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Statistical Learning

8.1 Introduction

Suppose that one observes independent variables ξ1, . . . , ξn taking their values
in some measurable space Ξ. Let us furthermore assume, for the sake of
simplicity, that these variables are identically distributed with common dis-
tribution P . The two main frameworks that we have in mind are respectively
the classification and the bounded regression frameworks. In those cases, for
every i the variable ξi = (Xi, Yi) is a copy of a pair of random variables (X,Y ),
where X takes its values in some measurable space X and Y is assumed to
take its values in [0, 1]. In the classification case, the response variable Y is
assumed to belong to {0, 1}. One defines the regression function η as

η (x) = E [Y | X = x] (8.1)

for every x ∈ X . In the regression case, one is interested in the estimation of η
while in the classification case, one wants to estimate the Bayes classifier s∗,
defined for every x ∈ X by

s∗ (x) = 1lη(x)≥1/2. (8.2)

One of the most commonly used method to estimate η or s∗ or more
generally to estimate a quantity of interest s depending on the unknown dis-
tribution P is the so called empirical risk minimization by Vapnik which is a
special instance of minimum contrast estimation.

Empirical Risk Minimization

Basically one considers some set S which is known to contain s, think of S as
being the set of all measurable functions from X to [0, 1] in the regression case
or to {0, 1} in the classification case. Then we consider some loss (or contrast)
function

γ from S ×Ξ to [0, 1]
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which is well adapted to our estimation problem of s in the sense that the
expected loss E [γ (t, ξ1)] achieves a minimum at point s when t varies in S. In
other words the relative expected loss � defined by

� (s, t) = E [γ (t, ξ1) − γ (s, ξ1)] , for all t ∈ S (8.3)

is nonnegative. In the regression or the classification cases, one can take

γ (t, (x, y)) = (y − t (x))2

since η (resp. s∗) is indeed the minimizer of E

[
(Y − t (X))2

]
over the set of

measurable functions t taking their values in [0, 1] (resp. {0, 1}). The heuris-
tics of empirical risk minimization (or minimum contrast estimation) can be
described as follows. If one substitutes the empirical risk

γn (t) = Pn [γ (t, .)] =
1
n

n∑
i=1

γ (t, ξi) ,

to its expectation P [γ (t, .)] = E [γ (t, ξ1)] and minimizes γn on some subset
S of S (that we call a model), there is some hope to get a sensible estimator
ŝ of s, at least if s belongs (or is close enough) to the model S.

8.2 Model Selection in Statistical Learning

The purpose of this section is to provide an other look at the celebrated
Vapnik’s method of structural risk minimization (initiated in [121]) based
on concentration inequalities. In the next section, we shall present an alter-
native analysis which can lead to improvements of Vapnik’s method for the
classification problem. Let us consider some countable or finite (but possibly
depending on n) collection of models {Sm}m∈M and the corresponding collec-
tion of empirical risk minimizers {ŝm}m∈M. For every m ∈ M an empirical
risk minimizer within model Sm is defined by

ŝm = argmint∈Sm
γn (t) .

Given some penalty function pen: M → R+ and let us define m̂ as a mini-
mizer of

γn (ŝm) + pen (m) (8.4)

over M and finally estimate s by the penalized estimator

s̃ = ŝ
m̂

.

Since some problems can occur with the existence of a solution to the pre-
vious minimization problems, it is useful to consider approximate solutions
(note that even if ŝm does exist, it is relevant from a practical point of view
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to consider approximate solutions since ŝm will typically be approximated
by some numerical algorithm). Therefore, given ρ ≥ 0 (in practice, taking
ρ = n−2 makes the introduction of an approximate solution painless), we shall
consider for every m ∈ M some approximate empirical risk minimizer ŝm
satisfying

γn (ŝm) ≤ γn (t) + ρ

and say that s̃ is a ρ-penalized estimator of s if

γn (s̃) + pen (m̂) ≤ γn (t) + pen (m) + ρ, ∀m ∈ M and ∀t ∈ Sm. (8.5)

To analyze the statistical performance of this procedure, the key is to take
� (s, t) as a loss function and notice that the definition of the penalized
procedure leads to a very simple but fundamental control for � (s, s̃). Indeed,
by the definition of s̃ we have, whatever m ∈M and sm ∈ Sm,

γn (s̃) + pen (m̂) ≤ γn (sm) + pen (m) + ρ,

and therefore

γn (s̃) ≤ γn (sm) + pen (m) − pen (m̂) + ρ. (8.6)

If we introduce the centered empirical process

γn (t) = γn (t) − E [γ (t, ξ1)] , t ∈ S

and notice that E [γ (t, ξ1)] − E [γ (u, ξ1)] = � (s, t) − � (s, u) for all t, u ∈ S,
we readily get from (8.6)

� (s, s̃) ≤ � (s, sm) + γn (sm) − γn (s̃) − pen (m̂) + pen (m) + ρ. (8.7)

8.2.1 A Model Selection Theorem

Let us first see what can be derived from (8.7) by using only the following
boundedness assumption on the contrast function γ

A1 For every t belonging to some set S, one has 0 ≤ γ (t, .) ≤ 1.

In order to avoid any measurability problem, let us first assume that each
of the models Sm is countable. Given some constant Σ, let us consider some
preliminary collection of nonnegative weights {xm}m∈M such that

∑
m∈M

e−xm ≤ Σ

and let z > 0 be given. It follows from (5.7) (which was proved in Chapter 5
to be a consequence of Mc Diarmid’s Inequality) that for every m′ ∈M,

P

[
sup
t∈Sm′

(−γn (t)) ≥ E

[
sup
t∈Sm′

(−γn (t))

]
+

√
xm′ + z

2n

]
≤ e−xm′−z,
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and therefore, setting E

[
supt∈Sm′ (−γn (t))

]
= Em′ , except on a set of prob-

ability not larger than Σe−z, one has for every m′ ∈ M,

sup
t∈Sm′

(−γn (t)) ≤ Em′ +

√
xm′ + z

2n
.

Hence, (8.7) implies that the following inequality holds, except on a set of
probability not larger than Σe−z:

� (s, s̃) ≤ � (s, sm)+ γn (sm)+E
m̂

+
√

x
m̂

2n
−pen (m̂)+pen (m)+

√
z

2n
+ρ. (8.8)

It is tempting to choose pen (m′) = Em′ +
√

xm′/2n for every m′ ∈ M but
we should not forget that Em′ typically depends on the unknown s. Thus,
we are forced to consider some upper bound Ẽm′ of Em′ which does not
depend on s. This upper bound can be either deterministic (we shall discuss
below the drawbacks of this strategy) or random and in such a case we shall
take benefit of the fact that it is enough to assume that Ẽm′ ≥ Em′ holds
on a set with sufficiently high probability. More precisely, assuming that for
some constant K and for every m′ ∈M

pen (m′) ≥ Em′ +
√

xm′

2n
−K

√
z

2n
(8.9)

holds, except on set of probability not larger than exp (−xm′ − z), we derive
from (8.8) and (8.9) that

� (s, s̃ ) ≤ � (s, sm) + γn (sm) + pen (m) + (1 + K)
√

z

2n
+ ρ

holds except on a set of probability not larger than 2Σe−z. Thus, integrating
with respect to z leads to

E

[
(� (s, s̃ ) − � (s, sm) − γn (sm) − pen (m) − ρ)+

]
≤ Σ (1 + K)

√
π

2n

and therefore, since γn (sm) is centered at expectation

E [� (s, s̃ )] ≤ � (s, sm) + E [pen (m)] + Σ (1 + K)
√

π

2n
+ ρ.

Hence, we have proven the following result.

Theorem 8.1 Let ξ1, . . . , ξn be independent observations taking their values
in some measurable space Ξ and with common distribution P depending on
some unknown parameter s ∈ S. Let γ : S×Ξ → R be some contrast function
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satisfying assumption A1. Let {Sm}m∈M be some at most countable collec-
tion of countable subsets of S and ρ ≥ 0 be given. Consider some absolute
constant Σ, some family of nonnegative weights {xm}m∈M such that

∑
m∈M

e−xm = Σ < ∞

and some (possibly data-dependent) penalty function pen : M→ R+. Let s̃ be
a ρ-penalized estimator of s as defined by (8.5). Then, if for some nonnegative
constant K, for every m ∈ M and every positive z

pen (m) ≥ E

[
sup
t∈Sm

(−γn (t))
]

+
√

xm
2n

−K

√
z

2n

holds with probability larger than 1 − exp (−xm − z), the following risk
bound holds for all s ∈ S

E [� (s, s̃)] ≤ inf
m∈M

(� (s, Sm) + E [pen (m)]) + Σ (1 + K)
√

π

2n
+ ρ, (8.10)

where � is defined by (8.3) and � (s, Sm) = inft∈Sm
� (s, t).

It is not that easy to discuss whether this result is sharp or not in the
generality where it is stated here. Nevertheless we shall see that, at the price
of making an extra assumption on the contrast function γ, it is possible to
improve on (8.10) by weakening the restriction on the penalty function. This
will be the purpose of our next section.

Vapnik’s Learning Theory Revisited

We would like here to explain how Vapnik’s structural minimization of the
risk method (as described in [121] and further developed in [122]) fits in
the above framework of model selection via penalization. More precisely, we
shall consider the classification problem and show how to recover (or refine
in the spirit of [31]) some of Vapnik’s results from Theorem 8.1. The data
ξ1 = (X1, Y1) , . . . , ξn = (Xn, Yn) consist of independent, identically distrib-
uted copies of the random variable pair (X,Y ) taking values in X × {0, 1}.
Let the models {Sm}m∈M being defined for every m ∈ M as

Sm = {1lC : C ∈ Am} ,

where Am is some countable class of subsets of X . Let S be the set of mea-
surable functions taking their values in [0, 1]. In this case, the least squares
contrast function fulfills condition A1. Indeed,since γ (t, (x, y)) = (y − t (x))2,
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A1 is fulfilled whenever t ∈ S and y ∈ [0, 1]. For a function t taking only the
two values 0 and 1, the least squares criterion also writes

1
n

n∑
i=1

(Yi − t (Xi))
2 =

1
n

n∑
i=1

1lYi �=t(Xi)

so that minimizing the least squares criterion means minimizing the number
of misclassifications on the training sample ξ1 = (X1, Y1) , . . . , ξn = (Xn, Yn).
Each estimator ŝm represents some possible classification rule and the purpose
of model selection is here to select what classification rule is the best according
to some risk minimization criterion. At this stage it should be noticed that we
have the choice here between two different definitions of the statistical object
of interest s. Indeed, we can take s to be the minimizer of t → E [Y − t (X)]2

subject or not to the restriction that t takes its values in {0, 1}. On the one
hand the Bayes classifier s∗ as defined by (8.2) is a minimizer of E [Y − t (X)]2

under the restriction that t takes its values in {0, 1} and the corresponding
loss function can be written as

� (s∗, t) = E [s∗ (X) − t (X)]2 = P [Y �= t (X)] − P [Y �= s∗ (X)] .

On the other hand, the regression function η as defined by (8.1) minimizes
E [Y − t (X)]2 without the restriction that t takes its values in {0, 1}, and the
corresponding loss function is simply � (η, t) = E [η (X) − t (X)]2. It turns
out that the results presented below are valid for both definitions of s
simultaneously. In order to apply Theorem 8.1, it remains to upper bound
E
[
supt∈Sm

(−γn (t))
]
. Let us introduce the (random) combinatorial entropy

of Am
Hm = ln |{A ∩ {X1, . . . , Xn} , A ∈ Am}| .

If we take some independent copy (ξ′1, . . . , ξ
′
n) of (ξ1, . . . , ξn) and consider the

corresponding copy γ′
n of γn, we can use the following standard symmetriza-

tion argument. By Jensen’s inequality

E

[
sup
t∈Sm

(−γn (t))
]
≤ E

[
sup
t∈Sm

(γ′
n (t) − γn (t))

]
,

so that, given independent random signs (ε1, . . . , εn), independent of
(ξ1, . . . , ξn), one has,

E

[
sup
t∈Sm

(−γn (t))
]
≤ 1

n
E

[
sup
t∈Sm

(
n∑
i=1

εi

(
1lY ′

i
�=t(X′

i) − 1lYi �=t(Xi)

))]

≤ 2
n

E

[
sup
t∈Sm

(
n∑
i=1

εi1lYi �=t(Xi)

)]
.

Hence, by (6.3) we get
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E

[
sup
t∈Sm

(−γn (t))
]
≤ 2

√
2

n
E

⎡
⎣
(
Hm sup

t∈Sm

(
n∑
i=1

1lYi �=t(Xi)

))1/2
⎤
⎦ ,

and by Jensen’s inequality

E

[
sup
t∈Sm

(−γn (t))
]
≤ 2

√
2E [Hm]

n
. (8.11)

The trouble now is that E [Hm] is unknown. Two different strategies can be
followed to overcome this difficulty. First, one can use the VC-dimension to
upper bound E [Hm]. Assume each Am to be a VC-class with VC-dimension
Vm (see Definition 6.2), one derives from (6.9) that

E [Hm] ≤ Vm

(
1 + ln

(
n

Vm

))
. (8.12)

If M has cardinality not larger than n, one can take xm = ln (n) for each
m ∈ M which leads to a penalty function of the form

pen (m) = 2

√
2Vm (1 + ln (n/Vm))

n
+

√
ln (n)

2n
,

and to the following risk bound for the corresponding penalized estimator s̃,
since then Σ ≤ 1:

E [� (s, s̃)] ≤ inf
m∈M

(� (s, Sm) + pen (m)) +
√

π

2n
+ ρ. (8.13)

This approach has two main drawbacks:

• the VC-dimension of a given collection of sets is generally very difficult to
compute or even to evaluate (see [6] and [69] for instance);

• even if the VC-dimension is computable (in the case of affine half spaces
of R

d for instance), inequality (8.12) is too pessimistic and it would be
desirable to define a penalty function from a quantity which is much closer
to E [Hm] than the right-hand side of (8.12).

Following [31], the second strategy consists of substituting Hm to E [Hm]
by using again a concentration argument. Indeed, by (5.22), for any positive z,
one has Hm ≥ E [Hm] −

√
2 ln (2) E [Hm] (xm + z), on a set of probability not

less than 1 − exp (−xm − z). Hence, since

√
2 ln (2) E [Hm] (xm + z) ≤ E [Hm]

2
+ ln (2) (xm + z) ,

we have on the same set,

E [Hm] ≤ 2Hm + 2 ln (2) (xm + z) ,
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which, by (8.11), yields

E

[
sup
t∈Sm

(−γn (t))
]
≤ 4

(√
Hm

n
+

√
ln (2)xm

n
+

√
ln (2) z

n

)
.

Taking xm = ln (n) as before leads to the following choice for the penalty
function

pen (m) = 4

√
Hm

n
+ 4.1

√
ln (n)
n

,

which satisfies

pen (m) ≥ E

[
sup
t∈Sm

(−γn (t))
]

+

√
ln (n)

2n
− 4

√
ln (2) z

n
.

The corresponding risk bound can be written as

E [� (s, s̃)] ≤
[

inf
m∈M

(� (s, Sm) + E [pen (m)]) + 4

√
π ln (2)

n
+ ρ

]
,

and therefore, by Jensen’s inequality

E [� (s, s̃)] ≤
[

inf
m∈M

(
� (s, Sm) + 4

√
E [Hm]

n

)
+ 4.1

√
ln (n)
n

+
6√
n

+ ρ

]
.

(8.14)

Note that if we take s = s∗, denoting by Lt the probability of misclassifica-
tion of the rule t, i.e., Lt = P [Y �= t (X)], the risk bound (8.14) can also be
written as

E
[
L
s̃

]
≤ inf
m∈M

(
inf
t∈Sm

Lt + 4

√
E [Hm]

n

)
+ 4.1

√
ln (n)
n

+
6√
n

+ ρ,

which is maybe a more standard way of expressing the performance of a
classifier in the statistical learning literature. Of course, if we follow the first
strategy of penalization a similar bound can be derived from (8.13), namely

E
[
L
s̃

]
≤ inf
m∈M

(
inf
t∈Sm

Lt + 2

√
2Vm (1 + ln (n/Vm))

n

)

+

√
ln (n)

2n
+
√

π

2n
+ ρ.

Note that the same conclusions would hold true (up to straightforward modi-
fications of the absolute constants) if instead of the combinatorial entropy
Hm, one would take as a random measure of complexity for the class Sm the
Rademacher conditional mean
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1√
n

E

[
sup
t∈Sm

n∑
i=1

εi1lYi �=t(Xi) | (Xi, Yi)1≤i≤n

]

since we have indeed seen in Chapter 4 that this quantity obeys exactly
to the same concentration inequality as Hm. This leads to risk bounds for
Rademacher penalties of the same nature as those obtained by Bartlett,
Boucheron and Lugosi (see [13]) or Koltchinskii (see [70]).

8.3 A Refined Analysis for the Risk of an Empirical
Risk Minimizer

The purpose of this section is to provide a general upper bound for the relative
expected loss between ŝ and s, where ŝ denotes the empirical risk minimizer
over a given model S.

We introduce the centered empirical process γn. In addition to the relative
expected loss function � we shall need another way of measuring the closeness
between the elements of S which is directly connected to the variance of the
increments of γn and therefore will play an important role in the analysis of
the fluctuations of γn. Let d be some pseudodistance on S × S (which may
perfectly depend on the unknown distribution P ) such that

P
(

(γ (t, .) − γ (s, .))2
)
≤ d2 (s, t) , for every t ∈ S.

Of course, we can take d as the pseudodistance associated to the variance of
γ itself, but it will more convenient in the applications to take d as a more
intrinsic distance. For instance, in the regression or the classification setting
it is easy to see that d can be chosen (up to constant) as the L2 (µ) distance,
where µ denotes the distribution of X. Indeed, for classification

|γ (t, (x, y)) − γ (s∗, (x, y))| =
∣∣1Iy �=t(x) − 1Iy �=s∗(x)

∣∣ = |t (x) − s∗ (x)|

and therefore setting d2 (s∗, t) = E

[
(t (X) − s∗ (X))2

]
leads to

P
(

(γ (t, .) − γ (s∗, .))2
)
≤ d2 (s∗, t) .

For regression, we write

[γ (t, (x, y)) − γ (η, (x, y))]2 = [t (x) − η (x)]2 [2 (y − η (x)) − t (x) + η (x)]2 .

Now
E [Y − η (X) | X] = 0 and E

[
(Y − η (X))2 | X

]
≤ 1

4
,
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imply that

E

[
[2 (y − η (x)) − t (x) + η (x)]2 | X

]
= 4E

[
(Y − η (X))2 | X

]

+ (−t (X) + η (X))2 ≤ 2,

and therefore

P
(

(γ (t, .) − γ (η, .))2
)
≤ 2E (t (X) − η (X))2 . (8.15)

Our main result below will crucially depend on two different moduli of
uniform continuity:

• the stochastic modulus of uniform continuity of γn over S with respect
to d,

• the modulus of uniform continuity of d with respect to �.

The main tool that we shall use is Bousquet’s version of Talagrand’s
inequality for empirical processes (see Chapter 4) which will allow us to con-
trol the oscillations of the empirical process γn by the modulus of uniform
continuity of γn in expectation. Bousquet’s version has the advantage of pro-
viding explicit constants and of dealing with one-sided suprema (in the spirit
of [91], we could also work with absolute suprema but it is easier and somehow
more natural to work with one-sided suprema).

8.3.1 The Main Theorem

We need to specify some mild regularity conditions that we shall assume to
be verified by the moduli of continuity involved in our result.

Definition 8.2 We denote by C1 the class of nondecreasing and continu-
ous functions ψ from R+ to R+ such that x → ψ (x) /x is nonincreasing
on (0,+∞) and ψ (1) ≥ 1.

Note that if ψ is a nondecreasing continuous and concave function on
R+with ψ (0) = 0 and ψ (1) ≥ 1, then ψ belongs to C1. In particular, for
the applications that we shall study below an example of special interest is
ψ (x) = Axα, where α ∈ [0, 1] and A ≥ 1.

In order to avoid measurability problems and to use the concentration
tools, we need to consider some separability condition on S. The following
one will be convenient

(M) There exists some countable subset S′ of S such that for every t ∈ S,
there exists some sequence (tk)k≥1 of elements of S′ such that for every
ξ ∈ Ξ, γ (tk, ξ) tends to γ (t, ξ) as k tends to infinity.

We are now in a position to state our upper bound for the relative expected
loss of any empirical risk minimizer on some given model S.
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Theorem 8.3 Let ξ1, . . . , ξn be independent observations taking their values
in some measurable space Ξ and with common distribution P . Let S be some
set, γ : S×Ξ → [0, 1] be a measurable function such that for every t ∈ S, x →
γ (t, x) is measurable. Assume that there exists some minimizer s of P (γ (t, .))
over S and denote by � (s, t) the nonnegative quantity P (γ (t, .))− P (γ (s, .))
for every t ∈ S. Let γn be the empirical risk

γn (t) = Pn (γ (t, .)) =
1
n

n∑
i=1

γ (t, ξi) , for every t ∈ S

and γn be the centered empirical process defined by

γn (t) = Pn (γ (t, .)) − P (γ (t, .)) , for every t ∈ S .

Let d be some pseudodistance on S × S such that

P
(

(γ (t, .) − γ (s, .))2
)
≤ d2 (s, t) , for every t ∈ S. (8.16)

Let φ and w belong to the class of functions C1 defined above and let S be
a subset of S satisfying separability condition (M). Assume that on the one
hand, for every t ∈ S

d (s, t) ≤ w
(√

� (s, t)
)

(8.17)

and that on the other hand one has for every u ∈ S′

√
nE

[
sup

t∈S′,d(u,t)≤σ
[γn (u) − γn (t)]

]
≤ φ (σ) (8.18)

for every positive σ such that φ (σ) ≤ √
nσ2, where S′ is given by assumption

(M). Let ε∗ be the unique solution of the equation
√
nε2

∗ = φ (w (ε∗)) . (8.19)

Let ρ be some given nonnegative real number and consider any ρ-empirical
risk minimizer, i.e., any estimator ŝ taking its values in S and such that

γn (ŝ) ≤ ρ + inf
t∈S

γn (t) .

Then, setting
� (s, S) = inf

t∈S
� (s, t) ,

there exists some absolute constant κ such that for every y ≥ 0, the following
inequality holds

P

[
� (s, ŝ) > 2ρ + 2� (s, S) + κ

(
ε2
∗ +

(
1 ∧ w2 (ε∗)

)
nε2

∗
y

)]
≤ e−y. (8.20)

In particular, the following risk bound is available

E [� (s, ŝ)] ≤ 2
(
ρ + � (s, S) + κε2

∗
)
.
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Comments.
Let us give some first comments about Theorem 8.3.

• The absolute constant 2 appearing in (8.20) has no magic meaning here,
it could be replaced by any C > 1 at the price of making the constant κ
depend on C.

• One can wonder whether an empirical risk minimizer over S does exist
or not. Note that condition (M) implies that for every positive ρ, there
exists some measurable choice of a ρ-empirical risk minimizer since then
inft∈S′ γn (t) = inft∈S γn (t). If ρ = 1/n for instance, it is clear that,
according to (8.20), such an estimator performs as well as a strict empirical
risk minimizer.

• For the computation of φ satisfying (8.18), since the supremum appearing
in the left-hand side of (8.18) is extended to the countable set S′ and not
S itself, it will allow us to restrict ourself to the case where S is countable.

• It is worth mentioning that, assuming for simplicity that s ∈ S, (8.20)
still holds if we consider the relative empirical risk γn (s) − γn (ŝ) instead
of the expected loss � (s, ŝ). This is indeed a by-product of the proof of
Theorem 8.3 below.

Proof. According to measurability condition (M), we may without loss of
generality assume S to be countable. Suppose, first, for the sake of simplicity
that there exists some point π (s) belonging to S such that

� (s, π (s)) = � (s, S) . (8.21)

We start from the identity

� (s, ŝ) = � (s, π (s)) + γn (ŝ) − γn (π (s)) + γn (π (s)) − γn (ŝ) ,

which, by definition of ŝ implies that

� (s, ŝ) ≤ ρ + � (s, π (s)) + γn (π (s)) − γn (ŝ) .

Let x > 0 with

x2 = κ

(
ε2
∗ +

(
1 ∧ w2 (ε∗)

)
y

nε2
∗

)
,

where κ is a constant to be chosen later such that κ ≥ 1, and

Vx = sup
t∈S

γn (π (s)) − γn (t)
� (s, t) + x2

.

Then,
� (s, ŝ) ≤ ρ + � (s, π (s)) + Vx

(
� (s, ŝ) + x2

)

and therefore, on the event Vx < 1/2, one has

� (s, ŝ) < 2 (ρ + � (s, π (s))) + x2
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yielding

P
[
� (s, ŝ) ≥ 2 (ρ + � (s, π (s))) + x2

]
≤ P

[
Vx ≥

1
2

]
. (8.22)

Since � is bounded by 1, we may always assume x (and thus ε∗) to be not
larger than 1. Assuming that x ≤ 1, it remains to control the variable Vx
via Bousquet’s inequality. By (8.16), (8.17), the definition of π (s) and the
monotonicity of w, we derive that for every t ∈ S

VarP (−γ (t, .) + γ (π (s) , .)) ≤ (d (s, t) + d (s, π (s)))2 ≤ 4w2
(√

� (s, t)
)

.

Hence, since γ takes its values in [0, 1], introducing the function w1 = 1∧ 2w,
we derive that

sup
t∈S

VarP

[
γ (t, .) − γ (π (s) , .)

� (s, t) + x2

]
≤ sup

ε≥0

w2
1 (ε)

(ε2 + x2)2
≤ 1

x2
sup
ε≥0

(
w1 (ε)
ε ∨ x

)2

.

Now the monotonicity assumptions on w imply that either w (ε) ≤ w (x) if
x ≥ ε or w (ε) /ε ≤ w (x) /x if x ≤ ε, hence one has in any case w (ε) / (ε ∨ x) ≤
w (x) /x which finally yields

sup
t∈S

VarP

[
γ (t, .) − γ (π (s) , .)

� (s, t) + x2

]
≤ w2

1 (x)
x4

.

On the other hand since γ takes its values in [0, 1], we have

sup
t∈S

∥∥∥∥
γ (t, .) − γ (π (s) , .)

� (s, t) + x2

∥∥∥∥
∞

≤ 1
x2

.

We can therefore apply (5.49) with v = w2
1 (x)x−4 and b = 2x−2, which gives

that, on a set Ωy with probability larger than 1 − exp (−y), the following
inequality holds

Vx < E [Vx] +

√
2 (w2

1 (x)x−2 + 4E [Vx]) y
nx2

+
y

nx2

< 3E [Vx] +

√
2w2

1 (x)x−2y

nx2
+

2y
nx2

. (8.23)

Now since ε∗ is assumed to be not larger than 1, one has w (ε∗) ≥ ε∗ and there-
fore for every σ ≥ w (ε∗), the following inequality derives from the definition
of ε∗ by monotonicity

φ (σ)
σ2

≤ φ (w (ε∗))
w2 (ε∗)

≤ φ (w (ε∗))
ε2
∗

=
√
n.

Hence (8.18) holds for every σ ≥ w (ε∗) and since u → φ (2w (u)) /u is non-
increasing, by assumption (8.17) and (8.21) we can use Lemma 4.23 (and the
triangle inequality for d) to get

E [Vx] ≤ 4φ (2w (x))√
nx2

.
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Hence, by monotonicity of u → φ (u) /u

E [Vx] ≤ 8φ (w (x))√
nx2

.

Since κ ≥ 1 we note that x ≥ √
κε∗ ≥ ε∗. Thus, using the monotonicity of

u → φ (w (u)) /u, and the definition of ε∗, we derive that

E [Vx] ≤ 8φ (w (ε∗))√
nxε∗

=
8ε∗
x

≤ 8√
κ

. (8.24)

Now, the monotonicity of u → w1 (u) /u implies that

w2
1 (x)
x2

≤ w2
1 (ε∗)
ε2
∗

. (8.25)

Plugging (8.24) and (8.25) into (8.23) implies that, on the set Ωy,

Vx <
24√
κ

+

√
2w2

1 (ε∗) ε−2
∗ y

nx2
+

2y
nx2

.

Recalling that ε∗ ≤ 1, it remains to use the lower bound 4nx2 ≥ κw2
1 (ε∗) ε−2

∗ y,
noticing that w2

1 (ε∗) ε−2
∗ ≥ 1 to derive that, on the set Ωy, the following

inequality holds

Vx <
24√
κ

+

√
8
κ

+
8
κ

.

Hence, choosing κ as a large enough numerical constant warrants that
Vx < 1/2 on Ωy. Thus

P

[
Vx ≥

1
2

]
≤ P

[
Ωc
y

]
≤ e−y, (8.26)

and therefore (8.22) leads to

P
[
� (s, ŝ) ≥ 2 (ρ + � (s, π (s))) + x2

]
≤ e−y.

If a point π (s) satisfying (8.21) does not exist we can use as well some point
π (s) satisfying � (s, π (s)) ≤ � (s, S)+δ and get the required probability bound
(8.20) by letting δ tend to zero. But since φ (u) /u ≥ φ (1) ≥ 1 for every
u ∈ [0, 1], we derive from (8.19) and the monotonicity of φ and u → φ (u) /u
that

1 ∧ w2 (ε∗)
ε2
∗

≤ φ2 (1 ∧ w (ε∗))
ε2
∗

≤ φ2 (w (ε∗))
ε2
∗

and therefore
1 ∧ w2 (ε∗)

ε2
∗

≤ nε2
∗. (8.27)

The proof can then be easily completed by integrating the tail bound (8.20)
to get
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E [� (s, ŝ)] ≤ 2 (ρ + � (s, S)) + κε2
∗ + κ

1 ∧ w2 (ε∗)
nε2

∗
.

yielding the required upper bound on the expected risk via (8.27).
Even though the main motivation for Theorem 8.3 is the study of clas-

sification, it can also be easily applied to bounded regression. We begin the
illustration of Theorem 8.3 with this framework which is more elementary
than classification since in this case there is a clear connection between the
expected loss and the variance of the increments.

8.3.2 Application to Bounded Regression

In this setting, the regression function η : x → E [Y | X = x] is the target to
be estimated, so that here s = η. We recall that for this framework we can
take d to be the L2 (µ) distance times

√
2. The connection between the loss

function � and d is especially simple in this case since

[γ (t, (x, y)) − γ (s, (x, y))] = [−t (x) + s (x)] [2 (y − s (x)) − t (x) + s (x)]

which implies since E [Y − s (X) | X] = 0 that

� (s, t) = E [γ (t, (X,Y )) − γ (s, (X,Y ))] = E (t (X) − s (X))2 .

Hence 2� (s, t) = d2 (s, t) and in this case the modulus of continuity w can
simply be taken as w (ε) =

√
2ε. Note also that in this case, an empirical risk

minimizer ŝ over some model S is a LSE. The quadratic risk of ŝ depends
only on the modulus of continuity φ satisfying (8.18) and one derives from
Theorem 8.3 that, for some absolute constant κ′,

E
[
d2 (s, ŝ)

]
≤ 2d2 (s, S) + κ′ε2

∗

where ε∗ is the solution of √
nε2

∗ = φ (ε∗) .

To be more concrete, let us give an example where this modulus φ and the bias
term d2 (s, S) can be evaluated, leading to an upper bound for the minimax
risk over some classes of regression functions.

Binary Images

Following [72], our purpose is to study the particular regression framework
for which the variables Xi are uniformly distributed on [0, 1]2 and s (x) =
E [Y | X = x] is of the form

s (x1, x2) = b if x2 ≤ ∂s (x1) and a otherwise,

where ∂s is some measurable map from [0, 1] to [0, 1] and 0 < a < b < 1.
The function ∂s should be understood as the parametrization of a boundary
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fragment corresponding to some portion s of a binary image in the plane
(a and b, representing the two level of colors which are taken by the image) and
restoring this portion of the image from the noisy data (X1, Y1) , . . . , (Xn, Yn)
means estimating s or equivalently ∂s. Let G be the set of measurable maps
from [0, 1] to [0, 1]. For any f ∈ G, let us denote by χf the function defined
on [0, 1]2 by

χf (x1, x2) = b if x2 ≤ f (x1) and a otherwise.

From this definition we see that χ∂s = s and more generally if we define
S = {χf : f ∈ G}, for every t ∈ S, we denote by ∂t the element of G such
that χ∂t = t. It is natural to consider here as an approximate model for s a
model S of the form S = {χf : f ∈ ∂S}, where ∂S denotes some subset of G.
In what follows, we shall assume condition (M) to be fulfilled which allows
us to make as if S was countable. Denoting by ‖.‖1 (resp. ‖.‖2) the Lebesgue
L1-norm (resp. L2-norm), one has for every f, g ∈ G

‖χf − χg‖1 = (b− a) ‖f − g‖1 and ‖χf − χg‖2
2 = (b− a)2 ‖f − g‖1

or equivalently for every s, t ∈ S,

‖s− t‖1 = (b− a) ‖∂s− ∂t‖1 and ‖s− t‖2
2 = (b− a)2 ‖∂s− ∂t‖1 .

Given u ∈ S and setting Sσ = {t ∈ S, d (t, u) ≤ σ}, we have to compute some
function φ fulfilling (8.18) and therefore to upper bound E [W (σ)], where

W (σ) = sup
t∈Sσ

γn (u) − γn (t) .

This can be done using entropy with bracketing arguments. Indeed, let us
notice that if g belongs to some ball with radius δ in L∞ [0, 1], then for some
function f ∈ L∞ [0, 1], one has f − δ ≤ g ≤ f + δ and therefore, defining
fL = sup (f − δ, 0) and fU = inf (f + δ, 1)

χfL
≤ χg ≤ χfU

with ‖χfL
− χfU

‖1 ≤ 2 (b− a) δ. This means that, defining H∞ (δ, ∂S, ρ) as
the supremum over g ∈ ∂S of the L∞-metric entropy for radius δ of the L1

ball centered at g with radius ρ in ∂S, one has for every positive ε

H[.] (ε, Sσ, µ) ≤ H∞

(
ε

2 (b− a)
, ∂S,

σ2

2 (b− a)2

)
.

Moreover if [tL, tU ] is a bracket with extremities in S and L1 (µ) diameter not
larger than δ and if t ∈ [tL, tU ], then

y2 − 2tU (x) y + t2L (x) ≤ (y − t (x))2 ≤ y2 − 2tL (x) y + t2U (x) ,
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which implies that γ (t, .) belongs to a bracket with L1 (P )-diameter not larger
than

2E

[
(tU (X) − tL (X))

(
Y +

tU (X) + tL (X)
2

)]
≤ 4δ.

Hence, if F = {γ (t, .) , t ∈ S and d (t, u) ≤ σ}, then

H[.] (x,F , P ) ≤ H∞

(
x

8 (b− a)
, ∂S,

σ2

2 (b− a)2

)

and furthermore, if d (t, u) ≤ σ

E

[∣∣∣(Y − t (X))2 − (Y − u (X))2
∣∣∣
]
≤ 2 ‖u− t‖1 =

2 ‖u− t‖2
2

(b− a)
≤ σ2

(b− a)
.

We can therefore apply Lemma 6.5 to the class F and derive that, setting

ϕ (σ) =
∫ σ/

√
b−a

0

(
H∞

(
x2

8 (b− a)
, ∂S,

σ2

2 (b− a)2

))1/2

dx,

one has √
nE [W (σ)] ≤ 12ϕ (σ) ,

provided that

4ϕ (σ) ≤
√
n

σ2

(b− a)
. (8.28)

The point now is that, whenever ∂S is part of a linear finite dimensional
subspace of L∞ [0, 1], H∞ (δ, ∂S, ρ) is typically bounded by D [B + ln (ρ/δ)]
for some appropriate constants D and B. If it is so then

ϕ (σ) ≤
√
D

∫ σ/
√
b−a

0

(
B + ln

(
4σ2

x2 (b− a)

))1/2

dx

≤
√
Dσ√
b− a

∫ 1

0

√
B + 2 |ln (2δ)|dδ,

which implies that for some absolute constant κ

ϕ (σ) ≤ κσ

√
(1 + B)D

(b− a)
.

The restriction (8.28) is a fortiori satisfied if σ
√
b− a ≥ 4κ

√
(1 + B)D/n.

Hence if we take

φ (σ) = 12κσ

√
(1 + B)D

(b− a)
,
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assumption (8.18) is satisfied. To be more concrete let us consider the example
where ∂S is taken to be the set of piecewise constant functions on a regular
partition with D pieces on [0, 1] with values in [0, 1]. Then, it is shown in [12]
that

H∞ (δ, ∂S, ρ) ≤ D [ln (ρ/δ)]

and therefore the previous analysis can be used with B = 0. As a matter
of fact this extends to piecewise polynomials with degree not larger than r
via some adequate choice of B as a function of r but we just consider the
histogram case here to be simple. As a conclusion, Theorem 8.3 yields in this
case for the LSE ŝ over S

E [‖∂s− ∂ŝ‖1] ≤ 2 inf
t∈S

‖∂s− ∂t‖1 + C
D

(b− a)3 n

for some absolute constant C. In particular, if ∂s is Hölder smooth,

|∂s (x) − ∂s (x′)| ≤ R |x− x′|α (8.29)

with R > 0 and α ∈ (0, 1], then

inf
t∈S

‖∂s− ∂t‖1 ≤ RD−α

leading to

E [‖∂s− ∂ŝ‖1] ≤ 2RD−α + C
D

(b− a)3 n
.

Hence, if H (R,α) denotes the set of functions from [0, 1] to [0, 1] satisfying
(8.29), an adequate choice of D yields for some constant C ′ depending only
on a and b

sup
∂s∈H(R,α)

E [‖∂s− ∂ŝ‖1] ≤ C ′
(
R ∨ 1

n

) 1
α+1

n− α
1+α .

As a matter of fact, this upper bound is unimprovable (up to constants) from a
minimax point of view (see [72] for the corresponding minimax lower bound).

8.3.3 Application to Classification

Our purpose is to apply Theorem 8.3 to the classification setting, assuming
that the Bayes classifier is the target to be estimated, so that here s = s∗.
We recall that for this framework we can take d to be the L2 (µ) distance and
S = {1lA, A ∈ A}, where A is some class of measurable sets. Our main task
is to compute the moduli of continuity φ and w. In order to evaluate w, we
need some margin type condition. For instance we can use Tsybakov’s margin
condition

� (s, t) ≥ hθd2θ (s, t) , for every t ∈ S, (8.30)



8.3 A Refined Analysis for the Risk of an Empirical Risk Minimizer 297

where h is some positive constant (that we can assume to be smaller than 1
since we can always change h into h ∧ 1 without violating (8.30))and θ ≥ 1.
As explained by Tsybakov in [115], this condition is fulfilled if the distribu-
tion of η (X) is well behaved around 1/2. A simple situation is the following.
Assume that, for some positive number h, one has for every x ∈ X

|2η (x) − 1| ≥ h. (8.31)

Then
� (s, t) = E [|2η (X) − 1| |s (X) − t (X)|] ≥ hd2 (s, t)

which means that Tsybakov’s condition is satisfied with θ = 1. Of course,
Tsybakov’s condition implies that the modulus of continuity w can be taken as

w (ε) = h−1/2ε1/θ. (8.32)

In order to evaluate φ, we shall consider two different kinds of assumptions on
S which are well known to imply the Donsker property for the class of func-
tions {γ (t, .) , t ∈ S} and therefore the existence of a modulus φ which tends
to 0 at 0, namely a VC-condition or an entropy with bracketing assumption.
Given u ∈ S, in order to bound the expectation of

W (σ) = sup
t∈S;d(u,t)≤σ

(−γn (t) + γn (u)) ,

we shall use the maximal inequalities for empirical processes which are estab-
lished in Chapter 6 via slightly different techniques according to the way the
“size” of the class A is measured.

The VC-Case

Let us first assume for the sake of simplicity that A is countable. We use
the definitions, notations and results of Section 6.1.2, to express φ in terms
of the random combinatorial entropy or the VC-dimension of A. Indeed, we
introduce the classes of sets

A+ =
{{

(x, y) : 1ly �=t(x) ≤ 1ly �=u(x)

}
, t ∈ S

}

and
A− =

{{
(x, y) : 1ly �=t(x) ≥ 1ly �=u(x)

}
, t ∈ S

}

and define for every class of sets B of X×{0, 1}

W+
B (σ) = sup

B∈B,P (B)≤σ2
(Pn − P ) (B) , W−

B (σ) = sup
B∈B,P (B)≤σ2

(P − Pn) (B) .

Then,
E [W (σ)] ≤ E

[
W+

A+
(σ)

]
+ E

[
W−

A− (σ)
]

(8.33)

and it remains to control E

[
W+

A+
(σ)

]
and E

[
W−

A− (σ)
]

via Lemma 6.4.
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Since the VC-dimension of A+ and A− are not larger than that of A,
and that similarly, the combinatorial entropies of A+ and A− are not larger
than the combinatorial entropy of A, denoting by VA the VC-dimension of A
(assuming that VA ≥ 1), we derive from (8.33) and Lemma 6.4 that

√
nE [W (σ)] ≤ φ (σ)

provided that φ (σ) ≤ √
nσ2, where φ can be taken either as

φ (σ) = Kσ
√

(1 ∨ E [HA]) (8.34)

or as
φ (σ) = Kσ

√
V (1 + ln (σ−1 ∨ 1)). (8.35)

In both cases, assumption (8.18) is satisfied and we can apply Theorem 8.3
with w ≡ 1 or w defined by (8.32). When φ is given by (8.34) the solution ε∗
of equation (8.19) can be explicitly computed when w is given by (8.32) or
w ≡ 1. Hence the conclusion of Theorem 8.3 holds with

ε2
∗ =

(
K2 (1 ∨ E [HA])

nh

)θ/(2θ−1)

∧
√

K2 (1 ∨ E [HA])
n

.

In the second case i.e., when φ is given by (8.35), w ≡ 1 implies by (8.19) that

ε2
∗ = K

√
V

n

while if w (ε∗) = h−1/2ε
1/θ
∗ then

ε2
∗ = Kε

1/θ
∗

√
V

nh

√
1 + ln

((√
hε

−1/θ
∗

)
∨ 1

)
. (8.36)

Since 1 + ln
((√

hε
−1/θ
∗

)
∨ 1

)
≥ 1 and K ≥ 1, we derive from (8.36) that

ε2
∗ ≥

(
V

nh

)θ/(2θ−1)

. (8.37)

Plugging this inequality in the logarithmic factor of (8.36) yields

ε2
∗ ≤ Kε

1/θ
∗

√
V

nh

√
1 +

1
2 (2θ − 1)

ln
((

nh2θ

V

)
∨ 1

)

and therefore, since θ ≥ 1

ε2
∗ ≤ Kε

1/θ
∗

√
V

nh

√
1 + ln

((
nh2θ

V

)
∨ 1

)
.
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Hence

ε2
∗ ≤

(
K2V

(
1 + ln

((
nh2θ/V

)
∨ 1

))
nh

)θ/(2θ−1)

≤ K2

(
V
(
1 + ln

((
nh2θ/V

)
∨ 1

))
nh

)θ/(2θ−1)

and therefore the conclusion of Theorem 8.3 holds with

ε2
∗ = K2

⎡
⎣
(
V
(
1 + ln

((
nh2θ/V

)
∨ 1

))
nh

)θ/(2θ−1)

∧
√

V

n

⎤
⎦ .

Of course, if S (and therefore A) is not countable but fulfills condition (M),
the previous arguments still apply for a conveniently countable subclass of A
so that we have a fortiori obtained the following result.

Corollary 8.4 Let A be a VC-class with dimension V ≥ 1 and assume that
s∗ belongs to S = {1lA, A ∈ A}. Assuming that S satisfies to (M), there exists
an absolute constant C such that if ŝ denotes an empirical risk minimizer over
S, the following inequality holds

E [� (s∗, ŝ)] ≤ C

√
V ∧ (1 ∨ E [HA])

n
. (8.38)

Moreover if θ ≥ 1 is given and one assumes that the margin condition (8.30)
holds, then the following inequalities are also available

E [� (s∗, ŝ)] ≤ C

(
(1 ∨ E [HA])

nh

)θ/(2θ−1)

(8.39)

and

E [� (s∗, ŝ)] ≤ C

(
V
(
1 + ln

(
nh2θ/V

))
nh

)θ/(2θ−1)

, (8.40)

provided that h ≥ (V/n)1/2θ.

Comments.

• The risk bound (8.38) is well known. Our purpose was just here to show
how it can be derived from our approach.

• The risk bounds (8.39) and (8.40) are new and they perfectly fit with
(8.38) when one considers the borderline case h = (V/n)1/2θ. They look
very similar but are not strictly comparable since roughly speaking they
differ from a logarithmic factor. Indeed it may happen that E [HA] turns
out to be of the order of V (without any extra log-factor). This the case
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when A is the family of all subsets of a given finite set with cardinality V . In
such a case, E [HA] ≤ V and (8.39) is sharper than (8.40). On the contrary,
for some arbitrary VC-class, let us remember that the consequence (6.9) of
Sauer’s lemma tells us that HA ≤ V (1 + ln (n/V )). The logarithmic factor
1 + ln (n/V ) is larger than 1 + ln

(
nh2θ/V

)
and turns out to be especially

over pessimistic when h is close to the borderline value (V/n)1/2θ.
• For the sake of simplicity we have assumed s∗ to belong to S in the above

statement. Of course this assumption is not necessary (since our main
Theorem does not require it). The price to pay if s∗ does not belong to S
is simply to add 2� (s∗, S) to the right hand side of the risk bounds above.

In [92] the optimality of (8.40) from a minimax point of view is discussed
in the case where θ = 1, showing that it is essentially unimprovable in that
sense.

Bracketing Conditions

For the same reasons as in the previous section, let us make the prelimi-
nary assumption that S is countable (the final result will easily extend to
the case where S satisfies (M) anyway). If t1 and t2 are measurable func-
tions such that t1 ≤ t2, the collection of measurable functions t such that
t1 ≤ t ≤ t2 is denoted by [t1, t2] and called bracket with lower extremity t1
and upper extremity t2. Recalling that µ denotes the probability distribu-
tion of the explanatory variable X, the L1 (µ)-diameter of a bracket [t1, t2]
is given by µ (t2) − µ (t1). Recall that the L1 (µ)-entropy with bracketing of
S is defined for every positive δ, as the logarithm of the minimal number of
brackets with L1 (µ)-diameter not larger than δ which are needed to cover
S and is denoted by H[.] (δ, S, µ). The point is that if F denotes the class of
functions F = {γ (t, .) , t ∈ S with d (u, t) ≤ σ}, one has

H[.] (δ,F , P ) ≤ H[.] (δ, S, µ)

hence, we derive from (8.33) and Lemma 6.5 that, setting

ϕ (σ) =
∫ σ

0

H
1/2
[.]

(
x2, S, µ

)
dx,

the following inequality is available
√
nE [W (σ)] ≤ 12ϕ (σ)

provided that 4ϕ (σ) ≤ σ2
√
n. Hence, we can apply Theorem 8.3 with φ = 12ϕ

and if we assume Tsybakov’s margin condition (8.30) to be satisfied, then we
can also take w according to (8.32) and derive from that the conclusions of
Theorem 8.3 hold with ε∗ solution of the equation

√
nε2

∗ = φ
(
h−1/2ε

1/θ
∗

)
.
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In particular, if
H[.] (x, S, µ) ≤ Cx−r with 0 < r < 1, (8.41)

then for some constant C ′ depending only on C, one has

ε2
∗ ≤ C ′

[
(1 − r)2 nh1−r

]− θ
2θ−1+r

. (8.42)

If S′ is taken as a δn-net (with respect to the L2 (µ)-distance d) of a bigger
class S to which the target s∗ is assumed to belong, then we can also apply
Theorem 8.3 to the empirical risk minimizer over S′ and since H[.] (x, S′, µ) ≤
H[.] (x, S, µ), we still get the conclusions of Theorem 8.3 with ε∗ satisfying
(8.42) and � (s∗, S′) ≤ δ2

n. This means that if δn is conveniently chosen (in a
way that δn is of lower order as compared to ε∗), for instance δ2

n = n−1/(1+r),
then, for some constant C ′′ depending only on C, one has

E [� (s∗, ŝ)] ≤ C ′′
[
(1 − r)2 nh1−r

]− θ
2θ−1+r

.

This means that we have recovered Tsybakov’s Theorem 1 in [115] (as a matter
of fact our result is slightly more precise since it also provides the dependency
of the risk bound with respect to the margin parameter h and not only on θ
as in Tsybakov’s Theorem). We refer to [85] for concrete examples of classes
of sets with smooth boundaries satisfying (8.41) when µ is equivalent to the
Lebesgue measure on some compact set of R

d.

8.4 A Refined Model Selection Theorem

It is indeed quite easy to formally derive from (8.20) the following model
selection version of Theorem 8.3.

Theorem 8.5 Let ξ1, . . . , ξn be independent observations taking their values
in some measurable space Ξ and with common distribution P . Let S be some
set, γ : S×Ξ → [0, 1] be a measurable function such that for every t ∈ S, x →
γ (t, x) is measurable. Assume that there exists some minimizer s of P (γ (t, .))
over S and denote by � (s, t) the nonnegative quantity P (γ (t, .))− P (γ (s, .))
for every t ∈ S. Let γn be the empirical risk

γn (t) = Pn (γ (t, .)) =
1
n

n∑
i=1

γ (t, ξi) , for every t ∈ S

and γn be the centered empirical process defined by

γn (t) = Pn (γ (t, .)) − P (γ (t, .)) , for every t ∈ S .

Let d be some pseudodistance on S ×S such that (8.16) holds. Let {Sm}m∈M
be some at most countable collection of subsets of S, each model Sm admitting
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some countable subset S′
m such that Sm satisfies to separability condition (M).

Let w and φm belong to the class of functions C1 defined above for every
m ∈ M. Assume that on the one hand assumption (8.17) holds and that on
the other hand one has for every m ∈M and u ∈ S′

m

√
nE

[
sup

t∈S′
m,d(u,t)≤σ

[γn (u) − γn (t)]

]
≤ φm (σ) (8.43)

for every positive σ such that φm (σ) ≤ √
nσ2. Let εm be the unique solution

of the equation √
nε2

m = φm (w (εm)) . (8.44)

Let ρ be some given nonnegative real number and consider ŝm taking its values
in Sm and such that

γn (ŝm) ≤ inf
t∈Sm

γn (t) + ρ.

Let {xm}m∈M be some family of nonnegative weights such that

∑
m∈M

e−xm = Σ < ∞,

pen : M → R+ such that for every m ∈M

pen (m) ≥ K

(
ε2
m +

w2 (εm)xm
nε2

m

)
.

Then, if K is large enough, there almost surely exists some minimizer m̂ of

γn (ŝm) + pen (m) . (8.45)

and some constant C (K) such that the penalized estimator s̃ = ŝ
m̂

satisfies
the following inequality

E [� (s, s̃)] ≤ C (K)
[

inf
m∈M

(� (s, Sm) + pen (m)) +
(Σ + 1)

n
+ ρ

]
.

Concerning the proof of Theorem 8.5, the hard work has been already done
to derive (8.20). The proof of Theorem 8.5 can indeed be sketched as follows:
start from exponential bound (8.26) (which as a matter of fact readily implies
(8.20)) and use a union bound argument. The calculations are quite similar
to those of the proof of Theorem 4.18. At this stage they can be considered
as routine and we shall therefore skip them. From the point of view of model
selection for classification, Theorem 8.5 is definitely disappointing and far from
producing the result we could expect anyway. In this classification context, it
should be considered as a formal exercise. Indeed, the classification framework
was the main motivation for introducing the “margin” function w in Theorem
8.3. The major drawback of Theorem 8.5 is that the penalization procedure



8.4 A Refined Model Selection Theorem 303

involved does require the knowledge of w. Hence, apart from the situation
where w can “legally” be assumed to be known (like for bounded regression
where one can take w (ε) =

√
2ε), we cannot freely use Theorem 8.5 to build

adaptive estimators as we did with the related model selection theorems in the
other functional estimation frameworks that we have studied in the previous
chapters (Gaussian white noise or density estimation). We shall come back to
the classification framework in Section 8.5 below to design “margin adaptive”
model selection strategies. For the moment we may at least use Theorem 8.5 in
the bounded regression framework (note that more generally, when w (ε) = Cε
for a known absolute constant C, Theorem 8.5 is nothing more than Theorem
4.2. in [91]).

8.4.1 Application to Bounded Regression

As mentioned above, bounded regression is a typical framework for which the
previous model selection theorem (Theorem 8.5) is relevant. Indeed, let us
recall that in this setting, the regression function η : x → E [Y | X = x] is the
target s to be estimated and d may be taken as the L2 (µ) distance times

√
2.

The connection between the loss function � and d is trivial since

� (s, t) = E (t (X) − s (X))2 = d2 (s, t) /2

and therefore w can simply be taken as w (ε) =
√

2ε. The penalized criterion
given by (8.45) is a penalized least squares criterion and the corresponding
penalized estimator s̃ is merely a penalized LSE . It is not very difficult to
study again the example of boundary images, showing this time that some
adequate choice of the collection of models leads to adaptive properties for
the penalized LSE on classes of binary images with smooth boundaries.

Binary Images

We consider the same framework as in Section 8.3.2, i.e., the variables Xi are
uniformly distributed on [0, 1]2 and the regression function s is of the form

s (x1, x2) = b if x2 ≤ ∂s (x1) and a otherwise,

where ∂s is some measurable map from [0, 1] to [0, 1] and 0 < a < b < 1. Let
G be the set of measurable maps from [0, 1] to [0, 1] and, for any f ∈ G, χf
denotes the function defined on [0, 1]2 by

χf (x1, x2) = b if x2 ≤ f (x1) and a otherwise.

Setting S = {χf : f ∈ G}, for every t ∈ S, ∂t denotes the element of G such
that χ∂t = t. Consider for every positive integer m, ∂Sm to be the set of piece-
wise constant functions on a regular partition of [0, 1] by m intervals and define
Sm = {χf : f ∈ ∂Sm}. We take {Sm}m∈N∗ as a collection of models. In order
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to apply Theorem 8.5, given u ∈ Sm, we need to upper bound E [Wm (σ)]
where

Wm (σ) = sup
t∈Sm;d(u,t)≤σ

γn (u) − γn (t) .

We derive from the calculations of Section 8.3.2 that for some absolute
numerical constant κ′

√
nE [Wm (σ)] ≤ κ′σ

√
m

(b− a)

so that we can take
φm (σ) = κ′σ

√
m

(b− a)
.

Hence the solution εm of (8.44) is given by

ε2
m =

2mκ′2

n (b− a)
.

Choosing xm = m, leads to Σ < 1 and therefore, applying Theorem 8.5, we
know that for some adequate numerical constants K ′ and C ′, one can take

pen (m) = K ′ m

n (b− a)

and the resulting penalized LSE s̃ satisfies to

E [‖∂s− ∂s̃‖1] ≤ C ′ inf
m≥1

{
inf
t∈Sm

‖∂s− ∂t‖1 +
m

(b− a)3 n

}
.

Assuming now that ∂s is Hölder smooth

|∂s (x) − ∂s (x′)| ≤ R |x− x′|α

with R > 0 and α ∈ (0, 1], then

inf
t∈Sm

‖∂s− ∂t‖1 ≤ Rm−α,

leading to

E [‖∂s− ∂s̃‖1] ≤ C ′ inf
m≥1

{
Rm−α +

m

(b− a)3 n

}
.

Hence, provided that R ≥ 1/n, optimizing this bound with respect to m
implies that

sup
∂s∈H(R,α)

E [‖∂s− ∂s̃‖1] ≤ C ′R
1

α+1n− α
1+α .
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Taking into account that the minimax risk is indeed of order R
1

α+1n− α
1+α

according to [72], this proves that the penalized LSE s̃ is adaptive on each
of the Hölder classes H (R,α) such that R ≥ 1/n and α ∈ (0, 1]. Of course,
with a little more efforts, the same kind of results could be obtained with
collections of piecewise polynomials with variable degree, leading to adaptive
estimators on Hölder classes H (R,α) such that R ≥ 1/n, for any positive
value of α.

Selecting Nets

We can try to mimic the discretization strategies that we have developed in
Chapter 4 and Chapter 7. As compared to the density estimation problem for
instance, there is at least one noticeable difference. Indeed for density estima-
tion, the dominating probability measure µ is assumed to be known. Here the
role of this dominating measure is played by the distribution of the explana-
tory variables Xis. For some specific problems it makes sense to assume that
µ is known (as we did in the previous boundary images estimation problem
above), but most of the time one cannot make such an assumption. In such
a situation there are at least two possibilities to overcome this difficulty: use
L∞ nets or empirical nets based on the empirical distribution of the variables
Xis. Even if the second approach is more general than the first one, it would
lead us to use extra technicalities that we prefer to avoid here. Constructing
L∞ nets concretely means that if the variables Xis take their values in R

d for
instance, one has to assume that they are compactly supported and that we
know their support. Moreover it also means that we have in view to estimate a
rather smooth regression function s. Let us first state a straightforward conse-
quence of Theorem 8.5 when applied to the selection of finite models problem
in the regression framework.

Corollary 8.6 Let {Sm}m∈M be some at most countable collection of models,
where for each m ∈ M, Sm is assumed to be a finite set of functions taking
their values in [0, 1]. We consider a corresponding collection (ŝm)m∈M of LSE,
which means that for every m ∈M

n∑
i=1

(Yi − ŝm (Xi))
2 = inf

t∈Sm

n∑
i=1

(Yi − t (Xi))
2 .

Let {∆m}m∈M, {xm}m∈Mbe some families of nonnegative numbers such that
∆m ≥ ln (|Sm|) for every m ∈ M and

∑
m∈M

e−xm = Σ < ∞.

Define

pen (m) =
κ′′ (∆m + xm)

n
for every m ∈M (8.46)



306 8 Statistical Learning

for some suitable numerical constant κ′′. Then, if κ′′ is large enough, there
almost surely exists some minimizer m̂ of

n∑
i=1

(Yi − ŝm (Xi))
2 + pen (m)

over M. Moreover, for such a minimizer, the following inequality is valid
whatever the regression function s

Es

[
d2
(
s, ŝ

m̂

)]
≤ C ′′

(
inf
m∈M

(
d2 (s, Sm) +

κ′′ (∆m + xm)
n

)
+

(1 + Σ)
n

)
.

(8.47)

Proof. It suffices to apply Theorem 8.5 with w (ε) =
√

2ε and for each model
m ∈ M, check that by (6.4) the function φm defined by

φm (σ) = 2σ
√

∆m

does satisfy to (8.43). The result easily follows.
Let us see what kind of result is achievable when working with nets by

considering the same type of example as in the Gaussian or the density
estimation frameworks. Let us consider some collection of compact subsets
{Sα,R, α ∈ N

∗, R > 0} of S with the following structure:

Sα,R = S ∩RHα,1,

where Hα,1 is star-shaped at 0 and satisfies for some positive constant
C2 (α) to

H∞ (δ,Hα,1) ≤ C2 (α) δ−1/α

for every δ ≤ 1. We consider for every positive integers α and k some L∞-net
Sα,k of Sα,k/√n with radius δα,k = k1/(2α+1)/

√
n, so that

ln |Sα,k| ≤ C2 (α)
(

k√
nδα,k

)1/α

≤ C2 (α) k2/(2α+1)

and
d2 (s, Sα,k) ≤ 2δ2

α,k, for all s ∈ Sα,k/√n. (8.48)

Applying Corollary 8.6 to the collection (Sα,k)α≥1,k≥1 with

∆α,k = C2 (α) k2/(2α+1) and xα,k = 4αk2/(2α+1)

leads to the penalty

pen (α, k) = K (α) k2/(2α+1)ε2

where K (α) = κ′′ (C2 (α) + 4α). Noticing that xα,k ≥ α + 2 ln (k) one has
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Σ =
∑
α,k

e−xα,k ≤

⎛
⎝∑
α≥1

e−α

⎞
⎠
⎛
⎝∑
k≥1

k−2

⎞
⎠ < 1

and it follows from (8.47) that if s̃ denotes the penalized LSE one has whatever
the regression function s

Es

[
d2 (s, s̃)

]
≤ C (α) inf

α,k

(
d2 (s, Sα,k) +

k2/(2α+1)

n

)
.

In particular if s ∈ Sα,R for some integer α and some real number R ≥ 1/
√
n,

setting k = �R√n� we have s ∈ Sα,k/√n and since Sα,k is a k1/(2α+1)ε-net of
Sα,kε, the previous inequality implies via (8.48) that

sup
s∈Sα,R

Es

[
d2 (s, s̃)

]
≤ 3C (α)

(
k2/(2α+1)

n

)

≤ 3C (α) 22/(2α+1) (R
√
n)2/(2α+1)

n
.

Since d2 is upper bounded by 2, we finally derive that for some constant
C ′ (α) ≥ 1

sup
s∈Sα,R

Es

[
d2 (s, s̃)

]
≤ C ′ (α)

((
R2/(2α+1)n−2α/(2α+1)

)
∧ 1

)
. (8.49)

If Hα,R is the Hölder class H (α,R) defined in Section 7.5.1, we have already
used the following property

H∞ (δ,H (α,R)) ≤ C2 (α)
(
R

δ

)1/α

.

Hence the previous approach applies to this case. Of course, nothing warrants
that the above upper bound for the risk is minimax for arbitrary probability
measures µ. For Hölder classes , it would not be difficult to show that this is
indeed the case provided that one restricts to probability measures µ which
are absolutely continuous with respect to Lebesgue measure with density f
satisfying 0 < a ≤ f ≤ b < ∞, for given positive constants a and b.

8.5 Advanced Model Selection Problems

All along the preceding Chapters, we have focused on model selection via
penalization. It is worth noticing however, that some much simpler procedure
can be used if one is ready to split the data into two parts, using the first half of
the original simple to build the collection of estimators on each model and the
second half to select among the family. This is the so-called hold-out. It should
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be seen as some primitive version of the V -fold cross-validation method which
is commonly used in practice when one deals with i.i.d. data as it is the case
in this Section. The advantage of hold-out is that it is very easy to study from
a mathematical point of view. Of course it would be very interesting to derive
similar results for V -fold cross-validation but we do not see how to do it for
the moment.

8.5.1 Hold-Out as a Margin Adaptive Selection Procedure

Our purpose is here to show that the hold-out is a naturally margin adaptive
selection procedure for classification. More generally, for i.i.d. data we wish to
understand what is the performance of the hold-out as a model selection pro-
cedure. Our analysis will be based on the following abstract selection theorem
among some family of functions {fm,m ∈ M}. The reason for introducing an
auxiliary family of functions {gm,m ∈M} in the statement of Theorem 8.7
below will become clear in the section devoted to the study of MLEs. At first
reading it is better to consider the simplest case where gm = fm for every
m ∈ M, which is indeed enough to deal with the applications to bounded
regression or classification that we have in view.

Theorem 8.7 Let {fm,m ∈M} be some at most countable collection of
real-valued measurable functions defined on some measurable space X . Let
ξ1, . . . , ξn be some i.i.d. random variables with common distribution P and
denote by Pn the empirical probability measure based on ξ1, . . . , ξn. Assume
that for some family of positive numbers {σm,m ∈M} and some positive
constant c, one has for every integer k ≥ 2

P
(
|fm − fm′ |k

)
≤ k!

2
ck−2 (σm + σm′)2 for every m ∈ M,m′ ∈ M. (8.50)

Assume furthermore that P (fm) ≥ 0 for every m ∈ M and let w be some
nonnegative and nondecreasing continuous function on R+ such that w (x) /x
is nonincreasing on (0,+∞) and

σm ≤ w
(√

P (fm)
)

for every m ∈M. (8.51)

Let {gm,m ∈ M} be a family of functions such that fm ≤ gm and {xm}m∈M
some family of nonnegative numbers such that

∑
m∈M

e−xm = Σ < ∞.

Let pen : M →R+ and consider some random variable m̂ such that

Pn
(
g
m̂

)
+ pen (m̂) = inf

m∈M
(Pn (gm) + pen (m)) .

Define δ∗ as the unique positive solution of the equation
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w (δ) =
√
nδ2

and suppose that for some constant θ ∈ (0, 1)

pen (m) ≥ xm

(
δ2
∗
θ

+
c

n

)
for every m ∈ M. (8.52)

Then, setting
Rmin = inf

m∈M
(P (gm) + pen (m)) ,

one has

(1 − θ) E
[
P
(
f
m̂

)]
≤ (1 + θ)Rmin + δ2

∗
(
2θ + Σθ−1

)
+

cΣ

n
. (8.53)

Moreover, if fm = gm for every m ∈M, the following exponential bound holds
for every positive real number x

P

[
(1 − θ)P

(
f
m̂

)
> (1 + θ)Rmin + δ2

∗
(
2θ + xθ−1

)
+

cx

n

]
≤ Σe−x. (8.54)

Proof. We may always assume that the infimum of P (gm) + pen (m) is
achieved on M (otherwise we can always take mε such that P (gmε

) +
pen (mε) ≤ infm∈M (P (gm) + pen (m)) + ε and make ε tend to 0 in the
resulting tail bound). So let m such that

P (gm) + pen (m) = inf
m′∈M

(P (gm′) + pen (m′)) .

Our aim is to prove that, except on a set of probability less than Σe−x, one has

(1 − θ)P
(
f
m̂

)
+ Um ≤ (1 + θ) (P (gm) + pen (m)) + δ2

∗
(
2θ + xθ−1

)
+

cx

n
,

(8.55)
where Um = (P − Pn) (gm − fm). Noticing that Um is centered at expectation
and is equal to 0 whenever fm = gm, this will achieve the proof of Theorem
8.7. Indeed (8.55) leads to (8.53) by integrating with respect to x and (8.55)
means exactly (8.54) whenever fm = gm. To prove (8.55), let us notice that
by definition of m̂

Pn
(
g
m̂

)
+ pen (m̂) ≤ Pn (gm) + pen (m) ,

hence, since f
m̂
≤ g

m̂

P
(
f
m̂

)
= (P − Pn)

(
f
m̂

)
+ Pn

(
f
m̂

)

≤ Pn (gm) + pen (m) + (P − Pn)
(
f
m̂

)
− pen (m̂)

and therefore

P
(
f
m̂

)
+ Um ≤ P (gm) + pen (m) + (P − Pn)

(
f
m̂
− fm

)
− pen (m̂) . (8.56)
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It comes from Bernstein’s inequality that for every m′ ∈ M and every positive
number ym′ , the following inequality holds, except on a set with probability
less than e−ym′

(P − Pn) (fm′ − fm) ≤
√

2ym′

n
(σm + σm′) +

cym′

n
.

Choosing ym′ = xm′ + x for every m′ ∈ M, this implies that, except on some
set Ωx with probability less than Σe−x,

(P − Pn)
(
f
m̂
− fm

)
≤
√

2y
m̂

n

(
σm + σ

m̂

)
+

cy
m̂

n
. (8.57)

If u is some nonnegative real number, we derive from the monotonicity
assumptions on w that

w
(√

u
)
≤ w

(√
u + δ2

∗

)
≤
√

u + δ2
∗
w (δ∗)
δ∗

.

Hence, for every positive number y, we get by definition of δ∗
√

2y
n
w
(√

u
)
≤ θ

(
u + δ2

∗
)

+ θ−1 yw
2 (δ∗)

2nδ2
∗

≤ θ
(
u + δ2

∗
)

+
yδ2

∗θ
−1

2
.

Using this inequality with y = y
m̂

and successively u = P (fm) and u =
P
(
f
m̂

)
, it comes from (8.51) that

√
2y
m̂

n

(
σm + σ

m̂

)
≤ δ2

∗
(
2θ + y

m̂
θ−1

)
+ θP (fm) + θP

(
f
m̂

)
.

Combining this inequality with (8.57) and (8.52) implies that, except on Ωx

(P − Pn)
(
f
m̂
− fm

)
≤ pen (m̂) + δ2

∗
(
2θ + xθ−1

)
+

cx

n
+ θP (fm) + θP

(
f
m̂

)
.

Plugging this inequality in (8.56) yields since fm ≤ gm

(1 − θ)P
(
f
m̂

)
+ Um ≤ (1 + θ)P (gm) + pen (m) + δ2

∗
(
2θ + xθ−1

)
+

cx

n

which a fortiori implies that (8.55) holds.
Theorem 8.7 has a maybe more easily understandable corollary directly

orientated towards the hold-out procedure without penalization in statistical
learning.

Corollary 8.8 Let {fm,m ∈M} be some finite collection of real-valued mea-
surable functions defined on some measurable space X . Let ξ1, . . . , ξn be some
i.i.d. random variables with common distribution P and denote by Pn the
empirical probability measure based on ξ1, . . . , ξn. Assume that fm − fm′ ≤ 1
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for every m,m′ ∈M. Assume furthermore that P (fm) ≥ 0 for every m ∈ M
and let w be some nonnegative and nondecreasing continuous function on R+

such that w (x) /x is nonincreasing on (0,+∞), w (1) ≥ 1 and

P
(
f2
m

)
≤ w2

(√
P (fm)

)
for every m ∈M. (8.58)

Consider some random variable m̂ such that

Pn
(
f
m̂

)
= inf
m∈M

Pn (fm) .

Define δ∗ as the unique positive solution of the equation

w (δ) =
√
nδ2.

Then, for every θ ∈ (0, 1)

(1 − θ) E
[
P
(
f
m̂

)]
≤ (1 + θ) inf

m∈M
P (fm) + δ2

∗

(
2θ + ln (e |M|)

(
1
3

+ θ−1

))
.

(8.59)

Proof. Noticing that since w (1) ≥ 1, one has δ2
∗ ≥ 1/n, we simply apply

Theorem 8.7 with c = 1/3, xm = ln (|M|) and

pen (m) = δ2
∗ ln (|M|)

(
θ−1 + (1/3)

)
.

Since Σ = 1, (8.53) leads to (8.59).

Hold-Out for Bounded Contrasts

Let us consider again the empirical risk minimization procedure. Assume that
we observe N + n random variables with common distribution P depending
on some parameter s to be estimated. The first N observations ξ′1, . . . , ξ

′
N

are used to build some preliminary collection of estimators {ŝm}m∈M and we
use the remaining observations ξ1, . . . , ξn to select some estimator ŝm among
the collection {ŝm}m∈M. We more precisely consider here the situation where
there exists some (bounded) loss or contrast

γ fromS ×Ξ to [0, 1]

which is well adapted to our estimation problem of s in the sense that the
expected loss P [γ (t, .)] achieves a minimum at point s when t varies in S. We
recall that the relative expected loss is defined by

� (s, t) = P [γ (t, .) − γ (s, .)] , for all t ∈ S.

In the bounded regression or the classification cases, we have already seen
that one can take
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γ (t, (x, y)) = (y − t (x))2

since η (resp. s∗ ) is indeed the minimizer of E

[
(Y − t (X))2

]
over the set of

measurable functions t taking their values in [0, 1] (resp.{0, 1}). The idea is
now to apply the results of the previous section conditionally on the training
sample ξ′1, . . . , ξ

′
N . For instance, we can apply Corollary 8.8 to the collection of

functions {fm = γ (ŝm, .) − γ (s, .) , m ∈M}. Let us consider the case where
M is finite and define m̂ as a minimizer of the empirical risk Pn (γ (ŝm, .))
over M. If w ∈ C1 is such that for all t ∈ S

P
(

(γ (t, .) − γ (s, .))2
)
≤ w2

(√
� (s, t)

)
,

we derive from (8.59) that conditionally on ξ′1, . . . , ξ
′
N , one has for every θ ∈

(0, 1)

(1 − θ) E
[
�
(
s, ŝ

m̂

)
| ξ′

]
≤ (1 + θ) inf

m∈M
� (s, ŝm)

+ δ2
∗

(
2θ + ln (e |M|)

(
1
3

+ θ−1

))
, (8.60)

where δ∗ satisfies to
√
nδ2

∗ = w (δ∗). The striking feature of this result is that
the hold-out selection procedure provides an oracle type inequality involving
the modulus of continuity w which is not known in advance. This is especially
interesting in the classification framework for which w can be of very different
natures according to the difficulty of the classification problem. The main
issue is therefore to understand whether the term δ2

∗ (1 + ln (|M|)) appearing
in (8.60) is indeed a remainder term or not. We cannot exactly answer to this
question because it is hard to compare δ2

∗ with infm∈M � (s, ŝm). However, if
ŝm is itself an empirical risk minimizer over some model Sm, we can compare
δ2
∗ with infm∈M ε2

m, where ε2
m is (up to constant) the upper bound for the

expected risk E [� (s, ŝm)] provided by Theorem 8.3. More precisely, taking for
instance θ = 1/2, we derive from (8.60) that

E
[
�
(
s, ŝ

m̂

)]
≤ 3 inf

m∈M
E [� (s, ŝm)] + δ2

∗ (3 + 2 ln (|M|)) .

By Theorem 8.3, setting � (s, Sm) = inft∈Sm
� (s, t), one has for some absolute

constant κ

E
[
�
(
s, ŝ

m̂

)]
≤ 6 inf

m∈M

(
� (s, Sm) + κε2

m

)
+ δ2

∗ (3 + 2 ln (|M|)) , (8.61)

where εm is defined by the equation
√
Nε2

m = φm (w (εm)) .

Let φm belong to C1 controlling the modulus of continuity of the empirical
process (P ′

N − P ) (γ (t, .)) over model Sm with respect to some pseudodis-
tance d satisfying to (8.16) and let w satisfy to (8.17). If N and n are of the
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same order of magnitude, N = n say to be as simple as possible, then, since
one can always assume that w ≤ 1 (otherwise one can change w into 1 ∧ w)
one has φm (w (εm)) ≥ w (εm) and therefore δ∗ ≤ εm. This shows that in full
generality, the risk of ŝ

m̂
is at most of order

ln (e |M|) inf
m∈M

(
� (s, Sm) + κε2

m

)
. (8.62)

Up to the unpleasant logarithmic factor ln (e |M|), this is exactly what one
could expect of a clever model selection procedure, i.e., it performs as well as
if the margin function w was known. This is of course especially interesting
in the classification setting. We were in fact over pessimistic when deriving
(8.62) from (8.61). To see this, let us consider the classification framework
and consider the VC case with margin function w (ε) = 1 ∧ h−1/2ε, assuming
that |M| ≤ n. Then, if Vm denotes the VC-dimension of Sm, combining (8.61)
with Theorem 8.3 (in the spirit of Corollary 8.4) yields

E
[
�
(
s, ŝ

m̂

)]
≤ 6 inf

m∈M

(
� (s, Sm) + C ln (n)

(√
Vm
n

)
∧
(
Vm
nh

))
.

Hold-Out for the Maximum Likelihood Criterion

We consider here the maximum likelihood criterion. We can derive from
Theorem 8.7 the following general result for penalized log-likelihood hold-out
procedures. We recall that K (resp. h) denote the Kullback–Leibler infor-
mation number (resp. the Hellinger distance) as defined at the beginning of
Chapter 7.

Theorem 8.9 Assume that we observe N +n random variables with common
distribution P with density s with respect to some given positive σ-finite mea-
sure µ. The first N observations ξ′1, . . . , ξ

′
N are used to build some preliminary

collection of estimators {ŝm}m∈M and we use the remaining observations
ξ1, . . . , ξn to select some estimator ŝm among the collection {ŝm}m∈M. Let
pen : M →R+ and denoting by Pn the empirical probability measure based on
ξ1, . . . , ξn consider some random variable m̂ such that

Pn
(
− ln

(
ŝ
m̂

))
+ pen (m̂) = inf

m∈M
(Pn (− ln (ŝm)) + pen (m)) .

Let {xm}m∈M be some family of nonnegative numbers such that
∑
m∈M

e−xm = Σ < ∞,

and suppose that for some constant θ ∈ (0, 1)

pen (m) ≥ xm
n

(
3
θ

+ 2
)

for every m ∈ M. (8.63)
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Then,

(1 − θ) E

[
K
(
s,

s + ŝ
m̂

2

)]
≤ (1 + θ) inf

m∈M
(E [K (s, ŝm)] + pen (m))

+
3
(
2θ + Σθ−1

)
+ 2Σ

n
. (8.64)

Proof. We work conditionally to ξ′1, . . . , ξ
′
N and apply Theorem 8.7 to the

family of functions

gm = −1
2

ln
(
ŝm
s

)
and fm = − ln

(
s + ŝm

2s

)
, m ∈M.

By concavity of the logarithm, we indeed have fm ≤ gm for every m ∈ M.
Now we must check the moment condition (8.50). It comes from Lemma 7.26
that given two probability densities u and t, by the triangle inequality, the
following moment inequality is available for every integer k ≥ 2

P

(∣∣∣∣ln
(
s + u

s + t

)∣∣∣∣
k
)
≤ 2k−2k! × 9

8
(h (s, u) + h (s, t))2 .

Since 9/ (8 (2 ln (2) − 1)) ≤ 3, combining this inequality with (7.103) leads to

P

(∣∣∣∣ln
(
s + u

s + t

)∣∣∣∣
k
)
≤ 2k−2k! × 3

(√
K
(
s,

s + u

2

)
+

√
K
(
s,

s + t

2

))2

,

which means that (8.50) holds with c = 2 and σ2
m = 3K (s, (s + ŝm) /2).

Hence, since

P (fm) = K
(
s,

s + ŝm
2

)
,

we derive from the definition of σ2
m that assumption (8.51) holds true with

w (x) =
√

3x. Hence, setting

δ2
∗ =

3
n

(8.53) is valid (conditionally to ξ′1, . . . , ξ
′
N ), provided that condition (8.52) is

satisfied. This clearly yields (8.64).
The oracle inequality above is expressed in terms of the unusual loss func-

tion K (s, (s + t) /2). It comes from Lemma 7.23 that this loss function is also
linked to the square Hellinger distance, so that, up to some absolute constant
(8.64) remains true for the square Hellinger loss h2 (s, t).

8.5.2 Data-Driven Penalties

It could seem a bit disappointing to discover that a very crude method like
hold-out is working so well. This is especially true in the classification frame-
work. It is indeed a really hard work in this context to design margin adaptive
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penalties. Of course recent works on the topic (see [71] for a review), involv-
ing local Rademacher penalties for instance, provide at least some theoretical
solution to the problem but still if one carefully looks at the penalties which are
proposed in these works, they systematically involve constants which are typ-
ically unknown. In some cases, these constants are absolute constants which
should nevertheless considered as unknown just because the numerical val-
ues coming from the theory are obviously over pessimistic. In some other
cases, it is even worse since they also depend on nuisance parameters related
to the unknown distribution (like for instance the infimum of the density of
the explanatory variables). In any case these penalization methods are not
ready to be implemented and remain far from being competitive with simple
methods like hold out (or more generally with cross-validation methods).

Hence, two natural and connected questions emerge:

• Is there some room left for penalization methods?
• How to calibrate penalties to design efficient penalization criteria?

There are at least two reasons for which despite of the arguments against
penalization that we have developed at the beginning of this Section, one
should however keep interest for penalization methods. The first one is that
for independent but not identically distributed observations (we typically
think of Gaussian regression on a fixed design), hold out or more generally
cross-validation may become irrelevant. The second one is that, talking about
hold-out, since one uses part of the original data as testing data, one looses a
bit of efficiency. A close inspection of the oracle inequalities presented in the
preceding section shows that in the situation of half-sampling for instance one
typically looses some factor 2 in the oracle inequality. Moreover hold-out is also
known to be quite unstable and this is the reason why V -fold cross-validation is
preferred to hold-out and widely used in practice. But now, concerning V -fold
cross-validation, the question becomes how to choose V and what is the influ-
ence of this choice on the statistical performance of the method. This means
that on the one hand, it remains to better understand cross-validation from
a theoretical point of view and on the other hand that there is some room
left for improvements. One can indeed hope to do better when using some
direct method like penalization. But of course, since the opponent is strong,
beating it requires to calibrate penalties sharply. This leads us to the second
question raised above. We would like to conclude this Chapter by providing
some possible answers to this last question, partly based on theoretical results
which are already available and partly based on heuristics and thoughts which
lead to some empirical rules and new theoretical problems.

A Practical Rule for Calibrating Penalties from the Data

To explain our idea which consists in guessing what is the right penalty
to be used from the data themselves, let us come back to Gaussian model
selection.
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If we consider again the Gaussian model selection theorem for linear
models, the following points can be made

• Mallows’ Cp can underpenalize.
• Condition K > 1 in the statement of Theorem 4.2 is sharp.
• What penalty should be recommended? One can try to optimize the oracle

inequality. The result is that roughly speaking, K = 2 is a good choice
(see [24]).

In practice, the level of noise is unknown, but one can retain from the
Gaussian theory the rule of thumb:

“optimal” penalty = 2 × “minimal” penalty.

Interestingly the minimal penalty can be evaluated from the data because
when the penalty is not heavy enough one systematically chooses models with
large dimension. It remains to multiply by 2 to produce the desired (nearly)
optimal penalty. This is a strategy for designing a data-driven penalty without
knowing in advance the level of noise.

Practical implementation of penalization methods involves the extension to
non Gaussian frameworks of the data-driven penalty choice strategy suggested
above in the Gaussian case. It can roughly be described as follows

• Compute the minimum contrast estimator ŝD on the union of models
defined by the same number D of parameters.

• Use the theory to guess the shape of the penalty pen (D), typically
pen (D) = αD (but other forms are also possible, like pen (D) =
αD (1 + ln (n/D))).

• Estimate α from the data by multiplying by 2 the smallest value for which
the corresponding penalized criterion does not explode.

In the context of change points detection, this data-driven calibration
method for the penalty has been successfully implemented and tested by
Lebarbier (see [74]). In the non-Gaussian case, we believe that this procedure
remains valid but theoretical justification is far from being trivial and remains
open. As already mentioned at the beginning of this Section, this problem is
especially challenging in the classification context since it is connected to the
question of defining optimal classifiers without knowing in advance the mar-
gin condition on the underlying distribution, which is a topic attracting much
attention in the statistical learning community at this moment (see [115],
[116], [14] for instance and [71] for a review).

Some Heuristics

More generally, defining proper data-driven strategies for choosing a penalty
offers a new field of mathematical investigation since future progress on the
topic requires to understand in depth the behavior of γn (ŝD). Recent advances
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involve new concentration inequalities. A first step in this direction is made in
[32] and a joint work in progress with S. Boucheron is building upon the new
moment inequalities proved in [30]. If one wants to better understand how to
penalize optimally and the role that concentration inequalities could play in
this matter, one has to come back to the root of the topic of model selection
via penalization i.e., to Mallows’ and Akaike’s heuristics which are both based
on the idea of estimating the risk in an unbiased way (at least asymptotically
as far as Akaike’s heuristics is concerned). The idea is the following.

Let us consider, in each model Sm some minimizer sm of t → E [γn (t)]
over Sm (assuming that such a point does exist). Defining for every m ∈ M,

b̂m = γn (sm) − γn (s) and v̂m = γn (sm) − γn (ŝm) ,

minimizing some penalized criterion

γn (ŝm) + pen (m)

over M amounts to minimize

b̂m − v̂m + pen (m) .

The point is that since b̂m is an unbiased estimator of the bias term � (s, sm).
If we have in mind to use concentration arguments, one can hope that mini-
mizing the quantity above will be approximately equivalent to minimize

� (s, sm) − E [v̂m] + pen (m) .

Since the purpose of the game is to minimize the risk E [� (s, ŝm)], an ideal
penalty would therefore be

pen (m) = E [v̂m] + E [� (sm, ŝm)] .

In the Mallows’ Cp case, the models Sm are linear and E [v̂m] = E [� (sm, ŝm)]
are explicitly computable (at least if the level of noise is assumed to be known).
For Akaike’s penalized log-likelihood criterion, this is similar, at least asymp-
totically. More precisely, one uses the fact that

E [v̂m] ≈ E [� (sm, ŝm)] ≈ Dm/ (2n) ,

where Dm stands for the number of parameters defining model Sm. The con-
clusion of these considerations is that Mallows’ Cp as well as Akaike’s criterion
are indeed both based on the unbiased risk estimation principle.

Our guess is that we can go further in this direction and that the
approximation E [v̂m] ≈ E [� (sm, ŝm)] remains generally valid. If we believe in
it then a good penalty becomes 2E [v̂m] or equivalently (having still in mind
concentration arguments) 2v̂m. This in some sense explains the rule of thumb
which is given in the preceding Section: the minimal penalty is v̂m while the
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optimal penalty should be v̂m+E [� (sm, ŝm)] and their ratio is approximately
equal to 2.

Of course, concentration arguments will work only if the list of models is
not too rich. In practice this means that starting from a given list of models,
one has first to decide to penalize in the same way the models which are
defined by the same number of parameters. Then one considers a new list of
models (SD)D≥1, where for each integer D, SD is the union of those among
the initial models which are defined by D parameters and then apply the
preceding heuristics to this new list.




