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Spitzer’s Condition

7.1 Introduction

We have seen that Spitzer’s condition

1
t

∫ t

0

P{Xs > 0}ds → ρ ∈ (0, 1) as t → ∞ or as t → 0+ (7.1.1)

is important, essentially because it is equivalent to the ladder time subordi-
nators being asymptotically stable, and hence to the Arc-sine laws holding.
Obviously (7.1.1) is implied by

P{Xt > 0} → ρ, (7.1.2)

and in 40 years no-one was able to give an example of (7.1.1) holding and
(7.1.2) failing, either in the Lévy process or random walk context. What we
will see is that they are in fact equivalent, and this equivalence also extends
to the degenerate cases ρ = 0, 1.

Theorem 23. For any Lévy process X and for any 0 ≤ ρ ≤ 1, the statements
(7.1.1) and (7.1.2) are equivalent (as t → ∞, or as t → 0+).

Since the case t → ∞ can be deduced from the random walk results in
Doney [33], we will deal here with the case t → 0 + . Following Bertoin and
Doney [18], we treat the case ρ = 0, 1, first, and then give two different proofs
for 0 < ρ < 1. The first is the simplest; it is based on a duality identity for the
ladder time processes and does not use any local limit theorem. The second
is essentially an adaptation of my method for random walks; in particular it
requires a version of the local limit theorem for small times, and a Wiener–
Hopf result from Chapter 5.

7.2 Proofs

The purpose of this section is to prove Theorem 23 when t → 0+. The case
when the Lévy process X = (Xt, t ≥ 0) is a compound Poisson process with
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drift is of no interest, since in this case ρ(t) → 0 or 1 according as the drift
is positive or non-positive, so we will exclude this case. It then follows that
P{Xt = 0} = 0 for all t > 0, and that the mapping t → ρ(t) = P{Xt > 0} is
continuous on (0,∞) (because X is continuous in probability).

7.2.1 The Case ρ = 0, 1

The argument relies on a simple measure-theoretic fact.

Lemma 6. Let B ⊂ [0,∞) be measurable set such that

lim
t→0+

t−1m(B ∩ [0, t]) = 1,

where m denotes Lebesgue measure. Then B + B ⊃ (0, ε) for some ε > 0.

Proof. Pick c > 0 such that t−1m(B ∩ [0, t]) > 3/4 for all t ≤ c. Then

m(B ∩ [t, 2t]) ≥ 1
2
t for all t <

1
2
c. (7.2.1)

Suppose now that there exists t < 1
2c such that 2t /∈ B + B. Then for every

s ∈ [0, t] ∩ B, 2t − s ∈ Bc ∩ [t, 2t] and therefore

m(B ∩ [t, 2t]) = t − m(Bc ∩ [t, 2t])
≤ t − m(2t − B ∩ [0, t])

≤ t − m(B ∩ [0, t]) <
1
4
t,

and this contradicts (7.2.1). �

We are now able to complete the proof of Theorem 23 (as t → 0+)
for ρ = 0, 1. Obviously it suffices to consider the case ρ = 1, so assume
t−1

∫ t

0
ρ(s)ds → 1, and for δ ∈ (0, 1) consider B = {t : ρ(t) ≥ δ}. Then B

satisfies the hypothesis of Lemma 6 and we have that B +B ⊃ (0, ε) for some
ε > 0. For any t ∈ (0, ε) choose s ∈ (0, t)∩B with t− s ∈ B, so that ρ(s) ≥ δ
and ρ(t − s) ≥ δ. Then by the Markov property

ρ(t) = P{Xt > 0} ≥ P{Xs > 0}P{Xt−s > 0} ≥ δ2.

Since δ can be chosen arbitrarily close to 1, we conclude that limt→0+ρ(t) = 1.

7.2.2 A First Proof for the Case 0 < ρ < 1

Recall that the ladder time subordinator τ = L−1 is the inverse local time at
the supremum, and has Laplace exponent

Φ(q) = exp
{∫ ∞

0

(
e−t − e−qt

)
t−1ρ(t)dt

}
, q ≥ 0 . (7.2.2)
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Also from Corollary 3 in Chapter 4 we know that, with an appropriate choice
of the normalisation of local time, the Laplace exponent Φ∗ corresponding to
the dual Lévy process X∗ = −X satisfies

Φ(q)Φ∗(q) = q.

So differentiating (7.2.2) we see that
∫ ∞

0

e−qtρ(t)dt = Φ′(q)/Φ(q) = Φ′(q)Φ∗(q)/q . (7.2.3)

Suppose now that (7.1.1) holds as t → 0+. By results discussed in Chapter 2,
this implies that Φ is regularly varying at ∞ with index ρ, and hence also
that Φ∗ is regularly varying at ∞ with index 1 − ρ. Because Φ and Φ∗ are
Laplace exponents of subordinators with zero drift, we obtain from the Lévy–
Khintchine formula that

Φ′(q) =
∫ ∞

0

e−qxxd (−T (x)) , Φ∗(q)/q =
∫ ∞

0

e−qxT ∗(x)dx ,

where T (respectively, T ∗) is the tail of the Lévy measure of the ladder time
process of X (respectively, of X∗). We now get from (7.2.3)

ρ(t) =
∫

(0,t)

T ∗(t − s)sd (−T (s)) for a.e. t > 0 . (7.2.4)

By a change of variables, the right-hand-side can be re-written as

t

∫

(0,1)

T ∗(t(1 − u))ud (−T (tu)) =
∫

(0,1)

T ∗(t(1 − u))
Φ∗(1/t)

ud

(
− T (tu)

Φ(1/t)

)
.

Now, apply a Tauberian theorem, the monotone density theorem and the
uniform convergence theorem (see Theorems 1.7.1, 1.7.2 and 1.5.2 in [20]).
For every fixed ε ∈ (0, 1), we have, uniformly on u ∈ [ε, 1 − ε] as t → 0+,

T (tu)
Φ(1/t)

→ u−ρ

Γ (1 − ρ)
,

T ∗(t(1 − u))
Φ∗(1/t)

→ (1 − u)(1−ρ)

Γ (ρ)
.

Recall ρ(t) depends continuously on t > 0. We deduce from (7.2.4) that

lim inf
t→0+

ρ(t) ≥ ρ

Γ (ρ)Γ (1 − ρ)

∫ 1−ε

ε

(1 − u)ρ−1u−ρdu ,

and as ε can be picked arbitrarily small, lim inft→0+ ρ(t) ≥ ρ. The same
argument for the dual process gives lim inft→0+ P{Xt < 0} ≥ 1 − ρ, and this
completes the proof.
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7.2.3 A Second Proof for the Case 0 < ρ < 1

Here we will use one of the Wiener–Hopf results we discussed in Chapter 5,
specifically

Lemma 7. We have the following identity between measures on (0,∞) ×
(0,∞):

P{Xt ∈ dx}dt = t

∫ ∞

0

P{L−1(u) ∈ dt,H(u) ∈ dx}u−1du.

We next give a local limit theorem which is more general than we need.

Proposition 10. Suppose that Y = (Yt, t ≥ 0) is a real-valued Lévy process
and there exists a measurable function r : (0,∞) → (0,∞) such that Yt/r(t)
converges in distribution to some law which is not degenerate at a point as
t → 0+. Then

(i) r is regularly varying of index 1/α, 0 < α ≤ 2, and the limit distribution
is strictly stable of index α;

(ii) for each t > 0, Yt has an absolutely continuous distribution with contin-
uous density function pt(·);

(iii) uniformly for x∈R, limt→0+ r(t)pt(xr(t)) = p(α)(x), where p(α)(·) is the
continuous density of the limiting stable law.

Proof. (i) This is proved in exactly the same way as the corresponding result
for t → ∞. (ii) If Ψ(λ) denotes the characteristic exponent of Y , so that

E(exp{iλYt}) = exp{−tΨ(λ)} , t ≥ 0, λ ∈ R,

then we have tΨ(λ/r(t)) → Ψ (α)(λ) as t → 0+, where Ψ (α) is the characteristic
exponent of a strictly stable law of index α. Because we have excluded the
degenerate case, Re(Ψ(λ)), the real part of the characteristic exponent (which
is an even function of λ), is regularly varying of index α at +∞. It follows
that for each t > 0, exp−tΨ(·) is integrable over R. Consequently (ii) follows
by Fourier inversion, which also gives

r(t)pt(xr(t)) =
1
2π

∫ ∞

−∞
exp−{iλx + tΨ(λ/r(t))}dλ

and
p(α)(x) =

1
2π

∫ ∞

−∞
exp−{iλx + Ψ (α)(λ)}dλ.

(iii) In view of the above formulae, it suffices to show that

| exp−tΨ(λ/r(t))| = exp−tReΨ(λ/r(t))

is dominated by an integrable function on |λ| ≥ K for some K < ∞ and
all small enough λ. But this follows easily from Potter’s bounds for regularly
varying functions. (See [20], Theorem 1.5.6.) �
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We assume from now on that (7.1.1) holds as t → 0+, so that Φ(λ),
the Laplace exponent of the subordinator τ , is regularly varying at ∞ with
index ρ. It follows that if we denote by a the inverse function of 1/Φ(1/·), then
a is regularly varying with index 1/ρ and τ(t)/a(t) converges in distribution
to a non-negative stable law of index ρ as t → 0+. In view of Proposition
10, τ t has a continuous density which we denote by gt(·), and a(t)gt(a(t)·)
converges uniformly to the continuous stable density, which we denote by
g(ρ)(·). Applying Lemma 7, we obtain the following expression for ρ(t) that
should be compared with (7.2.4):

ρ(t) = t

∫ ∞

0

gu(t)u−1du for a.e. t > 0 . (7.2.5)

We are now able to give an alternative proof of Theorem 23 for 0 < ρ < 1
and t → 0+. By a change of variable,

t

∫ ∞

0

gu(t)u−1du = t

∫ ∞

0

gsu(t)u−1du,

for any s > 0. We now choose s = 1/Φ(1/t), so that a(s) = t, and note that

tgsu(t) =
a(s)
a(su)

· a(su)gsu

(
a(su) · a(s)

a(su)

)
.

When t → 0+, s → 0+ and since a is regularly varying with index 1/ρ,
a(s)/a(su) converges pointwise to u−1/ρ. It then follows from Proposition 10
that

lim
t→0+

tgsu(t) = u−1/ρg(ρ)(u−1/ρ).

Recall that ρ(t) depends continuously on t > 0, so that (7.2.5) and Fatou’s
lemma give

lim inf
t→0+

ρ(t) ≥
∫ ∞

0

g(ρ)(u− 1
ρ )u− 1

ρ−1du = ρ

∫ ∞

0

g(ρ)(v)dv = ρ.

Replacing X by −X gives lim supt→0+P{Xt ≥ 0} ≤ ρ, and the result follows.

7.3 Further Results

The ultimate objective is to find a necessary and sufficient condition, in terms
of the characteristics of X, for Spitzer’s condition to hold. Current knowledge
can be summarised as follows.

(i) If X is symmetric it holds with ρ = 1/2, both at 0 and ∞.
(ii) If σ �= 0 it holds with ρ = 1/2 at 0.
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(iii) If X is in the domain of attraction of a strictly stable process with posi-
tivity parameter ρ either as t → ∞ or as t ↓ 0 it holds correspondingly
at ∞ or at 0.

(iv) It holds with ρ = 1/2 at ∞ in some situations where X has an almost
symmetric distribution, but is not in the domain of attraction of any
symmetric stable process: see Doney [28] for the random-walk case.

(v) It holds if Y is strictly stable with positivity parameter ρ and X = Y (τ) is
a subordinated process, τ being an arbitrary independent subordinator;
the point here is that τ can be chosen so that X is not in any domain of
attraction. (This observation is due to J. Bertoin.)

The only obvious examples where it doesn’t hold is in the spectrally one-
sided case; this was pointed out in the random-walk case more than 40 years
ago by Spitzer! See [94], p. 227.

Again for random walks the only situation where a necessary and sufficient
condition is known is the special case ρ = 1. This can be extended to the
Lévy process case at ∞, the most efficient way of doing this being to use the
stochastic bounds from Chapter 4; see Doney [36]. The result there suggests:

Proposition 11. For any Lévy process X we have ρt = P(Xt > 0) → 1 as
t → 0 if and only if πx := P(X exits [−x, x] at the top) → 1 as x → 0.

We now have two possible lines of attack: we could try to find the necessary
and sufficient condition for ρt → 1 directly, and then Proposition 11 says we
have also solved the corresponding exit problem; this progamme is carried
out in Doney [37]. But instead we will tackle the exit problem, using material
from Andrew [6]. We need some notation; we use the functions (all on x > 0)

N(x) = Π((x,∞)), M(x) = Π((−∞,−x)),

L(x) = N(x) + M(x), D(x) = N(x) − M(x),

A(x) = γ + D(1) −
∫ 1

x

D(y)dy = γ +
∫

(x,1]

ydD(y) + xD(x),

and
U(x) = σ2 + 2

∫ x

0

yL(y)dy.

(It might help to observe that A(x) and U(x) are respectively the mean and
variance of X̃x

1 , where X̃x is the Lévy process we get by replacing each jump
in X which is bigger than x, (respectively less than −x) by a jump equal to
x, (respectively −x).)

Note that always limx→0 U(x) = σ2 and limx→0 xA(x) = 0, and if X is of
bounded variation, limx→0 A(x) = δ, the true drift of X. Also we always have
limx→∞ U(x) = V arX1 ≤ ∞ and limx→∞ x−1A(x) = 0, and if E|X1| < ∞,
limx→∞ A(x) = EX1.
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In any study of exits from 2-sided intervals the following quantity is of
crucial importance:

k(x) = x−1|A(x)|+x−2U(x), x > 0.

For Lévy processes, its importance stems from the following bounds, which
are due to Pruitt [83], although he uses a function which is slightly different
from k.

Let
X(t) = sup

0≤s≤t
|X(s)|

and write
Tr = inf(t : X(t) > r}.

Lemma 8. There are positive constants c1, c2, c3, c4 such that, for all Lévy
processes and all r > 0, t > 0,

P{X(t) ≥ r} ≤ c1tk(r), P{X(t) ≤ r} ≤ c2

tk(r)
, (7.3.1)

and
c3

k(r)
≤ E(T (r)) ≤ c4

k(r)
. (7.3.2)

Moreover

1
λ3 ≤ k(λx)

k(x)
≤ 3 for all x > 0 and λ > 1. (7.3.3)

Proof of Proposition 11. We start by assuming ρt = P(Xt > 0) → 1 as t → 0,
and suppose that t = l/k(r), where l ∈ N. (Note that with this choice, the
bounds in (7.3.1) are O(1).) Take τ r

0 = 0 and for j = 0, 1, · · · define

τ r
j+1 = inf{s > τ j : |Xs − Xτj

| > r}.

Suppose now that the event Ar
j occurs for each 0 ≤ j < l2, where

Ar
j =

(
1

lk(r)
≤ τ r

j+1 − τ r
j ≤ l

k(r)
and Xτr

j+1
≤ Xτr

j
− r

)
;

then Xs ≤ 0 for s ∈ [τ r
1, τ

r
l2 ]. Moreover t = l/k(r) ∈ [τ r

1, τ
r
l2 ] and

P(Xt ≤ 0) ≥ P

⎛
⎝

l2⋂
j=1

Ar
j

⎞
⎠ = (PAr

1)
l2

≥
([

P{Xτr
1

< 0} − P

{
τ r

1 >
l

k(r)

}
− P

{
τ r

1 <
1

lk(r)

}]+
)l2

=

([
P{XTr

< 0} − P

{
X

(
l

k(r)

)
≤ r

}
− P

{
X

(
1

lk(r)

)
≥ r

}]+
)l2

.
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Using Lemma 8, we conclude that:

when t =
l

k(r)
, P(Xt ≤ 0) ≥

([
P{XTr

< 0} − c

l

]+
)l2

. (7.3.4)

It is easy to check that k(r) → ∞ as r → 0, unless Xt ≡ 0, a case we implicitly
exclude. Therefore if we fix l and let r ↓ 0 then t(r) = l/k(r) ↓ 0, so (7.3.4)
gives

lim sup
r↓0

P{XTr
< 0} ≤ c

l
,

and the result follows since l is arbitrary. A somewhat similar argument
establishes

when t =
l

k(r)
, P(Xt ≥ 0) ≥ [P{XTr

> 0}]l2 − c

l
,

which leads quickly to the converse implication, but we omit the details. �

We will use Lemma 8 in conjunction with the following straight-forward
consequence of the compensation formula: let

Ur(dy) =
∫ ∞

0

P

{
sup

0≤r<t
|X(u)| ≤ r,X(t) ∈ dy

}
dt

=
∫ ∞

0

P{Tr > t,X(t) ∈ dy}dt.

Then:

Lemma 9. For 0 ≤ |y| ≤ r < |z| we have

P{X(T (r)−) ∈ dy,X(T (r)) ∈ dz} = Ur(dy)Π(dz − y). (7.3.5)

In what follows, it is convenient to focus on the situation where πx → 0;
of course the results for πx → 1 follow by considering −X. It is not difficult
to guess that any necessary and sufficient condition for πx → 0 must involve
some control over the sizes of the positive jumps which occur before Tr, so
let us write ∆(Tr) = XTr

− XTr− for the jump which takes X out of [−r, r],
and

∆(Tr) = sup{(∆t)+ : t ≤ Tr}
for the size of the largest positive jump before Tr. Then since

ETr =
∫ r

−r

Ur(dy),

an immediate consequence of Lemma 9 is that for all r > 0, δ > 0

N((δ + 2)r)ETr ≤ P {∆Tr
> δr} ≤ N(δr)ETr. (7.3.6)
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Thus, by Lemma 8,

c3N((δ + 2)r)
k(r)

≤ P {∆Tr
> δr} ≤ c4N(δr)

k(r)
,

and using (7.3.3) we conclude that

(∆Tr
)+

r

P→ 0 as r → 0 if and only if
N(r)
k(r)

→ 0 as r → 0.

By another application of the compensation formula we see that

P
{
∆Tr

> δr
}

= P

⎧
⎨
⎩

∑
0≤t≤Tr

1{∆Xt>δr} ≥ 1

⎫
⎬
⎭ ≤ E

⎧
⎨
⎩

∑
0≤t≤Tr

1{∆Xt>δr}

⎫
⎬
⎭

= N(δr)ETr ≤ c4N(δr)
k(r)

,

and of course P
{
∆Tr

> δr
}

≥ P {∆Tr
> δr} . Finally we see that if

r−1(∆Tr
)+ P

� 0, there exists δ, ε > 0, rn � 0 with

P{X(Trn
) > 0} ≥ P{∆(Trn

) > εrn} ≥ δ,

and since r + ∆(Tr) ≥ XTr
≥ r on {XTr

> 0} we see that

P{∆(Trn
) >

ε

1 + ε
X(Trn

) > 0} ≥ P{∆(Trn
) > εrn} ≥ δ,

so that ∆Tr
/XTr

P
� 0. Since |XTr

| ≥ r, the reverse implication is obvious, and
we have shown the following:

Proposition 12. The following are equivalent as r ↓ 0 :

(i)
N(r)
k(r)

→ 0; (ii)
(∆Tr

)+

r

P→ 0; (iii)
∆Tr

r

P→ 0; (iv)
∆Tr

XTr

P→ 0.

Before formulating the final conclusion, we need an intermediate result.

Proposition 13. A necessary and sufficient condition for πx→ 0 as x→ 0 is

lim
r→0

N(r)
k(r)

= 0 and lim sup
r→0

A(r)
rk(r)

< 0. (7.3.7)

Remark 2. In the spectrally negative case we have N identically zero, so the
first part of (7.3.7) is automatic. It is not difficult to show the second part is
actually equivalent to

σ = 0 and A(r) ≤ 0 for all small enough r. (7.3.8)
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In particular, in this case A(r) = γ − M(1) +
∫ 1

r

M(y)dy. So when (7.3.8)

holds,
∫ 1

0

M(y)dy is finite, and X is of bounded variation with drift δ =

γ − M(1) +
∫ 1

0

M(y)dy ≤ 0. Thus −X is a subordinator, and hence πx ≡ 0.

(In fact, in analogy with later results in Chapter 9, the only possible limits for
πx in the case that X is spectrally negative and −X is not a subordinator lie
in [1/2, 1].)

Proof of Proposition 13. We will write P̃
x for the measure under which X

has the distribution of the truncated process X̃x under P, and note that the
corresponding Lévy tails are given by

M̃(y) = M(y), Ñ(y) = N(y) for y < x,

M̃(y) = Ñ(y) = 0, for y ≥ x.

As previously observed, Ẽ
xX1 = A(x), so Xt− tA(x) is a P̃

x−martingale, and
optional stopping gives

Ẽ
xXTr

= A(x)ẼxTr

We will work with x = λr, and note, from the fact that under P̃
λr no jumps

exceed λr in absolute value, that

Ẽ
λrXTr

≥ rP̃
λr{XTr

> 0} − (λ + 1)rP̃
λr{XTr

< 0}
= r − (λ + 2)rP̃

λr{XTr
< 0},

and

Ẽ
λrXTr

≤ (λ + 1)rP̃
λr{XTr

> 0} − rP̃
λr{XTr

< 0}
= (λ + 1)r − (λ + 2)rP̃

λr{XTr
< 0}.

Thus

1 − r−1A(λr)ẼλrXTr

(λ + 2)
≤ P̃

λr{XTr
< 0} ≤ (λ + 1) − r−1A(λr)ẼλrXTr

(λ + 2)
.

(7.3.9)

If we now choose λ = 2 we will have X and X̃2r agreeing up to time T̃r = Tr,
so this gives

P{XTr
< 0} = P̃

2r{XTr
< 0} ≤ 3

4
− r−1A(2r)EXTr

4
,

and hence, using Lemma 8 again

cA(2r)
rk(r)

≤ 3
4
− P{XTr

< 0}.
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Thus

πr → 0 =⇒ lim sup
r→0

A(r)
rk(r)

≤ −1
4
.

But also πr → 0 implies r−1(∆Tr
)+ P→ 0, and by Proposition 12 this implies

limr→0 N(r)/k(r) = 0. To reverse the argument, we will assume that (7.3.7)
holds and prove

lim
λ→0

lim inf
r→0

P̃
λr{XTr

< 0} = 1; (7.3.10)

then the result follows from

lim
λ→0

lim inf
r→0

P̃
λr{XTr

< 0} ≤ lim
λ→0

lim inf
r→0

(
P{XTr

< 0} − P{∆Tr
≥ λr}

)

≤ lim inf
r→0

P{XTr
< 0},

where we have used Proposition 12. We do this in two stages; the first step is
to deduce from (7.3.9) that ∃c > 0 such that

lim
λ→0

lim inf
r→0

P̃
λr{XTr

< 0} ≥ 1 + c

2
. (7.3.11)

By considering the sequence defined by

τ0 = 0, τ j+1 = inf{t > τ j : |Xt − Xτj
| > λr},

it is not difficult to show that for any r > 0 and 0 < λ < 1/2

ETλr ≤ 3λẼ
λrTr.

Using the left-hand side of (7.3.9) and Lemma 8 gives

P̃
λr{XTr

< 0} ≥
1 − cA(λr)

λrk(λr)

λ + 2
,

and letting r → 0 then λ → 0 we get (7.3.11).
Now define p = (2 − c)/4, where c is the constant in (7.3.11), and denote

by {Sn, n ≥ 0} a simple random walk with P (S1 = 1) = p, P (S1 = −1) =
q = 1 − p. Put σN = min{n : |Sn| > N}, N ∈ N, so that, since p < 1/2, we
have P (SσN

< 0) → 1 as N → ∞. Thus given ε > 0 we can choose N,K with
P (SσN

< 0, σN ≤ K) ≥ 1 − ε. Take r and λ sufficiently small so that

q̃ := P̃
λr{X(Tr/2N < 0} ≥ q;

then, in the obvious notation

P̃
λr{X leaves [−r/2 + λrK, r/2 + λrK] downwards}

≥ P̃ (SσN
< 0, σN ≤ K) ≥ P (SσN

< 0, σN ≤ K) ≥ 1 − ε.
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It follows that

lim
λ→0

lim inf
r→0

P̃
λr{X leaves [−r/3, 2r/3] downwards} ≥ 1 − ε,

and hence
lim
λ→0

lim inf
r→0

P̃
λr{XTr

< 0} ≥ (1 − ε)3.

Since ε is arbitrary, (7.3.10) follows. �

Remark 3. This proof shows that it is impossible for

−1
4

< lim sup
r→0

A(r)
rk(r)

< 0

to occur; this phenomenom was first observed in the random-walk case in
Griffin and McConnell [53].

We can now state our main result.

Theorem 24. Assume X is not a compound Poisson process: then (i) if
N(0+) > 0 the following are equivalent;

πx → 0 as x → 0; (7.3.12)

ρt → 0 as t → 0; (7.3.13)

XTr

∆Tr

P→ −∞ as r → 0; (7.3.14)

Xt

∆t

P→ −∞ as t → 0; (7.3.15)

σ = 0,
A(x)

xN(x)
→ −∞ as x → 0; (7.3.16)

(ii) if N(0+) = 0 then (7.3.12)⇐⇒(7.3.13)⇐⇒

A(x) ≤ 0 for all small enough x. (7.3.17)

Proof. (i) First we need the fact that (7.3.16) is equivalent to (7.3.7) from
Proposition 13, which we recall is

lim
x→0

N(x)
k(x)

= 0 and lim sup
x→0

A(x)
xk(x)

< 0. (7.3.18)

If this holds, clearly

lim
x→0

A(x)
xN(x)

= lim
x→0

A(x)
xk(x)

k(x)
N(x)

= −∞,
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and if σ2 > 0 we would have k(x) ≥ σ2/x2 and hence

lim sup
x→0

|A(x)|
xk(x)

≤ lim sup
x→0

x|A(x)| = 0;

thus σ = 0 and (7.3.16) holds. So assume (7.3.16) and note first that

k(x)
N(x)

=
|A(x)|
xN(x)

+
U(x)

x2N(x)
≥ |A(x)|

xN(x)
,

so N(x)/k(x) → 0. Also

xk(x)
|A(x)| = 1 +

U(x)
x2k(x)

,

so since (7.3.16) implies that A(x) < 0 for all small x, we see by writing

U(x)
xA(x)

=
U(x)

x2k(x)
xk(x)
A(x)

that

lim sup
x→0

A(x)
xk(x)

< 0 if and only if lim inf
x→0

U(x)
xA(x)

> −∞.

Now given ε > 0 we have yN(y) ≤ −εA(y) for all y ≤ x0. Also integration by
parts gives

x∫

0

A(y)dy = xA(x) −
x∫

0

yN(y)dy +

x∫

0

yM(y)dy.

So for x ≤ x0

x∫

0

yN(y)dy ≤ −εxA(x) + ε

x∫

0

yN(y)dy − ε

x∫

0

yM(y)dy. (7.3.19)

This implies that

(1 − ε)

x∫

0

yN(y)dy ≤ −εxA(x),

and also, putting ε = 1 in (7.3.19), that

x∫

0

yM(y)dy ≤ −xA(x). Thus

U(x) = 2

x∫

0

y(N(y) + M(y))dy ≤ −xA(x)
2ε

1 − ε
,
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for all x ≤ x0, and the result (7.3.18) follows. The equivalence of (7.3.12),
(7.3.13), (7.3.14) and (7.3.16) now follows from Propositions 11, 12, and 13,
bearing in mind that

πx → 0 and
∆Tr

XTr

P→ 0 =⇒ XTr

∆Tr

P→ −∞.

Since (7.3.15) obviously implies (7.3.13), we are left to prove that

P{Xt < 0} → 1 =⇒ Xt

∆t

P→ −∞ as t → 0.

The argument here proceeds by contradiction; so assume ∃ tj ↓ 0 with PCj ≥
8ε > 0 for all j, where Cj = {Xtj

> −2k∆tj
} and k is a fixed integer. Then

for each j we can choose cj such that

P{(∆tj
≤ cj) ∩ Cj} ≥ 2ε and P{(∆tj

≥ cj) ∩ Cj} ≥ 6ε. (7.3.20)

It follows that for each j at least one of the following must hold:

P{(∆tj
> 2cj) ∩ Cj} ≥ 2ε (7.3.21)

or
P{(cj ≤ ∆tj

≤ 2cj) ∩ Cj} ≥ 4ε. (7.3.22)

Suppose (7.3.21) holds for infinitely many j. Then write N j
t for the number

of jumps exceeding 2cj which occur by time t, Zj
t for the sum of these jumps,

and Y j
t = Xt − Zj

t . Of course N j
tj

has a Poisson distribution, and we denote
its parameter by pj. Note that we have

P{N j
tj

= 0} ≥ P{(∆tj
≤ cj) ∩ Cj} ≥ 2ε and

P{N j
tj

> 0} ≥ P{(∆tj
> 2cj) ∩ Cj} ≥ 2ε,

so pj is bounded uniformly away from 0 and ∞. It follows that ∃ν > 0 with

P{N j
tj

≥ k} > e−pj
pk

j

k!
> ν for all j.

Also

P{Zj
tj

= 0, Y j
tj

∈ (−2kcj , 0)} ≥ P{Cj ∩ (Xtj
< 0) ∩ (∆tj

≤ cj)} ≥ ε

for all large j, by (7.3.20) and the fact that P(Xtj
< 0) → 1. So, as Y and Z

are independent, the contradiction follows from

lim inf
j→∞

P(Xtj
> 0) ≥ lim inf

j→∞
P{N j

tj
≥ k, Y j

tj
∈ (−2kcj , 0)} ≥ νε.

The second case, when (7.3.22) holds for infinitely many j, can be dealt with
in a similar way; see [6] for the details.

(ii) This follows from Propositions 11 and 13, and Remark 2. �
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Some comments on this result are in order.

• The condition (7.3.16) can be shown to be equivalent to

A(x)√
U(x)N(x)

→ −∞. (7.3.23)

• There are other conditions we can add to the equivalences in Theorem 24.
In particular,

∃ a slowly varying l such that
Xt

tl(t)
P→ −∞. (7.3.24)

(This is demonstrated in [37].) Note that this implies t−αXt
P→ −∞ for

any α > 1.

• At the cost of considerable extra work, it is possible to give analogous
results for sequential limits; see Andrew [6] for the Lévy-process case and
Kesten and Maller [62] for the random-walk case.

• Remarkably, the equivalences stated in Theorem 24, and their equivalence
to (7.3.23) and (7.3.24), remain valid if limits at zero are replaced by limits
at infinity throughout, with only one exception: the large time version
of (7.3.16) places no restriction on σ, since the Brownian component is
irrelevant for large t. One further difference is that one can add one further
equivalence in the t → ∞ case, which is

Xt
P→ −∞ as t → ∞.

• Suppose X is spectrally positive, so that

A(x)
xN(x)

=
γ + N(1) −

∫ 1

x
N(y)dy

xN(x)
.

If X is of bounded variation, i.e.
∫ 1

0
N(y)dy < ∞, then xN(x) → 0 and

(7.3.16) is equivalent to d = γ + N(1) −
∫ 1

0
N(y)dy < 0. Otherwise, it is

equivalent to ∫ 1

x
N(y)dy

xN(x)
→ ∞,

and this happens if and only if
∫ 1

x
N(y)dy is slowly varying, so that X

is “almost” of bounded variation. Note also that a variation of the above
shows that in all cases

∫ 1

x
N(y)dy being slowly varying is necessary in

order that (7.3.16) holds; of course this includes the case
∫ 1

0
N(y)dy < ∞.
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7.4 Tailpiece

None of this helps in finding the necessary and sufficient condition for Spitzer’s
condition when 0 < ρ < 1; if anything it suggests how difficult this problem
is. This is reinforced by the following results, taken from Andrew [7].

(i) Given any 0 < α ≤ β < 1 there are Lévy processes with

α = lim inf πx, β = lim supπx,

and other Lévy processes with

α = lim inf ρt, β = lim sup ρt.

(ii) For any 0 < α < 1 there is a Lévy process with

α = lim πx = lim ρt.

(Non-symmetric stable processes are examples where the two limits exist,
but differ.)

(iii) For any 0 < α < β < 1 there is a Lévy process with α = lim ρt and such
that πx fluctuates between α and β for small x.
In conclusion; every type of limit behaviour seems to be possible.




