseudo-Differential Operators on modulation spaces in: J. Toft, M. W. Wong, H. Zhu (eds) Modern Trends in Pseudo-Differential Operators, Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Toft, J. (2008). Schatten Properties for Pseudo-Differential Operators on Modulation Spaces. In: Rodino, L., Wong, M.W. (eds) Pseudo-Differential Operators. Lecture Notes in Mathematics, vol 1949. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68268-4_5

Download citation

Publish with us

Policies and ethics