Skip to main content

Topographic complexity and terrestrial biotic response to high-latitude climate change: Variance is as important as the mean

  • Chapter
Arctic Alpine Ecosystems and People in a Changing Environment

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arft AM, Alatalo J, Bret-Harte MS, Dale M, Deimer M, Gugerli F, Gurevitch J, Henry GHR, Hollister R, Jones MH, Jónsdóttir IS, Laine K, Lévesque E, Marion GM, Molau U, Molgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G,. Stenström A, Stenström M, Totland Ø, Turner L, Walker L, Walker, MD, Webber PJ, Welker JM, Wookey PA (1999) Responses of tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecological Monographs 69: 491–511.

    Article  Google Scholar 

  • Armbruster WS, Rae DA, Edwards, ME Assessing biotic-community response to microclimatic change: measurement and analysis of variation in environmental temperature and plant and invertebrate communities in Arctic tundra. Ecography (submitted).

    Google Scholar 

  • Bakken GS (1992) Measurement and application of operative and standard operative temperatures in ecology. American Zoologist 32:194–216.

    Google Scholar 

  • Bishop JA, Armbruster WS (1999) Thermoregulatory abilities of Alaskan bees: effects of size, phylogeny, and ecology. Functional Ecology 13:711–724.

    Article  Google Scholar 

  • Bonan GB, Chapin FS, Thompson SL (1995) Boreal forest and tundra ecosystems as components of the climate system. Climatic Change 29:145–167.

    Article  Google Scholar 

  • Bret-Harte MS, Shaver GR, Zoerner JP, Johnstone JF, Wagner JL, Chavez AS, Gunkelman RF, Lippert SC, Laundre JA (2001) Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82:18–32

    Article  Google Scholar 

  • Brockway DG (1998) Forest plant diversity at local and landscape scales in the Cascade Mountains of southwestern Washington. Forest Ecology and Management 109:323–341.

    Article  Google Scholar 

  • Brubaker LB, Anderson PM, Edwards ME, Lozhkin AV (2005) Beringia as a glacial refugium for boreal trees and shrubs: new perspectives from mapped pollen data. J. Biogeography 32:833–848.

    Article  Google Scholar 

  • Cattle H, Crossley J (1995) Modeling Arctic climate-change. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 352:201–213.

    Google Scholar 

  • Chapin FS, Shaver GR (1996) Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology 77: 822–840.

    Article  Google Scholar 

  • Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711.

    Article  Google Scholar 

  • Chapin FS, McGuire AD, Randerson J, Pielke R, Baldocchi D, Hobbie SE, Roulet N, Eugster W, Kasischke E, Rastetter EB, Zimov SA, Running SW (2000) Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biology 6(suppl. 1):211–223.

    Article  Google Scholar 

  • Clark JS, Lewis M, McLachlan JS, HilleRisLambers, J (2003) Estimating population spread: What can we forecast and how well? Ecology, 84, 1979–1988.

    Google Scholar 

  • Coker PD, Coker AM (1973) Phyllodoce caerulea. Journal of Ecology 61:901–913.

    Article  Google Scholar 

  • Crawford, R. M. M. and Abbott, R. J. 1994. Pre-adaptation of arctic plants to climate-change. Botanica Acta 107: 271–278.

    Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate change. Science. 292: 673–679.

    Article  Google Scholar 

  • Edwards ME, Armbruster WS (1989) A steppe-tundra transition on Kathul Mountain, Alaska. Arctic and Alpine Research 21:296–304.

    Article  Google Scholar 

  • Edwards ME, Brubaker LB, Lozhkin AV, Anderson PM Structurally novel biomes: a response to past warming in Beringia. Ecology 86:1696–1703.

    Google Scholar 

  • Eugster W, Rouse WR, Pielke RA, McFadden JP, Baldocchi DD, Kittel TGF, Chapin FS, Liston GE, Vidale PL, Vaganov E, Chambers S (2000) Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Global Change Biology 6(suppl. 1):84–115.

    Google Scholar 

  • Friedlingstein P, Dufresne JL, Cox PM, Rayner P. (2003) How positive is the feedback between climate change and the carbon cycle? Telus B. Chemical and Physical Meteorology 55:692–700.

    Article  Google Scholar 

  • Hamrick JL, Allard, RW (1972) Microgeographical variation in allozymes frequencies in Avena barbata. Proc. National Acad. Sci. USA 69:2100–2104.

    Article  Google Scholar 

  • Hungerford RD, Nemani RR, Running SW, Coughlan JC (1989) MtClim-A mountain microclimate simulation-model. USDA Forest Service Intermountain Research Station Research Paper 414:1–52.

    Google Scholar 

  • Goldblatt P, Manning JC (2002) Plant diversity of the Cape Region of southern Africa. Annals of the Missouri Botanical Garden 89:281–302.

    Article  Google Scholar 

  • Ichii K, Matsu Y, Murakami K, Mukai T, Yamaguchi Y, Ogawa K (2003) A simple global carbon and energy coupled cycle model for global warming simulation: sensitivity to the light saturation effect. Tellus B-Chemical and Physical Meteorology 55:676–691.

    Google Scholar 

  • Jones CD, Cox P, Huntingford C. (2003) Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus B-Chemical and Physical Meteorology 55: 642–648.

    Google Scholar 

  • Kane DL, Reeburgh WS (1998) Introduction to special section: Land-Air-Ice Interactions (LAII) Flux Study. Journal of Geophysical Research-Atmospheres 103(D22): 28913–28915.

    Article  Google Scholar 

  • Kaplan JO, Bigelow NH, Bartlein PJ, Christiansen TR, Cramer W, Harrison SP, Matveyeva NV, McGuire AD, Murray DF, Prentice IC, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV, Ritchie JC (2003) Climate change and arctic ecosystems II: Modeling paleodata-model comparisons, and future projections. Journal of Geophysical Research 108(D19): Art. No. 8171. doi: 10.1029/2002JD002559

    Google Scholar 

  • Knapp AK (1985) Early season production and microclimate associated with topography in a C-4 dominated grassland. Acta Oecologica-Oecologia Plantarum 6:337–346.

    Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301.

    Article  Google Scholar 

  • Levis S, Foley JA, Pollard D. (2000) Large-scale vegetation feedbacks on a doubled CO2 climate. Journal of Climate 13, 1313–1325.

    Article  Google Scholar 

  • Levis S, Foley JA, Pollard D. (1999) Potential high-latitude vegetation feedbacks on CO2-induced climate change. Geophysical Research Letters 26, 747–750.

    Article  Google Scholar 

  • Li CC (1975) Path analysis— A primer. Boxwood Press, Pacific Grove, CA, USA.

    Google Scholar 

  • Lloyd AH, Armbruster WS, Edwards ME (1994) Ecology of a steppe-tundra gradient in interior Alaska. J. Vegetation Sci. 5:897–912.

    Article  Google Scholar 

  • McCune B, Mefford MJ (1999) PC-Ord. Multivariate analysis of ecological data, Version 4.0. MjM Software Development, Gleneden Beach, OR, USA.

    Google Scholar 

  • McGuire AD, Wirth C, Apps M, Beringer J, Clein J, Epstein H, Kicklighter DW, Bhatti J, Chapin FS, de Groot B, Efremov D, Eugster W, Fukuda M, Gower T, Hinzman L, Huntley B, Jia GJ, Kasischke E, Melillo J, Romanovsky V, Shvidenko A, Vaganov E, Walker D (2002) Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes. Journal of Vegetation Science 13:301–314.

    Article  Google Scholar 

  • McGuire AD, Sturm M, Chapin FS (2003) Arctic transitions in the land-atmosphere system (ATLAS): Background, objectives, results, and future directions Journal of Geophysical Research-Atmospheres 108(D2): art. no. 8166.

    Google Scholar 

  • Moe A (2000) Patterns of insect and plant distribution in relation to radiation loads and microclimate on Spitsbergen. Hovedfag thesis, Botany Dept., NTNU, Trondheim, Norway.

    Google Scholar 

  • Mysterud A, Langvatn R, Yoccoz NG, Stenseth NC (2001) Plant phenology, migration and geographical variation in body weight of a large herbivore: the effect of a variable topography. Journal of Animal Ecology 70:915–923.

    Article  Google Scholar 

  • Osterkamp TE, Romanovsky VE. (1999) Evidence for warming and thawing of discontinuous permafrost in Alaska. Permafrost Periglac. 10:17–37.

    Article  Google Scholar 

  • Pan YD, Melillo JM, McGuire AD, Kicklighter DW, Pitelka LF, Hibbard K, Pierce LL, Running SW, Ojima DS, Parton WJ, Schimel DS (1998) Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP). Oecologia 114:389–404.

    Article  Google Scholar 

  • Pearson SM, Turner MG, Wallace LL, Romme WH (1995) Winter habitat use by large ungulates following fire in northern Yellowstone National Park. Ecological Applications 5:744–755.

    Article  Google Scholar 

  • Porter WP, Sabo JL, Tracy CR, Reichman OJ, Ramankutty N (2002) Physiology on a landscape scale: Plant-animal interactions. Integrative and Comparative Biology 42:431–453.

    Article  Google Scholar 

  • Rae DA (2003) Plant-and invertebrate-community responses to species interactions and microclimate gradients in alpine and arctic environments. Ph.D. thesis, Biology Dept., NTNU, Trondheim, Norway.

    Google Scholar 

  • Rupp TS, Chapin FS, Starfield AM (2001) Modeling the influence of topographic barriers on treeline advance at the forest-tundra ecotone in northwestern Alaska. Climatic Change 48: 399–416.

    Article  Google Scholar 

  • Schauffler M, Jacobson, GL Jr (2002) Persistence of coastal refugia during the Holocene in northern New England, USA, detected by stand-scale pollen stratigraphies. Journal of Ecology, 90:235–250.

    Article  Google Scholar 

  • Sellers PJ, Hall FG, Kelly RD, Black A, Baldocchi D, Berry J, Ryan M, Ranson KJ, Crill PM, Lettenmaier DP, Margolis H, Cihlar J, Newcomer J, Fitzjarrald D, Jarvis PG, Gower ST, Halliwell D, Williams D, Goodison B, Wickland DE, Guertin FE (1997) BOREAS in 1997: Experiment overview, scientific results, and future directions. Journal of Geophysical Research-Atmospheres 102(D24): 28731–28769.

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9:161–185.

    Article  Google Scholar 

  • Stewart, JR, Lister, AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends in Ecology and Evolution 16:608–613.

    Article  Google Scholar 

  • Strahler AN, Strahler AH (1989) Elements of physical geography, 4th ed. Wiley, New York, 562 pp.

    Google Scholar 

  • SveingÃ¥rd Barre M (2000) Tundra plant community composition in relation to radiation budgets and disturbance, North Norway. Hovedfag thesis, Geography Dept. NTNU, Trondheim, Norway.

    Google Scholar 

  • Sydes, C (1997) Scotland’s rare plants. An overview of distribution and threats. Scottish Natural Heritage, Edinburgh, UK.

    Google Scholar 

  • Watson RT and the Core Writing Team (2001) IPCC Third Assessment Report: Climate Change 2001: Synthesis report. IPCC, Geneva, Switzerland. pp 184

    Google Scholar 

  • Weiss SB, Murphy DD, Ehrlich PR, Metzler CF (1993) Adult emergence phenology in checkerspot butterflies-The effects of macroclimate, topoclimate, and population history. Oecologia 96:261–270.

    Article  Google Scholar 

  • Weller G (1998) Regional impacts of climate change in the Arctic and Antarctic. Ann. Glaciol. 27:543–552.

    Google Scholar 

  • Wesser S D, Armbruster WS (1991) Controls over species distribution across a forest-steppe transition: a causal model and experimental test. Ecological Monographs 61:323–342.

    Article  Google Scholar 

  • Wesser SD, Armbruster WS, Debevec EM, Edwards ME (1994) Subarctic steppe distribution through space and time: a microclimate modeling approach. In R. H. Meehan, V. Sergienka, and G. Weller (eds.), Bridges of Science between North America and the Russian Far East. Arctic Division, AAAS, Fairbanks, AK, pp 63–69.

    Google Scholar 

  • Williams PJ (1995) Permafrost and climate-change-Geotechnical implications. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 352:347–358.

    Google Scholar 

  • Young KL, Woo MK, Edlund SA (1997) Influence of local topography, soils, and vegetation on microclimate and hydrology at a high Arctic site, Ellesmere Island, Canada. Arctic and Alpine Research 29:270–284.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scott Armbruster, W., Rae, D.A., Edwards, M.E. (2007). Topographic complexity and terrestrial biotic response to high-latitude climate change: Variance is as important as the mean. In: Ørbæk, J.B., Kallenborn, R., Tombre, I., Hegseth, E.N., Falk-Petersen, S., Hoel, A.H. (eds) Arctic Alpine Ecosystems and People in a Changing Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48514-8_7

Download citation

Publish with us

Policies and ethics