
Chapter 7

Forward-Backward SDEs with Reflections

In this chapter we study FBSDEs with boundary conditions. In the simplest
case when the FBSDE is decoupled, it is reduced to a combination of a well-
understood (forward) reflected diffusion and a newly developed reflected
backward SDE. However, the extension of such FBSDEs to the general
coupled case is quite delicate. In fact, none of the methods that we have
seen in the previous chapters seems to be applicable, due to the presence of
the reflecting process. Therefore, the route we take in this chapter to reach
the existence and uniqueness of the adapted solution is slightly different
from those we have seen before.

§1. Forward SDEs with Reflections

Let O be a closed convex domain in lRn. Define for any x ∈ ∂O the set of
inward normals to O at x by

(1.1) Nx = {γ : |γ| = 1, and 〈 γ, x− y 〉 ≤ 0, ∀y ∈ O}.

It is clear that if the boundary ∂O is smooth (say, C1), then for any x ∈ ∂O,
the set Nx contains only one vector, that is, the unit inner normal vector
at x. We denote BV ([0, T ]; lRn) to be the set of all lRn-valued functions of
bounded variation; and for η ∈ BV ([0, T ]; lRn), we denote |η|(T ) to be the
total variation of η on [0, T ].

A general form of (forward) SDEs with reflection (FSDER, for short)
is the following:

(1.2) X(t) = x+

∫ t

0

b(s,X(s))ds+

∫ t

0

σ(s,X(s))dW (s) + η(t).

Here the b and σ are functions of (t, x, ω) ∈ [0, T ]× lRn × Ω (with ω being
suppressed, as usual); and η ∈ BVF ([0, T ]; lRm), the set of all {Ft}t≥0-
adapted processes η with paths in BV ([0, T ]; lRm).

Definition 1.1. A pair of continuous, {Ft}t≥0-adapted processes (X, η) ∈
L2
F([0, T ]; lRn)×BVF ([0, T ]; lRn) is called a solution to the FSDER (1.2) if

1) X(t) ∈ O, ∀t ∈ [0, T ], a.s. ;

2) η(t) =
∫ t

0 1{X(s)∈∂O}γ(s)d|η|(s), where γ(s) ∈ NX(s), 0 ≤ s ≤ t ≤ T ,
d|η|-a.e.;

3) equation (1.2) is satisfied almost surely.

A widely used tool for solving an FSDER is the following (determinis-
tic) function-theoretic technique known as the Skorohod Problem: Let the
domain O be given,
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Problem SP (· ;O): Let ψ ∈ C([0, T ]; lRn) with ψ(0) ∈ O be given. Find
a pair (ϕ, η) ∈ C([0, T ]; lRn)×BV ([0, T ]; lRn) such that

1) ϕ(t) = ψ(t) + η(t), ∀t ∈ [0, T ], and ϕ(0) = ψ(0);

2) ϕ(t) ∈ O, for t ∈ [0, T ];

3) |η|(t) =
∫ t

0 1{ϕ(s)∈∂O}d|η|(s);
4) there exists a measurable function γ : [0, T ] 7→ lRn, such that γ(t) ∈

Nϕ(t) (d|η| a.s.) and η(t) =
∫ t

0 γ(s)d|η|(s).

A pair (ϕ, η) satisfying the above 1)–4) is called a solution of the
SP (ψ;O).

It is known that under various technical conditions on the domain O
and its boundary, for any ψ ∈ C([0, T ]; lRn) there exists a unique solu-
tion to SP (ψ;O). In particular, these conditions are satisfied when O
is convex and with smooth boundary, which will be the case considered
throughout this chapter. Therefore we can consider a well-defined map-
ping Γ : C([0, T ]; lRn) 7→ C([0, T ]; lRn) such that Γ(ψ)(t) = ϕ(t), t ∈ [0, T ],
where (ϕ, η) is the (unique) solution to SP (ψ;O). We will call Γ the solu-
tion mapping of the SP (· ;O).

An elegant feature of the solution mapping Γ is that it may have a
Lipschitz property: for some constant K > 0 that is independent of T , such
that for ψi ∈ C([0, T ], lRn), i = 1, 2, it holds that

(1.3) |Γ(ψ1)(·)− Γ(ψ2)(·)|∗T ≤ K|ψ1(·)− ψ2(·)|∗T ,

where |ξ|∗t denotes the sup-norm on [0, t] for ξ ∈ C([0, T ]; lRn). Conse-
quently, if (ϕi, ηi), i = 1, 2 are solutions to SP (ψi;O), i = 1, 2, respectively,
then for some constant K independent of T ,

(1.4) |ϕ1(·) + ϕ2(·)|∗T + |η1(·)− η2(·)|∗T ≤ K|ψ1(·)− ψ2(·)|∗T .

In what follows we call a (convex) domain O ⊆ lRn regular if the so-
lution mapping of the corresponding SP (· ;O) satisfies (1.3). The sim-
plest but typical example of a regular domain is the “half space” O =

lRn+
∆
={(x1, · · · , xn) ∈ lRn : xn ≥ 0}. With a standard localization tech-

nique, one can show that a convex domain with smooth boundary is also
regular. A much deeper result of Dupuis and Ishii [1] shows that a convex
polyhedron is regular, which can be extended to a class of convex domains
with piecewise smooth boundaries. We should note that proving the regu-
larity of a given domain is in general a formidable problem with independent
interest of its own. To simplify presentation, however, in this chapter we
consider only the case when the domains are regular, although the result we
state below should hold true for a much larger class of (convex) domains,
with proofs more complicated than what we present here.

We shall make use of the following assumptions.

(A1) (i) for fixed x ∈ lRn, b(·, x, ·) and σ(·, x, ·) are {Ft}t≥0-progressively
measurable;



§2. Backward SDEs with Reflections 171

(ii) there exists constant K > 0, such that for all (t, ω) ∈ [0, T ]×Ω and
x, x′ ∈ lRn, it holds that

(1.5)
|b(t, x, ω)− b(t, x′, ω)| ≤ K|x− x′|;
|σ(t, x, ω) − σ(t, x′, ω)| ≤ K|x− x′|.

Theorem 1.2. Suppose that O ⊆ lRn is a regular, convex domain; and
that (A1) holds. Then the SDER (1.2) has a unique strong solution.

Proof. Let Γ be the solution mapping to SP (· ;O). Consider the fol-
lowing SDE (without reflection):

(1.6) X̃(t) = x+

∫ t

0

b̃(s, X̃(·))ds +

∫ t

0

σ̃(s, X̃(·))dW (s),

where for y(·) ∈ C([0, T ]; lRn),

b̃(t, y(·), ω) = b(t,Γ(y)(t), ω); σ̃(t, y(·), ω) = σ(t,Γ(y)(t), ω).

Note that for any {Ft}t≥0-adapted, continuous process Y , the processes

b̃(·, Y (·), ·) and σ̃(·, Y (·), ·), are all {Ft}t≥0-progressively measurable. Fur-
ther, the regularity of the domain O implies that there exists a constant
K0 > 0 depending only on the Lipschitz constant of Γ and K in (A1), such
that for any {Ft}t≥0-adapted, continuous processes Y and Y ′, it holds that

|̃b(s, Y (·, ω), ω)− b̃(s, Y ′(·, ω), ω)|∗t ≤ K0|Y (s, ω)− Y ′(s, ω))|∗t ;
|σ̃(s, Y (·, ω), ω)− σ̃(s, Y ′(·, ω), ω)|∗t ≤ K0|Y (s, ω)− Y ′(s, ω))|∗t ,

for all (t, ω) ∈ [0, T ]× O. Therefore, by the standard theory of SDEs (cf.
e.g., Protter [1]), we know that the SDE (1.6) has a unique strong solution

X̃.
Next, we define a processX(t) = Γ(X̃)(t), t ∈ [0, T ]. Then by definition

of the Skorohod problem, we see that there exists a process η such that
(X, η) satisfies the conditions 1)–3) of Definition 1.1. Consequently, for all
t ∈ [0, T ], we have

X(t) = X̃(t) + η(t)

= x+

∫ t

0

b̃(s, X̃(·))ds +

∫ t

0

σ̃(s, X̃(·))dW (s) + η(t)

= x+

∫ t

0

b(s,X(s))ds+

∫ t

0

σ(s,X(s))dW (s) + η(t).

In other words, (X, η) is a solution to the SDER (1.5). The uniqueness fol-
lows easily from the construction of the solution and the Lipschitz property
(1.3) and (1.4). The proof is complete.

§2. Backward SDEs with Reflections

In this section we study the reflected BSDEs (BSDERs, for short). For
clearer notation we will call the domain in which a BSDE lives by O2,
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to distinguish it from those in the previous section. A slight difference is
that we shall allow O2 to “move” when time varies, and even randomly.
Namely, we shall consider a family of closed, convex domains {O2(t, ω) :
(t, ω) ∈ [0, T ]× Ω} in lRm satisfying certain conditions. Let ξ ∈ O2(T, ω)
be given, we consider the following SDE:

(2.1) Y (t) = ξ +

∫ T

t

h(s, Y (s), Z(s))ds −
∫ T

t

Z(s)dW (s) + ζ(T )− ζ(t).

Analogous to the FSDER, we define the adapted solution to a BSDER
as follows:

Definition 2.1. A triplet of processes (Y, Z, ζ) ∈ L2
F(Ω;C([0, T ]; lRm)) ×

L2
F(0, T ; lRm×d)×BVF ([0, T ]; lRm) is called a solution to (2.1) if

(1) Y (t, ω) ∈ O2(t, ω), for all t ∈ [0, T ], P-a.e.ω;
(2) for any {Ft}t≥0-adapted, RCLL process V (t) such that V (t) ∈

O2(t, ·), ∀t ∈ [0, T ], a.s. , it holds that 〈Y (t)−V (t), dζ(t) 〉 ≤ 0, as a signed
measure.

We note that Definition 2.1 more or less requires that the domains
{O2(·, ·)} be “measurable” (or even “progressively measurable”) in (t, ω) in
a certain sense, which we now describe. Let y ∈ lRm and A ⊆ lRm be any
closed set, we define the projection operator Pr with respect to A, denoted
Pr(· ;A), by

(2.2) Pr(y;A) = y − 1

2
∇yd2(y,A), y ∈ lRm;

where d(·, ·) is the usual distance function:

(2.3) d(y,A)
∆
= inf{|y − x| : x ∈ A}.

For each y ∈ lRm, we define β(t, y, ω) = Pr(y;O2(t, ω)). Throughout this
chapter we shall assume the following technical condition.

(A2) (i) For every fixed y ∈ lRm, the process (t, ω) 7→ β(t, y, ω) is {Ft}t≥0-
progressively measurable;

(ii) for fixed y ∈ lRm, it holds that

(2.4) E

∫ T

0

|β(t, y, ·)|2dt <∞.

Before we go any further, let us look at some examples.

Example 2.2. Let Hm be the collection of all compact subsets of lRm,
endowed with the Hausdorff metric d∗, that is,

(2.5) d∗(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}, ∀A,B ∈ Hm.

It is well-known that (Hm, d∗) is a complete metric space. Now suppose that

O2
∆
={O2(t, ω) : (t, ω) ∈ [0, T ]×Ω} ⊆ (Hm, d∗), then we can view O2 as an
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(Hm, d∗)-valued process, and thus assume that it is {Ft}t≥0-progressively
measurable. Noting that for fixed y ∈ lRm, the mapping A 7→ d(y,A) is a
continuous mapping from (Hm, d∗) to lR, as

|d(y,A)− d(y,B)| ≤ d∗(A,B), ∀y ∈ lRm, ∀A,B ∈ Hm,

the composition function (t, ω) 7→ d2(y,O(t, ω)) is {Ft}t≥0-progressively
measurable as well, which then renders ∇yd2(y,O2(·, ·)) an {Ft}t≥0-
progressively measurable process, for any fixed y ∈ lRm. Consequently,
O2 satisfies (A2)-(i).

Next, using elementary inequality |d(z1, A) − d(z2, A)| ≤ |z1 − z2|,
∀z1, z2 ∈ lRm, ∀A ⊆ lRm one shows that

|∇yd2(y,O2(t, ω))| ≤ 2d(y,O2(t, ω)).

Assumption (A2)-(ii) is easily satisfied provided d(y,O2(·, ·)) ∈ L2([0, T ]×
Ω), which is always the case if, for example, 0 ∈ O2(t, ω) for all (t, ω), or,
more generally, O2(t, ω) has a selection in L2

F(0, T ; Ω).

Example 2.3. As a special case of Example 2.2, the following moving do-
mains are often seen in applications. Let {O(t, x) : (t, x) ∈ [0, T ]× lRn} be
a family of convex, compact domains in lRm such that

(i) the mapping (t, x) 7→ O(t, x) is continuous as a function from [0, T ]×
lRn to (Hm, d∗).

(ii) for each (t, x), 0 ∈ O(t, x); and there exists a constant C > 0 such
that

sup
t∈[0,T ]

d∗(O(t, x),O(t, 0)) ≤ C|x|.

Let X ∈ L2
F(Ω;C([0, T ]; lRn)), and define O2(t, ω)

∆
=O(t,X(t, ω)), (t, ω) ∈

[0, T ]×Ω. We leave it to the readers to check that O2 satisfies (A2).

Example 2.4. Continuing from the previous examples, let us assume that
m = 1 and O(t, x) = [L(t, x), U(t, x)], where −∞ < L(t, x) < 0 < U(t, x) <
∞ for all (t, x) ∈ [0, T ]× lRn. Suppose that the functions L and U are both
uniformly Lipschitz in x, uniformly in t ∈ [0, T ]. Then a simple calculation
using the definition of the Hausdorff metric shows that

d∗(O(t, 0),O(t, x)) = max{|L(t, x)− L(t, 0)|, |U(t, x)− U(t, 0)|} ≤ C|x|.

Thus O2 satisfies (A2), thanks to the previous example.

Let us now turn our attention to the well-posedness of the BSDER (2.1).
We shall make use of the following standing assumptions on coefficient
h : [0, T ]× lRm × lRm×d × Ω 7→ lRm and the domain {O2(t, ω)}.

(A3) (i) for each (y, z) ∈ lRm×lRm×d, h(·, y, z, ·) is an {Ft}t≥0-progressively

measurable process; and for fixed (t, z) ∈ [0, T ] × lRm×d and a.e.ω ∈ Ω,
h(t, ·, z, ω) is continuous;
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(ii) E
∫ T

0 |h(t, 0, 0)|2dt <∞;
(iii) there exist α ∈ lR and k2 > 0, such that for all t ∈ [0, T ], y, y′ ∈

lRm, and z, z′ ∈ lRm×d, it holds P-a.s. that
〈 y − y′, h(t, y, z)− h(t, y′, z) 〉 ≤ α|y − y′|2;
|h(t, y, z)− h(t, y, z′)| ≤ k2|z − z′|;
|h(t, y, z)− h(t, 0, z)| ≤ k2(1 + |y|).

(iv) The domains {O2(t, ·)} is “non-increasing”. In other words, it
holds that

O(t, ω) ⊆ O(s, ω), ∀t ≥ s, a.s.

Our main result of this section is the following theorem.

Theorem 2.5. Suppose that (A2) and (A3) are in force. Then the BSDER
(2.1) has a unique (strong) solution. Furthermore, the process ζt is abso-
lutely continuous with respect to Lebesgue measure, and for any process Vt
such that Vt(ω) ∈ O2(t, ω), ∀t ∈ [0, T ], a.s. , it holds that

(2.6) 〈 dζt
dt
, Yt − Vt 〉 ≤ 0, ∀t ∈ [0, T ], a.s.

Remark 2.6. Suppose m = 1 and O2 = [L,U ], for appropriate processes
L and U . Denote by ζ = ζ+−ζ−, ζ+

0 = ζ−0 = 0, the minimal decomposition
of ζ as a difference of two non-decreasing processes. By replacing V in (2.6)
by

V Lt = Lt1{ dζtdt ≥0} + Yt1{ dζtdt <0},

V Ut = Ut1{ dζtdt ≤0} + Yt1{dζtdt >0}, t ∈ [0, T ],

respectively, we obtain

(2.7) 〈Yt − Lt, dζ+
t 〉 = 0, 〈Yt − Ut, dζ−t 〉 = 0, ∀t ∈ [0, T ], a.s.

Proof of Theorem 2.5. Since the proof is quite lengthy, we shall split it
into several lemmas. To begin with, let us first recall the notion of Yosida
approximation, which is another typical route of attacking the existence and
uniqueness of an SDE with reflection other than using Skorohod problem.

Let ϕ be any proper, lower semicontinuous (l.s.c., for short), convex
function (by proper we mean that ϕ is not identically equal to +∞). Let
D(ϕ) = {x : ϕ(x) <∞}. We define the subdifferential of ϕ, denoted by ∂ϕ,
as

∂ϕ(y)
∆
={x∗ ∈ lRm : 〈x∗, y − x 〉 ≥ 0, ∀x ∈ D(ϕ)}.

In what follows we denote A
∆
= ∂ϕ. Define, for each ε > 0, a function

(2.8) ϕε(y)
∆
= inf
x∈lRm

{ 1

2ε
|y − x|2 + ϕ(x)

}
.
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Since lRm is a Hilbert space, and ϕ is a l.s.c. proper convex mapping, the
the following result can be found in standard text (cf. Barbu [1, Chapter
II]):

Lemma 2.7. (i) The function ϕε is (Fréchet) differentiable.

(ii) The Fréchet differential of ϕε, denoted by Dϕε, satisfies Dϕε = Aε,
where Aε is the Yosida approximation of A, define by

(2.9) Aε(y) =
1

ε
(y − Jε(y)), where Jε(y) = (I + εA)−1(y).

(iii) |Jε(x) − Jε(y)| ≤ |x− y|; |Aε(x)−Aε(y)| ≤ 1
ε |x− y|,

(iv) Aε(y) ∈ ∂ϕ(Jε(y)).

(v) |Aε(y)| ↗ε→0

{
|A0(x)|, if x ∈ O;

+∞, otherwise,
where A0(y)

∆
=Pr∂ϕ(y)(0),

y ∈ lRm.

Let us now specify a l.s.c. proper convex function to fit our discussion.
For any convex, closed subset O ⊆ lRm, we define its indicator function,
denoted by ϕ := IO to be

ϕ(y)
∆
=

{
0 y ∈ O;

+∞ y /∈ O,

In this case, D(ϕ) = O. Now by definitions (2.8) and (2.9), we have

ϕε(y) = inf
x∈O

1

2ε
|y − x|2 =

1

2ε
d2(y,O),

Aε(y) = Dϕε(y) =
1

2ε
∇d2(y,O) =

1

ε
(y − Pr(y,O)),

Consequently, we have

(2.10)


Jε(y) = Pr(y;O), ∀ε > 0;

Aε(y) = 0, ∀y ∈ O, ∀ε > 0;

A0(y) = 0, ∀y ∈ O.

Further, we replace O by the (Hm, d∗)-valued process {O2}, then

(2.11)

ϕε(t, y, ω) =
1

2ε
IO2(t,ω)(y), ∀ε > 0;

Jε(t, y, ω) = (I + εA(t, ·, ω))−1(y);

Aε(t, y, ω) =
1

ε
(y − Jε(t, y, ω)).

By (2.10) we know that Jε(t, y, ω) = Pr(y,O2(t, ω)), and by assumption
(A2) we have that for every ε > 0, Jε(·, y, ·) ∈ L2

F(0, T ; lRm) for all y ∈ lRm.
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Let us now consider the following approximation of (2.1):

(2.12)

Y ε(t) = ξ +

∫ T

t

h(s, Y ε(s), Zε(s))ds−
∫ T

t

Zε(s)dW (s)

−
∫ T

t

Aε(Y
ε(s))ds,

where Aε is the Yosida approximation of A(t, ω) = ∂IO2(t,ω) defined by
(2.11). Since Aε is uniform Lipschitz for each fixed ε, by Lemma 2.7-(iii)
and by slightly modifying the arguments in Chapter 1, §4 to cope with the
current situation where α in (A3) is allowed to be negative, one shows that
(2.12) has a unique strong solution (Y ε, Zε) satisfying

(2.13) E
{

sup
0≤t≤T

|Y ε(t)|2 +

∫ T

0

‖Zε(t)‖2dt
}
<∞.

We will first show that as ε→ 0, (Y ε, Zε) converges in a certain sense, then
show that the limit will give the solution of (2.12). To begin with, we need
some elementary estimates.

Lemma 2.8. Suppose that condition (A3) holds, and that ξ ∈ L2
FT (Ω).

Then there exists a constant C > 0, independent of ε, such that the follow-
ing estimates hold

(2.14)


E
{

sup
t∈[0,T ]

|Y ε(t)|2 +

∫ T

0

|Zε(t)|2dt
}
≤ C;

E
{∫ T

0

|Aε(t, Y ε(t))|2dt
}
≤ C.

Proof. The proof of the first inequality is quite similar to those we
have seen many times before, with the help of the properties of Yosida
approximations listed in §2.2, we only prove the second one. First note that
since O2 is convex, so is ϕε(t, ·, ω) (recall (2.11)). We have the following
inequality (suppressing ω):

(2.15) ϕε(t, y) + 〈Dϕε(t, y), ỹ − y 〉 ≤ ϕε(t, ỹ), ∀(t, y), a.s.

Now let t = t0 < t1 < · · · < tn = T be any partition of [t, T ]. Then (2.15)
leads to that

(2.16)
ϕε(ti, Y

ε(ti)) + 〈Dϕε(ti, Y ε(ti)), Y ε(ti+1)− Y ε(ti) 〉
≤ ϕε(ti, Y ε(ti+1)) ≤ ϕε(ti+1, Y

ε(ti+1)), a.s. ,

where the last inequality is due to Assumption (A3)-iv). Summing both
sides of (2.16) up and letting the mesh size of the partition maxi |ti+1−ti| →
0 we obtain that

(2.17) ϕε(t, Y
ε(t)) +

∫ T

t

〈Dϕε(s, Y ε(s)), dY ε(s) 〉 ≤ ϕε(T, ξ) = 0.
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Thus, recall the equation for Y ε we have

(2.18)

ϕε(t, Y
ε(t)) +

1

ε

∫ T

t

|Dϕε(Y ε(s))|2ds

≤ ϕε(T, ξ) +

∫ T

t

〈Dϕε(s, Y ε(s)), h(s, Y ε(s), Zε(s)) 〉 ds

−
∫ T

t

〈Dϕε(Y ε(s)), ZεdWs 〉 .

By Cauchy-Schwartz inequality and (A3)-(iii),

〈Dϕε(t, y), h(t, y, z) 〉 ≤
1

2ε
|Dϕε(t, y)|2 + εC(1 + ‖z‖2 + |y|2), ∀(t, y, z).

We now recall that ϕε ≥ 0; ξ ∈ O2(T, ·) (i.e., ϕε(T, ξ) = 0); and
Aε(t, y, ω) = Dϕε(t, y, ω). Using the first inequality of this lemma we ob-
tain that

E

∫ T

t

|Aε(t, Y ε(s))|2ds = E

∫ T

t

|Dϕε(Y ε(s))|2ds

≤ C
(
1 + E sup

t∈[0,T ]

|Y ε(t)|2 + E

∫ T

0

‖Zε(t)‖2dt
)
≤ C̃,

where C̃ > 0 is some constant independent of ε. Thus, by a slightly abuse
of notations on the constant C, we obtain the desired estimate.

Lemma 2.9. Suppose that the assumptions of Lemma 2.8 hold. Then
there exists a constant C > 0, such that for any ε, δ > 0, it holds that

(2.19) E
{

sup
t∈[0,T ]

|Y ε(t)− Y δ(t)|2 +

∫ T

0

|Zε(t)− Zδ(t)|2dt
}
≤ (ε+ δ)C.

Proof. Applying Itô’s formula we get

(2.20)

|Y ε(t)− Y δ(t)|2 +

∫ T

t

‖Zε(s)− Zδ(s)‖2ds

+ 2

∫ T

t

〈Aε(s, Y ε(s)) −Aδ(s, Y δ(s)), Y ε(s)− Y δ(s) 〉 ds

=2

∫ T

t

〈h(s, Y ε(s), Zε(s))− h(s, Y δ(s), Zδ(s)), Y ε(s)− Y δ(s) 〉ds

− 2

∫ T

t

〈 Y ε(s)− Y δ(s), [Zε(s)− Zδ(s)]dW (s) 〉 .

Since Aε(t, y, ω) ∈ ∂ϕ(Jε(y)), we have by definition that

〈Aε(t, y, ω), Jε(t, y, ω)− x 〉 ≥ 0, ∀ x ∈ O2(t, ω).
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In particular for any ỹ ∈ lRm, and any δ > 0, Jδ(t, ỹ, ω) ∈ O2(t, ω) and
therefore

〈Aε(t, y, ω), Jε(t, y, ω)− Jδ(t, ỹ, ω) 〉 ≥ 0, ∀ ỹ ∈ lRm, a.e.ω ∈ Ω.

Similarly,

〈Aδ(t, ỹ, ω), Jδ(t, ỹ, ω)− Jε(t, y, ω) 〉 ≥ 0, ∀ y ∈ lRm, a.e.ω ∈ Ω.

Consequently, we have (suppressing ω)

(2.21)

〈Aε(t, y)−Aδ(t, ỹ), y − ỹ 〉
= 〈Aε(t, y), [y − Jε(t, y)] + [Jε(t, y)− Jδ(t, ỹ)] + Jδ(t, ỹ)− ỹ 〉

+ 〈Aδ(t, ỹ), [ỹ − Jδ(t, ỹ)] + [Jδ(t, ỹ)− Jε(t, y)] + Jε(t, y)− y 〉
≥ − 〈Aε(t, y), δAδ(t, ỹ) 〉− 〈Aδ(t, ỹ), εAε(t, y) 〉
= − (ε+ δ) 〈Aε(t, y), Aδ(t, ỹ) 〉 .

Also, some standard arguments using Schwartz inequality lead to that

(2.22) 2 〈h(t, y, z)− h(t, ỹ, z̃), y − ỹ 〉 〉 ≤ 1

2
‖z − z̃‖2 + C|y − ỹ|2.

Combining (2.20)—(2.22) and using the Burkholder and Gronwall inequal-
ities we obtain, for some constant C > 0,

E
{

sup
t∈[0,T ]

|Y ε(t)− Y δ(t)|2 +

∫ T

0

‖Zε(t)− Zδ(t)‖2dt
}

≤(ε+ δ)E

∫ T

0

∣∣∣ 〈Aε(t, Y ε(t)), Aδ(t, Y δ(t)) 〉 ∣∣∣dt
≤(ε+ δ)

{
E

∫ T

0

|Aε(Y ε(t))|2dt · E
∫ T

0

|Aδ(Y δ(t))|2dt
} 1

2 ≤ (ε+ δ)C,

thanks to (2.14). This proves the Lemma.

As a direct consequence of Lemma 2.8, we see that if we send ε to
zero along an arbitrary sequence {εn}, then there exist processes Y ∈
L2
F(Ω;C([0, T ]; lRm)), Z ∈ L2

F(Ω × [0, T ]; lRm)), independent of the choice
of the sequence {en} chosen, such that

(Y n, Zn)
∆
=(Y εn , Zεn)→ (Y, Z), as n→∞,

strongly in L2
F(Ω;C([0, T ]; lRm))× L2

F(Ω× [0, T ]; lRm).
Furthermore, by Lemma 2.8 and the equation (2.12), it follows that

for some η ∈ L2
F(0, T ; lRm), ζ ∈ L2

F(Ω;C([0, T ]; lRm)), and possibly along a
subsequence which we still denote by {εn}, it holds that

Aεn(Y εn(·))→ −η(·), weakly in L2
F(0, T ; lRm);

E
{

sup
0≤t≤T

∣∣∣ ∫ t

0

Aεn(Y εn(s))ds + ζ(t)
∣∣∣2}→ 0, as n→∞.
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Here, we use −η and −ζ to match the signs in (2.1) and (2.12). Obviously,
we see that the limiting processes Y , Z, and ζ will satisfy the SDE (2.1),
and the proof of Theorem 2.6 will be complete after we prove the following
lemma.

Lemma 2.10. Suppose that the process (Y, Z), η, and ζ are defined as
before. Then (Y, Z, ζ) satisfies (2.11), such that

(i) E|ζ|(T ) = E
∫ T

0
|η(t)|dt <∞;

(ii) Y (t) ∈ O2(t, ·), ∀t ∈ [0, T ], a.s.;

(iii) for any RCLL, {Ft}t≥0-adapted process V , 〈Y (t)−V (t), η(t) 〉 ≤ 0,
a.s., as a signed measure.

Proof. (i) We first show that ζ has absolutely continuous paths al-
most surely and that ζ̇ = η. To see this, note that η is the weak limit of
Aεn(Y εn)’s. By Mazur’s theorem, there exists an convex combination of

Aεn(Y εn)’s, denoted by Ãεn(Y εn), such that Ãεn(Y εn) → η, strongly in
L2
F(Ω× [0, T ]; lRm)). Note that for this sequence of convex combinations of

the sequence Aεn(Y εn), we also have

E
{

sup
0≤t≤T

∣∣∣ ∫ t

0

Ãεn(Y εn(s))ds + ζ(t)
∣∣∣2}→ 0, as n→∞.

Thus the uniqueness of the limit implies that ζ(t) =
∫ t

0
η(s)ds, ∀t ∈ [0, T ].

Furthermore, since L2
F(Ω) ⊆ L1(Ω), we derive (i) immediately.

(ii) In what follows we denote d(y, t, ω) = d(y,O2(t, ω)). Since O2(t, ω)
is convex for fixed (t, ω), d(·,O2(t, ω)) is a convex function. Further, since
O2 has smooth boundary, one derives from (2.9) that

d(y, t, ω) = |y − Pr(y,O2(t, ω))| = |y − Jε(y)| = ε|Aε(y, t, ω)|.

for all y ∈ lRm, and t ∈ [0, T ], P -a.s.. Hence by part (i), we see that

(2.23)

E

∫ T

0

d(Y ε(t), t, ω)dt ≤ εE
∫ T

0

|Aε(Y ε(t))|dt

≤ ε
√
TE
{∫ T

0

|Aε(Y ε(t))|2dt
} 1

2 → 0.

Next, define for each (t, ω) ∈ [0, T ]× Ω the conjugate function of d(·, t, ω)
by

(2.24) G(z, t, ω)
∆
= inf

y
{d(y, t, ω)− 〈 z, y 〉},

and define the effective domain of G by

(2.25) DG(t, ω) = {z ∈ lR : G(z, t, ω) > −∞}.

Since d(·, t, ω) is convex and continuous everywhere, it must be identi-
cal to its biconjugate function, or equivalently, its closed convex hull (see
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Hiriart-Urruty-Lemaréchal [1]). Consequently, the following conjugate re-
lation holds:

(2.26) d(y, t, ω) = sup
z∈DG(t,ω)

{G(z, t, ω) + 〈 z, y 〉};

and both the infimum of (2.24) and the supremum of (2.26) are achieved
for every fixed (t, ω). Now for fixed (t, ω), and any z0 ∈ DG(t, ω), we let
y0 = y0(t, ω) be the minimizer in (2.24). Then

d(y0, t, ω)− 〈 y0, z0 〉 = G(z0, t, ω) ≤ d(y, t, ω)− 〈 y, z0 〉, ∀y ∈ lRn,

and hence

〈 y − y0, z0 〉 ≤ d(y, t, ω)− d(y0, t, ω), ∀y ∈ lRn.

Since it is easily checked that d(·, t, ω) is uniformly Lipschitz with Lipschitz
constant 1, we deduce from above that |z0| ≤ 1. Namely DG(t, ω) ⊆ [−1, 1].

Now let Y be the limit process of Y εn , we apply a measurable selec-
tion theorem to obtain a (bounded) {Ft}t≥0-adapted process R, such that
R(t, ω) ∈ DG(t, ω) ⊆ [−1, 1], ∀t, a.s. ; and

(2.27)

{
d(Y (t, ω), t, ω) = G(R(t, ω), t, ω) + 〈R(t, ω), Y (t, ω)),

d(Y εn(t, ω), t, ω) ≥ G(R(t, ω), t, ω) + 〈R(t, ω), Y εn(t, ω)),

Therefore, recall that Y εn → Y , we have

E

∫ T

0

d(Y (t), t, ·)dt = E

∫ T

0

{
G(Y (t), t, ·) + 〈R(t), Y (t) 〉 dt

= lim
n→∞

E

∫ T

0

{
G(Y (t), t, ·) + 〈R(t), Y n(t) 〉 dt

≤ lim
n→∞

E

∫ T

0

d(Y εn(t), t, ·)dt = 0,

thanks to (2.23). That is, E
∫ T

0
d(Y (t), t, ·)dt = 0, which implies that

Y (t, ω) ∈ O2(t, ω), dt× dP-a.e. Thus the conclusion follows from the con-
tinuity of the paths of Y .

(iii) Let V (t) be any {Ft}t≥0-adapted process such that V (t, ω) ∈
O2(t, ω), ∀t ∈ [0, T ], P -a.s. For every ε > 0, and t ∈ [0, T ], consider

(2.28) Λε(t) = E

∫ t

0

〈Jε(Y ε(s))− V (s), Aε(Y
ε(s)) 〉 ds.

Since V (t) ∈ O2(t, ·), for all t, and Aε(Y
ε(t)) ∈ ∂IO2(t,·)(Jε(Y

ε(t)) (see
Lemma 2.7-(iv)), we have

〈Jε(Y ε(t))− V (t), Aε(t, Y
ε(t)) 〉 ≥ 0.
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Namely, Λε(t) ≥ 0, ∀ε > 0 and t ∈ [0, T ]. On the other hand, since

(2.29)

Λε(t) = E

∫ t

0

{
〈Jε(Y ε(s))− Y ε(s), Aε(s, Y ε(s)) 〉

+ 〈Y ε(s)− V (s), Aε(s, Y
ε(s)) 〉

}
ds

= E

∫ t

0

{
− ε|Aε(s, Y ε(s))|2+〈Y ε(s)− V (s), Aε(s, Y

ε(s)) 〉
}
ds

Now using the uniform boundedness (2.14) and the weak convergence
of {Aεn(·, Y εn)(·))}, and the fact that Y εn converges to Y strongly in
L2
F(Ω;C([0, T ]; lRm)), one derives easily by sending n→∞ in (2.29) that

0 ≤ E
∫ t

0

〈Y (s)− V (s),−η(s) 〉 ds, ∀t ∈ [0, T ].

Or equivalently,

〈 Y (t)− V (t), η(t) 〉 = 〈Y (t)− V (t),
dζ

dt
(t) 〉 ≤ 0, ∀t ∈ [0, T ], a.s.

as a (random) signed measure. Thus completes the proof of Lemma 2.10.

§3. Reflected Forward-Backward SDEs

We are now ready to formulate forward-backward SDEs with reflection
(FBSDER, for short). Let O1 be a closed, convex domain in lRn, and
O2 = {O2(t, ω) : (t, ω) ∈ [0, T ] × lRn × Ω} be a family of closed, convex
domains in lRm. Let x ∈ O1, and g : lRn × Ω 7→ lRm be a given FT -
measurable random field satisfying

(3.1) g(x, ω) ∈ O2(T, ω), ∀(x, ω).

Consider the following FBSDER:

(3.2)


Xt = x+

∫ t

0

b(s,Xs, Ys, Zs)ds+

∫ t

0

σ(s,Xs, Ys, Zs)dWs + ηt;

Yt = g(XT ) +

∫ T

t

h(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs + ζT − ζt;

Definition 3.1. A quintuple of processes (X,Y, Z, η, ζ) is called an adapted
solution of the FBSDER (3.2) if
1) (X,Y ) ∈ L2

F(Ω, C(0, T ; lRn × lRm)), Z ∈ L2
F(0, T ; lRm×d), (η, ζ) ∈

BVF (0, T ; lRn × lRm);
2) Xt ∈ O1, Yt ∈ O2(t, ·), ∀t ∈ [0, T ], a.s. ;

3) |η|t =
∫ t

0 1{Xs∈∂O1}d|η|s; ηt =
∫ t

0 γsd|η|s, ∀t ∈ [0, T ], a.s. , for some
progressively measurable process γ such that γs ∈ NXs(O1), d|η|-a.e. ;

4) for all RCLL and progressively measurable processes U such that Ut ∈
O2(t, ·), ∀t ∈ [0, T ], a.s. , one has 〈Yt − Ut, dζt 〉 ≤ 0, ∀t ∈ [0, T ], a.s. ;
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5) (X,Y, Z, η, ζ) satisfies the SDE (3.2) almost surely.

In light of assumptions (A1)-(A3), we will assume the following

(A4) (i) O1 has smooth boundary;
(ii) O2(t, ω) ⊆ O2(s, ω), ∀t ≥ s, a.s.; and for fixed y ∈ lRm, the map-

ping (t, ω) 7→ β(t, y, ω)
∆
=Pr(y;O2(t, ω) belongs to L2

F([0, T ]; lRm).
(iii) The coefficients b, h, σ, and g are random fields defined on

[0, T ] × lRn × lRm × lRm×d such that for fixed (x, y, z), the pro-
cesses b(·, x, y, z, ·), h(·, x, y, z, ·), and σ(·, x, y, z, ·) are {Ft}t≥0-
progressively measurable, and g(x, ·) is FT -measurable.

(iv) For fixed (t, x, z) and a.e. ω, h(t, x, ·, z, ω) is continuous, and there
exists a constantK > 0 such that |h(t, x, y, z, ω)| ≤ K(1+ |x|+ |y|),
for all (t, x, y, z, ω). Moreover,

E

∫ T

0

|b(t, 0, 0, 0)|2dt+ E

∫ T

0

|σ(t, 0, 0, 0)|2dt+ E|g(0)|2 <∞.

(v) There exist constants ki ≥ 0, i = 1, 2 and γ ∈ lR such that for all

(t, ω) ∈ [0, T ] × Ω and x
∆
=(x, y, z),xi

∆
=(xi, yi, zi) ∈ lRn × lRm ×

lRm×d, i = 1, 2, and x0 ∆
=(x, y) for x = (x, y, z).

• |b(t,x1, ω)− b(t,x2, ω)| ≤ K|x1 − x2|;
• 〈h(t, x, y1, z, ω)− h(t, x, y2, z, ω), y1 − y2 〉 ≤ γ|y1 − y2|2;
• |h(t, x1, y, z1, ω)− h(t, x2, y, z2, ω)| ≤ K(|x1 − x2|+ ‖z1 − z2‖);
• ‖σ(t,x1, ω)− σ(t,x2, ω)‖2 ≤ K2|x0

1 − x0
2|2 + k2

1‖z1 − z2‖2;
• |g(x1, ω)− g(x2, ω)| ≤ k2|x1 − x2|.

We should note that if k1 = k2 = 0, then σ and g are independent
of z, just as the many cases we considered before. Therefore, the FBSDE
considered in this chapter is more general. We note also that the method
presented here should also work when there is no reflection involved (e.g.,
O1 = lRn, O2 ≡ lRm).

§3.1. A priori estimates

We first establish a new type of a priori estimates that is different from
what we have seen in the previous chapters. To simplify notations we shall
denote, for t ∈ [0, T ), H(t, T ) = L2

F(t, T ; lR), and let Hc(t, T ) be the subset
of H(t, T ) consisting of all continuous processes. For any λ ∈ lR, define an
equivalent norm on H(t, T ) by:

‖ξ‖t,λ ∆
=
{
E

∫ T

t

e−λs|ξ(s)|2ds
} 1

2

.

Then Hλ(t, T )
∆
={ξ ∈ H(t, T ) : ‖ξ‖t,λ < ∞} = H(t, T ). We shall also use

the following norm on Hc(t, T ):

ξ t,λ,β
∆
= e−λTE|ξT |2 + β‖ξ‖2t,λ, ξ ∈ Hc(t, T ), λ ∈ lR, β > 0,
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and denote Hλ,β(t, T ) to be the completion of Hc(t, T ) under norm · t,λ,β.
Then for any λ and β, Hλ,β(t, T ) is a Banach space. Further, if t = 0, we

simply denote ‖·‖λ ∆
= ‖·‖0,λ; · 2

λ,β

∆
= · 2

0,λ,β ; H = H(0, T ); Hc = Hc(0, T );
Hλ = Hλ(t, T ), and Hλ,β = Hλ,β(t, T ).

Moreover, the following functions will be frequently used in this section:
for λ ∈ lR and t ∈ [0, T ],

(3.3) A(λ, t) = e−(λ∧0)t; B(λ, t) =
1− e−λt

λ
= t

∫ 1

0

e−λtθdθ.

It is easy to see that, for all λ ∈ lRn, B(λ, ·) is a nonnegative, increasing
function, A(λ, t) ≥ 1; and B(λ, 0) = 0, A(λ, 0) = 1.

Lemma 3.2. Let (A4) hold. Let (X,Y, Z, η, ζ) and (X ′, Y ′, Z ′, η′, ζ′)

be two solutions to the FBSDER (3.2), and let ξ̂
∆
= ξ − ξ′, where ξ =

X,Y, Z, η, ζ, respectively.
(i) Let λ ∈ lR, C1, C2 > 0, and let λ̄1 = λ −K(2 + C−1

1 + C−1
2 ) −K2.

Then, for all λ′ ∈ lR,

(3.4)

e−λtE|X̂t|2 + (λ̄1 − λ′)
∫ t

0

e−λτe−λ
′(t−τ)E|X̂τ |2dτ

≤
∫ t

0

e−λτe−λ
′(t−τ){K(C1 +K)E|Ŷτ |2 + (KC2 + k2

1)E|Ẑτ |2}dτ.

(ii) Let λ ∈ lR and C3, C4 > 0, and let λ̄2 = −λ− 2γ−K(C−1
3 +C−1

4 ).
Then, for all λ′ ∈ lR,

(3.5)

e−λtE|Ŷt|2 + (λ̄2 − λ′)
∫ T

t

e−λτe−λ
′(τ−t)E|Ŷτ |2dτ

+ (1 −KC4)

∫ T

t

e−λτe−λ
′(τ−t)E|Ẑτ |2dτ

≤ k2
2e
−λT e−λ

′(T−t)E|X̂T |2 +KC3

∫ T

t

e−λτe−λ
′(τ−t)|X̂τ |2dτ

Consequently, if KC4 = 1− α for some α ∈ (0, 1), then

(3.6) e−λTE|X̂T |2 + λ̄1‖X̂‖2λ ≤ K(C1 +K)‖Ŷ ‖2λ + (KC2 + k2
1)‖Ẑ‖2λ.

(3.7) ‖X̂‖2λ ≤ B(λ̄1, T )[K(C1 +K)‖Ŷ ‖2λ + (KC2 + k2
1)‖Ẑ‖2λ].

(3.8) ‖Ŷ ‖2λ ≤ B(λ̄2, T )[k2
2e
−λTE|X̂T |2 +KC3‖X̂‖2λ],

(3.9) ‖Ẑ‖2λ ≤
A(λ̄2, T )

α
[k2

2e
−λTE|X̂T |2 +KC3‖X̂‖2λ].

Proof. We first show (3.4). Let t ∈ (0, T ], λ, λ′ be arbitrarily given, and

consider the function Ft(s, x)
∆
= e−λse−λ

′(t−s)|x|2, for (s, x) ∈ [0, t] × lRn.
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Applying Itô’s formula to Ft(s, X̂s) from 0 to t, and then taking expectation
we have

e−λtE|X̂t|2 + (λ− λ′)E
∫ t

0

e−λτe−λ
′(t−τ)|X̂τ |2dτ

=

∫ t

0

e−λτe−λ
′(t−τ)

{
2 〈 X̂τ , b(τ,Xτ , Yτ , Zτ )− b(τ,X ′τ , Y ′τ , Z ′τ ) 〉

+ ‖σ(τ,Xτ , Yτ , Zτ )− σ(τ,X ′τ , Y
′
τ , Z

′
τ )‖2

}
dτ

+ 2E

∫ t

0

e−λτe−λ
′(t−τ) 〈 X̂τ , dη̂τ 〉 .

Since Xt, X
′
t ∈ O1, ∀t ∈ [0, T ], a.s. , we derive from Definition 3.1-(3)

that e−λte−λ
′(t−τ) 〈 X̂t, dη̂τ 〉 ≤ 0 (as a signed measure), ∀s ∈ [0, T ], a.s. .

Therefore, repeatedly applying the Schwartz inequality and the inequality
2ab ≤ ca2 + c−1b2, ∀c > 0, using the definition of λ̄1, together with some
elementary computation with the help of (A4), we derive (3.4).

To prove (3.5), we let F̃t(s, x) = e−λse−λ
′(s−t)|x|2, and apply Itô’s

formula to F̃t(s, Ys) from t to T to get

e−λtE|Ŷt|2 + (λ′ + λ)E

∫ T

t

e−λτe−λ
′(τ−t)|Ŷτ |2dτ

+ E

∫ T

t

e−λτe−λ
′(τ−t)‖Ẑτ‖2dτ

= e−λT e−λ
′(T−t)E|g(XT )− g(X ′T )|2

+ 2

∫ T

t

e−λ
′(τ−t)e−λτ 〈 Ŷτ , h(τ,Xτ , Yτ , Zτ )− h(τ,X ′τ , Y ′τ , Z ′τ ) 〉 dτ

+ 2E

∫ T

t

e−λ
′(τ−t)e−λτ 〈 Ŷτ , dζ̂τ 〉 .

Again, since Y (t, ·), Y ′(t, ·) ∈ O2(t, ·), P -a.s., by Definition 3.1-(4) we have

〈 Ŷt(ω), dζ̂t(ω) 〉 ≤ 0, dt × dP -a.s.. Thus, by using the similar argument as
before, and using the definition of λ̄2, we obtain (3.5).

Now, letting λ′ = 0 and t = T in (3.4) yields (3.6); letting λ′ = λ̄1 in
(3.4) and then integrating both sides from 0 to T yields (3.7), since B(λ1, ·)
is increasing; letting λ′ = λ̄2 in (3.5) and integrating from 0 to T yields
(3.8). Finally, note that if λ̄2 ≤ 0, then letting λ′ = λ̄2 and t = 0 in (3.5)
one has (remember KC4 = 1− α)

‖Ẑ‖2λ ≤
∫ T

0

e−λτe−λ̄2(τ−t)‖Ẑτ‖2dτ

≤ e|λ̄2|T

α

{
k2

2e
−λTE|X̂T |2 +KC3‖X̂‖2λ

}
;
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while if λ̄2 > 0, then let λ′ = 0 in (3.4) one has

‖Ẑ‖2λ ≤
1

α

{
k2

2e
−λTE|X̂T |2 +KC3‖X̂‖2λ

}
.

Combining the above we obtain (3.9).

We now present another set of useful a priori estimates for the adapted
solution to FBSDER (3.2). Denote σ0(t, ω) = σ(s, 0, 0, 0, ω), f0(t, ω) =
f(s, 0, 0, 0, ω), h0(t, ω) = h(t, 0, 0, 0, ω), and g0(ω) = g(0, ω).

Lemma 3.3. Assume (A4). Let (X,Y, Z, η, ζ) be an adapted solution to
the FBSDER (3.2). For any λ, λ′ ∈ lR, ε > 0, C1, C2, C3, C4 > 0, we define
λ̄ε1 = λ̄1− (1 +K2)ε and λ̄ε2 = λ̄2− ε, where λ̄1 and λ̄2 are those defined in
Lemma 3.2. Then

(3.10)

e−λtE|Xt|2 + (λ̄ε1 − λ′)
∫ t

0

e−λ
′(t−τ)e−λsE|Xτ |2dτ ≤ e−λ

′t|x|2

+

∫ t

0

e−λ
′(t−τ)e−λτ

{1

ε
E|f(τ, 0, 0, 0)|2 +

(
1 +

1

ε

)
|σ(τ, 0, 0, 0)|2

+K(C1 +K(1 + ε))E|Yτ |2 + (KC2 + k2
1(1 + ε))E|Zτ |2

}
dτ.

and

(3.11)

e−λtE|Yt|2 + (λ̄ε2 − λ′)
∫ T

t

e−λ
′(τ−t)e−λτE|Yτ |2dτ

+ (1− k4C4)

∫ T

t

e−λ
′(τ−t)e−λτE|Zτ |2dτ

≤k2
2(1 + ε)e−λ

′(T−t)e−λTE|XT |2 +

(
1+

1

ε

)
e−λ

′(T−t)e−λTE|g(0)|2

+

∫ T

t

e−λ
′(τ−t)e−λτ

{
KC3E|Xτ |2 +

1

ε
E|h(τ, 0, 0, 0)|2

}
dτ.

Consequently, if C4 = 1−α
K

, for some α ∈ (0, 1), we have

(3.12)

e−λTE|XT |2 + λ̄ε1‖X‖2λ ≤
[
|x|2 +K(C1 +K(1 + ε))‖Y ‖2λ

+ (KC2 + k2
1(1 + ε))‖Z‖2λ +

1

ε
‖f0‖2λ +

(
1 +

1

ε

)
‖σ0‖2λ

]
.

(3.13)

‖X‖2λ ≤ B(λ̄ε1, T )

[
|x|2 +K(C1 +K(1 + ε))‖Y ‖2λ

+ (KC2 + k2
1(1 + ε))‖Z‖2λ +

1

ε
‖f0‖2λ +

(
1 +

1

ε

)
‖σ0‖2λ

]
.
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(3.14)

‖Y ‖2λ ≤ B(λ̄ε2, T )

[
k2

2(1 + ε)e−λTE|XT |2 +KC3‖X‖2λ

+

(
1 +

1

ε

)
e−λTE|g0|2 +

1

ε
‖h0‖2λ

]

(3.15)

‖Z‖2λ ≤
A(λ̄ε2, T )

α

[
k2

2(1 + ε)e−λTE|XT |2 +KC3‖X‖2λ

+

(
1 +

1

ε

)
e−λTE|g0|2 +

1

ε
‖h0‖2

]
.

§3.2. Existence and uniqueness of the adapted solutions

We are now ready to study the well-posedness of the FBSDER (3.2). To
begin with we introduce a mapping Γ : Hc 7→ Hc defined as follows: for

fixed x ∈ lRn, let X
∆
=Γ(X) be the solution to the FSDER:

(3.16) Xt = x+

∫ t

0

b(s,Xs, Ys, Zs)ds+

∫ t

0

σ(s,Xs, Ys, Zs)dWs + ηt,

where the processes Y and Z are the solution to the following BSDER:

(3.17) Yt = g(XT ) +

∫ T

t

h(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs + ζT − ζt.

Clearly, the assumption (A4) enables us to apply Theorem 2.5 to con-
clude that the BSDER (3.17) has a unique solution (Y, Z, ζ), which in turn
guarantees the existence and uniqueness of the adapted solution X to the
FSDER (3.16), thanks to Theorem 1.2. Furthermore, by definition of λε1
(Lemma 3.3) we see that if λ is chosen so that λ̄1 > 0, then it is always
possible to choose ε > 0 small enough so that λ̄ε1 > 0 as well; and (3.12) will
lead to X ∈ Hλ,λ̄1

(since λ̄1 > 0 and λ̄ε1 > 0). Let us try to find a suitable

λ̄1 > 0 so that Γ is a contraction on Hλ,λ̄1
, which will lead to the existence

and uniqueness of the adapted solution to the FBSDER (3.2) immediately.

To this end, let X1, X2 ∈ Hc; and let (Y i, Zi, ζi) and (X
i
, ηi), i = 1, 2,

be the corresponding solutions to (3.17) and (3.16), respectively. Denote
∆ξ = ξ1 − ξ2, for ξ = X,Y, Z,X. Applying (3.6)–(3.9) (with C4 = 1−α

K )
we easily deduce that

(3.18)
e−λTE|∆XT |2 + λ̄1‖∆X‖2λ

≤ µ(α, T ){k2
2e
−λTE|∆XT |2 +KC3‖∆X‖2λ}.

where

(3.19) µ(α, T )
∆
=K(C1 +K)B(λ̄2, T ) +

A(λ̄2, T )

α
(KC2 + k2

1);

and (recall Lemma 3.2)

(3.20) λ̄1 = λ−K(2+C−1
1 +C−1

2 )−K2; λ̄2 = −λ−2γ−K(C−1
3 +C−1

4 ).
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Clearly, the function µ(·, ·) depends on the constants K, k1, k2, γ, the du-
ration T > 0, and the choice of C1–C4 as well as λ, α. To compensate the
generality of the coefficients, we shall impose the following compatibility
conditions.

(C-1) 0 ≤ k1k2 < 1;

(C-2) k2 = 0; ∃α ∈ (0, 1) such that µ(α, T )KC3 < λ̄1,

(C-3) k2 > 0; ∃α0 ∈ (k1k2, 1), such that µ(α2
0, T )k2

2 < 1 and λ̄1 = KC3

k2
2

.

We remark here that the compatibility condition (C-1) is not a surprise.
We already saw it in Chapter 1 (Theorem 1.5.1). In fact, in Example 1.5.2
we showed that such a condition is almost necessary for the solvability of
an FBSDE with general coefficients, even in non-reflected cases with small
duration. The first existence and uniqueness result for FBSDER (3.2) is
the following.

Theorem 3.4. Assume (A4) and fix C4 =
1−α2

0

K . Assume that the compat-
ibility conditions (C-1), and either (C-2) or (C-3) hold for some choices of
constants λ, α, and C1–C3. Then the FBSDER (3.2) has a unique adapted
solution over [0, T ].

Proof. Fix C4 =
1−α2

0

K
. First assume that (C-1) and (C-2) hold. Since

k2 = 0, (3.18) leads to that

‖∆X‖2λ ≤
µ(α, T )KC3

λ̄1
‖∆X‖2λ,

Since we can find C1—C3 and α ∈ (0, 1) so that µ(α, T )KC3 < 1, Γ is a
contraction mapping on (H, ‖ · ‖λ). The theorem follows.

Similarly, if (C-1) and (C-3) hold, then we can solve λ from (3.20) and
λ̄1 = KC3/k

2
2 , and then derive from (3.18) that

∆X 2
λ0,λ̄1

≤ µ(α2
0, T )k2

2 ∆X 2
λ0,λ̄1

,

Let Ci, i = 1, 2, 3 and α0 ∈ (k1k2, 1) be such that µ(α2
0, T )k2

2 < 1, the
mapping Γ is again a contraction, but on the space Hλ,λ̄1

, proving the
theorem again.

A direct consequence of Theorem 3.4 is the following.

Corollary 3.5. Assume (A4) and the compatibility condition (C-1). Then
there exists T0 > 0 such that for all T ∈ (0, T0], the FBSDER (3.2) has a
unique adapted solution.

In particular, if either k1 = 0 or k2 = 0, then the FBSDER (3.2) is
always uniquely solvable on [0, T ] for T small.

Proof. First assume k2 = 0. In light of Theorem 3.4 we need only show
that there exists T0 = T0(C1, C2, C3, λ, α) such that (C-2) holds for some
choices of C1–C3 and λ, α, for all T ∈ (0, T0].
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For fixed C1, C2, C3, λ, and α ∈ (0, 1) we have from (3.19) that

µ(α, 0)KC3 =
(KC2 + k2

1)KC3

α
.

Therefore, let C1–C3 and α be fixed we can choose λ large enough so that
µ(α, 0)KC3 < λ̄1 holds. Then, by the continuity of the functions A(α, ·)
and B(α, ·), for this fixed λ we can find T0 > 0 such that µ(α, T )KC3 < λ̄1

for all T ∈ (0, T0]. Thus (C-2) holds for all T ∈ (0, T0] and the conclusion
follows from Theorem 3.4.

Now assume that k2 > 0. In this case we pick an α0 ∈ (k1k2, 1), and
define

(3.21) δ
∆
=

1

k2
2

− k2
1

α2
0

> 0.

Now let C2 =
α2

0δ

2K , C4 =
1−α2

0

K
, and choose λ so that λ̄1 = (k3C3)/k

2
2 > 0.

Since in this case we have

µ(α2
0, 0) =

KC2 + k2
1

α2
0

=
1

2k2
2

+
k2

1

2α2
0

<
1

k2
2

,

thanks to (3.21). Using the continuity of µ(α2
0, ·) again, for any C1, C3 > 0

we can find T0(C1, C3) > 0 such that µ(α2
0, T )k2

2 < 1 for all T ∈ (0, T0].
In other words, the compatibility condition (C-3) holds for all T ∈ (0, T0],
proving our assertion again.

Finally if k1 = 0, then (C-1) becomes trivial, thus the corollary always
holds.

From the proofs above we see that there is actually room for one to play
with constant C1–C3 to improve the “maximum existence interval” [0, T0).
A natural question is then is there any possibility that T0 =∞ so that the
FBSDER (3.2) is solvable over arbitrary duration [0, T ]? Unfortunately,
so far we have not seen an affirmative answer for such a question, even
in the non-reflecting case, under this general setting. Furthermore, in the
reflecting case, even if we assume all the coefficients are deterministic and
smooth, it is still far from clear that we can successfully apply the method
of optimal control or Four Step Scheme (Chapters 3 and 4) to solve an
FBSDER, because the corresponding PDE will become a quasilinear varia-
tional inequality, thus seeking its classical solution becomes a very difficult
problem in general.

We nevertheless have the following result that more or less covers a
class of FBSDERs that are solvable over arbitrary durations.

Theorem 3.6. Assume (A4) and the compatibility condition (C-1). Then
there exists a constant Λ > 0, depending only on the constants K, k1, k2,
such that whenever γ < −Λ, the FBSDER (3.2) has a unique adapted
solution for all T > 0.

Proof. We shall prove that either (C-2) or (C-3) will hold for all T > 0
provided γ is negative enough, and we shall determine the constant Λ in
each case, separately.



§3. Reflected FBSDEs 189

First assume k2 = 0. In this case let us consider the following mini-
mization problem with constraints:

(3.22) min
Ci>0, i=1,2,3;λ̄1>0,0<α<1,

λ̄1−2K(KC2+k2
1

)C3>0

F (C1, C2, C3, λ̄1, α),

where

(3.23)
F (C1, C2, C3, λ̄1, α)

∆
=

(C1 +K)K2C3

λ̄1 − 2(KC2 + k2
1)KC3

+ λ̄1

+K(2 + C−1
1 + C−1

2 + C−1
3 ) +K2

(2− α
1− α

)
.

Let Λ be the value of the problem (3.22) and (3.23). We show that if
γ < −Λ/2, then (C-2) holds for all T > 0.

Indeed, if γ < −Λ/2, then we can find C1, C2, C3, λ̄1 > 0 and α ∈ (0, 1),
such that λ̄1 − 2(KC2 + k2

1)KC3 > 0, and

(3.24)
−2γ >

(C1 +K)K2C3

λ̄1 − 2(KC2 + k2
1)KC3

+ λ̄1

+K(2 + C−1
1 + C−1

2 + C−1
3 ) +K2

(2− α
1− α

)
.

On the other hand, eliminating λ in the expressions of λ̄1 and λ̄2 in (3.20),

and letting C4 = (1−α)
K we have

λ̄2 = −
(
λ̄1 +K(2 + C−1

1 + C−1
2 + C−1

3 ) +
K2

1− α +K2
)
− 2γ.

Thus (3.24) is equivalent to

(3.25)
1

λ̄1

{K(C1 +K)

λ̄2
+

(KC2 + k2
1)

α

}
KC3 < 1,

and λ̄2 > 0. Consequently, A(λ̄2, T ) = 1 and B(λ̄2, T ) ≤ λ̄−1
2 (recall (3.3));

and (3.25) implies that µ(α, T )KC3 < λ̄1, i.e., (C-2) holds for all T > 0.
Now assume k2 > 0. Following the arguments in Corollary 3.5 we

choose λ̄1 = KC3

k2
2
> 0, C4 =

1−α2
0

K , and α0 ∈ (k1k2, 1). Let δ > 0 be that

defined by (3.21), and consider the minimization problem:

(3.26) min
Ci>0, i=1,2,3;

δα2
0
−KC2>0

F̃ (C1, C2, C3),

where

(3.27)

F̃ (C1, C2, C3)
∆
=
α2

0K(C1 +K)

δα2
0 −KC2

+K(2 + C−1
1 + C−1

2 + C−1
3 )

+
KC3

k2
2

+K2
(2− α2

0

1− α2
0

)
.
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Let Λ be the value of the problem (3.26) and (3.27), one can show as in
the previous case that if γ < −Λ/2, then λ̄2 > 0 (hence A(λ̄2, T ) = 1 and
B(λ̄2, T ) ≤ λ̄−1

2 ), and µ(α2
0, T )k2

2 < 1. Namely (C-3) holds for all T > 0.
Combining the above we proved the theorem.

§3.3. A continuous dependence result

In many applications one would like to study the dependence of the adapted
solution of an FBSDE on the initial data. For example, suppose that there
exists a constant T > 0 such that the FBSDER (3.2) is uniquely solv-
able over any duration [t, T ] ⊆ [0, T ], and denote its adapted solution by
(Xt,x, Y t,x, Zt,x, ηt,x, ζt,x). Then an interesting question would be how the
random field (t, x) 7→ (Xt,x, Y t,x, Zt,x, ηt,x, ζt,x) behaves. Such a behav-
ior is particularly useful when one wants to relate an FBSDE to a partial
differential equation, as we shall see in the next chapter.

In what follows we consider only the case when m = 1, namely, the
BSDER is one dimensional. We shall also make use of the following as-
sumption:

(A5) (i) The coefficients b, h, σ, g are deterministic;
(ii) The domains {O2(·, ·)} are of the form O(s, ω) = O2(s,X

t,x(s, ω)),
(s, ω) ∈ [t, T ] × lRn, where O2(t, x) = (L(t, x), U(t, x)), where L(·, ·) and
U(·, ·) are smooth deterministic functions of (t, x).

We note that the part (ii) of assumption (A5) does not cover, and is
not covered by, the assumption (A4) with m = 1. This is because when
m = 1 the domain O2 is simply an interval, and can be handled differently
from the way we presented in §2 (see, e.g., Cvitanic & Karatzas [1]). Note
also that if we can bypass §2 to derive the solvability of BSDERs, then
the method we presented in the current section should always work for the
solvability for FBSDERs. Therefore in what follows we shall discuss the
continuous dependence in an a priori manner, without going into the details
of existence and uniqueness again. Next, observe that under (A5) FBSDER
(3.2) becomes “Markovian”, we can apply the standard technique of “time
shifting” to show that the process {Y t,x(s)}s≥t is Fst -adapted, where F ts =
σ{Wr, t ≤ r ≤ s}. Consequently an application of the Blumenthal 0-1 law
leads to that the function u(t, x) = Y t,xt is always deterministic!

In what follows we use the convention that Xt,x(s) ≡ x, Y t,x(s) ≡
Y t,x(t), and Zt,x(s) ≡ 0, for s ∈ [0, t]. Our main result of this subsection is
the following.

Theorem 3.7. Assume (A5) as well as (A4)-(iii)–(v). Assume also
that the compatibility conditions (C-1) and either (C-2) or (C-3) hold. Let

u(t, x)
∆
=Y t,xt , (t, x) ∈ [0, T ]×O1. Then u is continuous on [0, T ]×O and

there exists C > 0 depending only on T , b, h, g, and σ, such that the
following estimate holds:

(3.28) |u(t1, x1)− u(t2, x2)|2 ≤ C
(
|x1− x2|2 +(1 + |x1|2 ∨ |x2|2)|t1− t2|

)
.
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Proof. The proof is quite similar to that of Theorem 3.4, so we only
sketch it.

Let (t1, x1) and (t2, x2) be given, and let X̂ = Xt1,x1 −Xt2,x2 . Assume
first t1 ≥ t2, and recall the norms ‖ · ‖t,λ and · t,λ,β at the beginning of
§3.1. Repeating the arguments of Theorem 3.4 over the interval [t2, T ], we
see that (3.8) and (3.9) will look the same, with ‖ · ‖λ being replaced by
‖ · ‖t2,λ; but (3.6) and (3.7) become

(3.6)′
e−λTE|X̂T |2 + λ̄1‖X̂‖2t1,λ
≤K(C1 +K)‖Ŷ ‖2t2,λ + (KC2 + k2

1)‖Ẑ‖2t2,λ + E|X̂(t2)|2.

(3.7)′
‖X̂‖2t2,λ ≤B̃(λ̄1, T )[K(C1 +K)‖Ŷ ‖2t2,λ

+ (KC2 + k2
1)‖Ẑ‖2t2,λ + E|X̂(t2)|2],

where B̃(λ, T )
∆
= e−λt2−e−λT

λ
. Now similar to (3.18), one shows that

(3.18)′
e−λTE|X̂T |2 + λ̄1‖X̂‖2t2,λ
≤µ(α, T ){k2

2e
−λTE|X̂T |2 +KC3‖X̂‖2t2,λ}+ E|X̂(t2)|2.

Arguing as in the proof of Theorem 3.4 and using compatibility conditions
(C-1)–(C-3), we can find a constant C > 0 depending only on T > 0 and
K, k1, k2 such that

(3.29) X̂ 2
t2,λ,β

≤ CE|X̂(t2)|2 = CE|x2 −Xt1,x1(t2)|2,

where β = λ̄1 − µ(α, T )KC3 if k2 = 0; and β = µ(α, T )k2
2 if k2 > 0.

From now on by slightly abuse of notations we let C > 0 be a generic
constant depending only on T,K, k1 and k2, and be allowed to vary from
line to line. Applying standard arguments using Burkholder-Davis-Gundy
inequality we obtain that

(3.30) E sup
t2≤s≤T

|X1(s)|2 + E sup
t2≤s≤T

|Y 1(s)|2 ≤ CE|X̂(t2)|2,

To estimate E|X̂(t2)|2 let us recall the parameters λε1 and λε2 defined
in Lemma 3.3. For each ε > 0 define

µε(α, T )
∆
=K(C1 +K(1 + ε))B(λε2, T ) +

A(λε2, T )

1−KC4
KC2.

Since λε1 → λ1, λ
ε
2 → λ2, and µε(α, T )→ µ(α, T ), as ε→ 0, if the compat-

ibility condition (C-1) and either (C-2) or (C-3) hold, then we can choose
ε > 0 such that µε(α, T )k2

2(1 + ε) < 1 when k2 = 0 and µε(α, T )KC3 < λε1
when k2 6= 0. For this fixed ε > 0 we can then repeat the argument of
Theorem 3.4 by using (3.12)—(3.15) to derive that(

1− µε(α, T )KC3

λ̄ε1

)
‖X1‖2λ ≤ C(ε)

[
|x1|2 +

(
1 +

1

ε

)]
, k2 = 0;
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or (
1− µε(α, T )k2

2

)
X1 2

λ,β ≤ C(ε)

[
|x1|2 +

(
1 +

1

ε

)]
, k2 6= 0,

where C(ε) is some constant depending on T , K, k1, k2, and ε. Since ε > 0
is now fixed, in either case we have, for a generic constant C > 0,

‖X1‖2λ ≤ C(1 + |x1|2),

which in turn shows that, in light of (3.12)–(3.15) ‖Y 1‖2λ ≤ C(1 + |x1|2),
and ‖Z‖2λ ≤ C(1 + |x1|2). Again, applying the Burkholder and Hölder
inequalities we can then derive

(3.31) E
{

sup
t1≤s≤T

|X1(t)|2
}

+ E
{

sup
t1≤s≤T

|Y 1(t)|2
}
≤ C(1 + |x1|2).

Now, note that on the interval [t1, t2] the process (X̂, Ŷ , Ẑ) satisfies the
following SDE:

(3.32)


X̂(s) = (x1 − x2) +

∫ s

t1

b1(r)dr +

∫ s

t1

σ1(r)dW (r),

Ŷ (s) = Ŷ (t2) +

∫ t2

s

h1(r)dr +

∫ t2

s

Z1(r)dW (r),

s ∈ [t1, t2],

where b1(r) = b(r,X2(r), Y 1(r), Z1(r)), σ1(r) = σ(r,X1(r), Y 1(r), Z1(r)),
and h1(r) = h(r,X1(r), Y 1(r), Z1(r)). Now from the first equation of (3.32)
we derive easily that

E{ sup
t1≤s≤t2

|X̂(s)|2} ≤ C{|x1 − x2|2 + (1 + |x1|2)|t1 − t2|}.

Combining this with (3.30), (3.31), as well as the assumption (A4-iv), we
derive from the second equation of (3.32) that

E|Ŷ (t1)|2 ≤ E|Ŷ (t2)|2 + C(1 + |x1|2 ∨ |x2|2)|t1 − t2|
≤ C{|x1 − x2|2 + (1 + |x1|2 ∨ |x2|2)|t1 − t2|}.

Since Ŷ (t1) = u(t1, x1)−u(t2, x2) is deterministic, (3.28) follows. The case
when t1 ≤ t2 can be proved by symmetry, the proof is complete.




