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Introduction to Lévy Processes

Lévy processes, i.e. processes in continuous time with stationary and inde-
pendent increments, are named after Paul Lévy: he made the connection with
infinitely divisible distributions (Lévy–Khintchine formula) and described
their structure (Lévy–Itô decomposition).

I believe that their study is of particular interest today for the following
reasons

• They form a subclass of general Markov processes which is large enough
to include many familiar processes such as Brownian motion, the Poisson
process, Stable processes, etc, but small enough that a particular member
can be specified by a few quantities (the characteristics of a Lévy process).

• In a sense, they stand in the same relation to Brownian motion as general
random walks do to the simple symmetric random walk, and their study
draws on techniques from both these areas.

• Their sample path behaviour poses a variety of difficult and fascinating
questions, some of which are not relevant for Brownian motion.

• They form a flexible class of models, which have been applied to the study
of storage processes, insurance risk, queues, turbulence, laser cooling, . . .
and of course finance, where the feature that they include examples having
“heavy tails” is particularly important.

This course will cover only a part of the theory of Lévy processes, and will
not discuss applications. Even within the area of fluctuation theory, there are
many recent interesting developments that I won’t have time to discuss.

Almost all the material in Chapters 1–4 can be found in Bertoin [12].
For related background material, see Bingham [19], Satô [90], and Satô [91].

1.1 Notation

We will use the canonical notation, and denote by X = (Xt, t ≥ 0) the
co-ordinate process, i.e. Xt = Xt(ω) = ω(t), where ω ∈ Ω, the space of real-
valued cadlag paths, augmented by a cemetery point ϑ, and endowed with
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the Skorohod topology. The Borel σ-field of Ω will be denoted by F and the
lifetime by ζ = ζ(ω) = inf{t ≥ 0 : ω(t) = ϑ}.
Definition 1. Let P be a probability measure on (Ω,F) with P(ζ = ∞)
= 1. We say that X is a (real-valued) Lévy process for (Ω,F , P) if for every
t ≥ s ≥ 0, the increment Xt+s − Xt is independent of (Xu, 0 ≤ u ≤ t) and
has the same distribution as Xs.

Note that this forces P(X0 = 0) = 1; we will later write Px for the measure
corresponding to (x + Xt, t ≥ 0) under P.

(Incidentally the name Lévy process has only been the accepted termino-
logy for approximately 20 years; prior to that the name “process with station-
ary and independent increments” was generally used.)

From the decomposition

X1 = X 1
n

+
(
X 2

n
− X 1

n

)
+ · · · +

(
Xn

n
− Xn−1

n

)

it is apparent that X1 has an infinitely divisible distribution under P. The
form of a general infinitely divisible distribution is given by the well-known
Lévy–Khintchine formula, and from it we deduce easily the following result.

Theorem 1. Let X be a Lévy process on (Ω,F , P); then

E(exp iλXt) = e−tΨ(λ), t ≥ 0, λ ∈ R,

where, for some real γ, σ and measure Π on R − {0} which satisfies
∫ ∞

−∞
{x2 ∧ 1}Π(dx) < ∞, (1.1.1)

Ψ(λ) = −iγλ +
σ2

2
λ2 +

∫ ∞

−∞

{
1 − eiλx + iλx1(|x|<1)

}
Π(dx). (1.1.2)

Ψ is called the Lévy exponent of X, and we will call the quantities γ
the linear cefficient, σ the Brownian coefficient, and Π the Lévy measure of
X : together they constitute the characteristics of X. There is an existence
theorem: given real γ, any σ ≥ 0 and measure Π satisfying (1.1.1) there is
a measure under which X is a Lévy process with characteristics γ, σ and
Π. There is also a uniqueness result, as any alteration in one or more of the
characteristics results in a Lévy process with a different distribution.

Examples

• The characteristics of standard Brownian motion are γ = 0, σ = 1,Π ≡ 0,

and Ψ(λ) = λ2

2 .
• The characteristics of a compound Poisson process with jump rate c and

step distribution F are

γ = c

∫

{|x|<1}
xF (dx), σ = 0,Π(dx) = cF (dx),

and Ψ(λ) = c(1 − φ(λ)), where φ(θ) =
∫∞
−∞ eiλxdF (x).
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• The characteristics of a Gamma process are

γ = c(1 − e−1), σ = 0,Π(dx) = cx−1e−x1{x>0}dx,

and Ψ(λ) = c log(1 − iλ).
• The characteristics of a strictly stable process of index α ∈ (0, 1)∪(1, 2)

are

γ arbitrary, σ = 0,Π(dx) =
c+x−α−1dx if x > 0,
c−|x|−α−1dx if x < 0.

If α �= 1, c+ ≥ 0 and c− ≥ 0 are arbitrary, and

Ψ(λ) = c|λ|α {1 − iβsgn(λ) tan(πα/2)} − iγλ.

If α = 1, c+ = c− > 0, and Ψ(λ) = c|λ| − iγλ; this is a Cauchy process
with drift.

Note that there is a fairly obvious generalisation of Theorem 1 to R
d, but

we will stick, almost exclusively, to the 1-dimensional case.
The first step to getting a probabilistic interpretation of Theorem 1 is to

realise that the process of jumps,

∆ = (∆t, t ≥ 0) where ∆t = Xt − Xt−,

is a Poisson point process, but first we need some background material.

1.2 Poisson Point Processes

A random measure φ on a Polish space E (this means it is metric-complete
and separable) is called a Poisson measure with intensity ν if

1. ν is a σ-finite measure on E;
2. for every Borel subset B of E with 0 < ν(B) < ∞, φ(B) has a Poisson

distribution with parameter ν(B); in particular φ(B) has mean ν(B);
3. for disjoint Borel subsets B1, · · ·Bn of E, the random variables φ(B1), · · · ,

φ(Bn) are independent.

In the case that c := ν(E) < ∞, it is clear that we can represent φ as a sum
of Dirac point masses as follows. Let y1, y2, · · · be a sequence of independent
and identically distributed E-valued random variables with distribution c−1ν,
and N an independent Poisson-distributed random variable with parameter
c; then we can represent φ as

φ =
N∑
1

δyj
,

where δy denotes the Dirac point mass at y ∈ E. If ν(E) = ∞, there is a
decomposition of E into disjoint Borel sets E1, E2, · · · , each having ν(Ej)
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finite, and we can represent φ as the sum of independent Poisson measures φj

having intensities ν1Ej
, each having the above representation, so again φ can

be represented as the sum of Dirac point masses.
To set up a Poisson point process we consider the product space E×[0,∞),

the measure µ = ν×dx, and a Poisson measure φ on E× [0,∞) with intensity
µ. It is easy to check that a.s. φ(E × {t}) = 1 or 0 for all t ≥ 0, so we can
introduce a process (e(t), t ≥ 0) by letting (e(t), t) denote the position of the
point mass on E × {t} in the first case, and in the second case put e(t) = ξ,
where ξ is an additional isolated point. Then we can write

φ =
∑
t≥0

δ(e(t),t).

The process e = (e(t), t ≥ 0) is called a Poisson point process with character-
istic measure ν.

The basic properties of a Poisson point process are stated in the next
result.

Proposition 1. Let B be a Borel set with ν(B) < ∞, and define its counting
process by

NB
t = #{s ≤ t : e(s) ∈ B} = φ(B × [0, t]), t ≥ 0,

and its entrance time by

TB = inf{t ≥ 0 : e(t) ∈ B}.
Then

(i) NB is a Poisson process of parameter ν(B), which is adapted to the
filtration G of e.

(ii) TB is a (Gt)-stopping time which has an exponential distribution with
parameter ν(B).

(iii) e(TB) and TB are independent, and for any Borel set A

P(e(TB) ∈ A) =
ν(A∩B)

ν(B)
.

(iv) The process e′ defined by e′(t) = ξ if e(t) ∈ B and e′(t) = e(t) otherwise
is a Poisson point process with characteristic measure ν1Bc , and it is
independent of (TB , e(TB)).

The process (e(t), 0 ≤ t ≤ TB) is called the process stopped at the first
point in B; its law is characterized by Proposition 1.

If we define a deterministic function on E × [0,∞) by Ht(y) =
1B×(t1,t2](y, t) it is clear that

E

⎛
⎝ ∑

0≤t<∞
Ht(e(t))

⎞
⎠ = (t2 − t1)ν(B);

this is the building block on which the following important result is based.
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Proposition 2. (The compensation formula) Let H = (Ht, t ≥ 0) be
a predictable process taking values in the space of nonnegative measurable
functions on E∪{ξ} and having Ht(ξ) ≡ 0. Then

E

⎛
⎝ ∑

0≤t<∞
Ht(e(t))

⎞
⎠ = E

(∫ ∞

0

dt

∫

E

Ht(y)ν(dy)
)

.

A second important result is called the exponential formula;

Proposition 3. Let f be a complex-valued Borel function on E∪{ξ} with
f(ξ) = 0 and ∫

E

|1 − ef(y)|ν(dy) < ∞.

Then for any t ≥ 0

E

⎛
⎝exp

⎧
⎨
⎩

∑
0≤s≤t

f(e(s))

⎫
⎬
⎭

⎞
⎠ = exp

{
−t

∫

E

(1 − ef(y))ν(dy)
}

.

1.3 The Lévy–Itô Decomposition

It is important to get a probabilistic interpretation of the Lévy–Khintchine
formula, and this is what this decomposition does. Fundamentally, it describes
the way that the measure Π determines the structure of the jumps in the
process. Specifically it states that X can be written in the form

Xt = γt + σBt + Yt,

where B is a standard Brownian motion, and Y is a Lévy process which
is independent of B, and is “determined by its jumps”, in the following
sense. Let ∆ = {∆t, t ≥ 0} be a Poisson point process on R × [0,∞) with
characteristic measure Π, and note that since Π{x : |x| ≥ 1} < ∞, then∑

s≤t 1{|∆s|≥1}|∆s| < ∞ a.s. Moreover if we define

Y
(2)
t =

∑
s≤t

1{|∆s|≥1}∆s, t ≥ 0

then it is easy to see that, provided c = Π{x : |x| ≥ 1} > 0, (Y (2)
t , t ≥ 0)

is a compound Poisson process with jump rate c, step distribution F (dx) =
c−1Π(dx)1{|x|≥1} and, by the exponential formula, Lévy exponent

Ψ (2)(λ) =
∫

|x|≥1

{1 − eiλx}Π(dx).

If
I =

∫
(1 ∧ |x|)Π(dx) < ∞, (1.3.1)
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then, by considering the limit of
∑

s≤t 1{ε<|∆s|<1} |∆s| as ε ↓ 0, we see that

∑
s≤t

1{|∆s|<1} |∆s| < ∞ a.s. for each t < ∞,

and in this case we set Yt = Y
(1)
t + Y

(2)
t , where

Y
(1)
t =

∑
s≤t

∆s1{|∆s|<1}, t ≥ 0,

is independent of Y (2). Clearly, in this case Y has bounded variation (on each
finite time interval), and it’s exponent is

Ψ (1)(λ) =
∫

|x|<1

{1 − eiλx}Π(dx).

In this case we can rewrite the Lévy–Khintchine formula as

Ψ(λ) = −iδλ +
σ2

2
λ2 + Ψ (1)(λ) + Ψ (2)(λ),

where δ = γ −
∫
|x|<1

xΠ(dx) is finite, and the Lévy–Itô decomposition takes
the form

Xt = δt + σBt + Y
(1)
t + Y

(2)
t , t ≥ 0, (1.3.2)

where the processes B, Y (1) and Y (2) are independent. The constant δ is called
the drift coefficient of X.

However, if I = ∞ then a.s.
∑

s≤t |∆s| = ∞ for each t > 0, and in this
case we need to define Y (1) differently: in fact as the a.s. limit as ε ↓ 0 of the
compensated partial sums,

Y
(1)
ε,t =

∑
s≤t

1{ε<|∆s|≤1}∆s − t

∫

ε<|x|≤1

xΠ(dx).

It is clear that {Y (1)
ε,t , t ≥ 0} is a Lévy process, in fact a compensated compound

Poisson process with exponent

Ψ (1)
ε (λ) =

∫ ∞

−∞
{1 − eiλx + iλx}1(ε<|x|<1)Π(dx),

and hence a martingale. The key point, (see e.g. [12] p14), is that the basic
assumption that

∫
(1 ∧ x2)Π(dx) < ∞ allows us to use a version of Doob’s

maximal inequality for martingales to show that the limit as ε ↓ 0 exists, has
stationary and independent increments, and is a Lévy process with exponent

Ψ (1)(λ) =
∫ ∞

−∞
{1 − eiλx + iλx}1(|x|<1)Π(dx).
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In this case the Lévy–Itô decomposition takes the form

Xt = γt + σBt + Y
(1)
t + Y

(2)
t , t ≥ 0, (1.3.3)

where again the processes B, Y (1) and Y (2) are independent.
Since Y (2) has unbounded variation we see that X has bounded variation

⇐⇒ σ = 0 and I < ∞. All the examples we have discussed have bounded
variation, except for Brownian motion and stable processes with index ∈ (1, 2).

To conclude this section, we record some information about the asymptotic
behaviour of the Lévy exponent.

Proposition 4. (i) In all cases we have

lim
|λ|→∞

Ψ(λ)
λ2 =

σ2

2
.

(ii) If X has bounded variation and drift coefficient δ,

lim
|λ|→∞

Ψ(λ)
λ

= −iδ.

(iii) X is a compound Poisson process if and only if Ψ is bounded.

(Note that we reserve the name compound Poisson process for a Lévy
process with a finite Lévy measure, no Brownian component and drift coeffi-
cient zero.)

1.4 Lévy Processes as Markov Processes

It is clear that any Lévy process has the simple Markov property in the
stronger, spatially homogeneous form that, given Xt = x, the process
{Xt+s, s ≥ 0} is independent of {Xu, u < t} and has the law of {x+Xs, s ≥ 0}.
In fact

• a similar form of the strong Markov property also holds. In particular this
means that the above is valid if the fixed time t is replaced by a first
passage time

TB = inf{t ≥ 0 : Xt ∈ B}
whenever B is either open or closed.

• It is also the case that the semi-group of X has the Feller property and
it turns out that the strong Feller property holds in the important special
case that the law of Xt is absolutely continuous with respect to Lebesgue
measure.

• In these, and some other circumstances, the resolvent kernel is absolutely
continuous, i.e. there exists a non-negative measurable function u(q) such
that
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U (q)f(x) :=
∫ ∞

0

e−qtPtf(x)dt =
∫ ∞

−∞
f(x + y)u(q)(y)dy,

where
Ptf(x) = Ex(f(Xt)).

• The associated potential theory requires no additional hypotheses; in par-
ticular if we write X∗ = −X for the dual of X we have the following
duality relations. Let f and g be non-negative; then

∫

R

Ptf(x)g(x)dx =
∫

R

f(x)P ∗
t g(x)dx, t > 0,

and ∫

R

U (q)f(x)g(x)dx =
∫

R

f(x)U∗(q)g(x)dx, t > 0,

• The relation between X and X∗ via time-reversal is also simple; for each
fixed t > 0, the reversed process {X(t−s)− − Xt, 0 ≤ s ≤ t} and the dual
process {X∗

s , 0 ≤ s ≤ t} have the same law under P.

In summary; X is a “nice” Markov process, and many of technical prob-
lems which appear in the general theory are simplified for Lévy processes.




