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Introduction

If one observes some random variable ξ (which can be a random vector or a
random process) with unknown distribution, the basic problem of statistical
inference is to take a decision about some quantity s related to the distribu-
tion of ξ, for instance estimate s or provide a confidence set for s with a given
level of confidence. Usually, one starts from a genuine estimation procedure
for s and tries to get some idea of how far it is from the target. Since generally
speaking the exact distribution of the estimation procedure is not available,
the role of probability theory is to provide relevant approximation tools to
evaluate it. In the situation where ξ = ξ(n) depends on some parameter n (typi-
cally when ξ = (ξ1, . . . , ξn), where the variables ξ1, . . . , ξn are independent),
asymptotic theory in statistics uses limit theorems (Central Limit Theorems,
Large Deviation Principles, etc.) as approximation tools when n is large. One
of the first examples of such a result is the use of the CLT to analyze the
behavior of a maximum likelihood estimator (MLE ) on a given regular para-
metric model (independent of n) as n goes to infinity. More recently, since
the seminal works of Dudley in the 1970s, the theory of probability in Banach
spaces has deeply influenced the development of asymptotic statistics, the
main tools involved in these applications being limit theorems for empirical
processes. This led to decisive advances for the theory of asymptotic efficiency
in semiparametric models for instance and the interested reader will find
numerous results in this direction in the books by Van der Vaart and Wellner
[120] or Van der Vaart [119].

1.1 Model Selection

Designing a genuine estimation procedure requires some prior knowledge on
the unknown distribution of ξ and choosing a proper model is a major problem
for the statistician. The aim of model selection is to construct data-driven cri-
teria to select a model among a given list. We shall see that in many situations
motivated by applications such as signal analysis for instance, it is useful to
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allow the size of the models to depend on the sample size n. In these situa-
tions, classical asymptotic analysis breaks down and one needs to introduce
an alternative approach that we call nonasymptotic. By nonasymptotic, we
do not mean of course that large samples of observations are not welcome but
that the size of the models as well as the size of the list of models should
be allowed to be large when n is large in order to be able to warrant that
the statistical model is not far from the truth. When the target quantity s to
be estimated is a function, this allows in particular to consider models which
have good approximation properties at different scales and use model selec-
tion criteria to choose from the data what is the best approximating model
to be considered. In the past 20 years, the phenomenon of the concentration
of measure has received much attention mainly due to the remarkable series
of works by Talagrand which led to a variety of new powerful inequalities (see
in particular [112] and [113]). The main interesting feature of concentration
inequalities is that, unlike central limit theorems or large deviations inequali-
ties, they are indeed nonasymptotic. The major issue of this series of Lectures
is to show that these new tools of probability theory lead to a nonasymp-
totic theory for model selection and illustrate the benefits of this approach
for several functional estimation problems. The basic examples of functional
estimation frameworks that we have in mind are the following.

• Density estimation

One observes ξ1, . . . , ξn which are i.i.d. random variables with unknown
density s with respect to some given measure µ.

• Regression

One observes (X1, Y1) , . . . , (Xn, Yn) with

Yi = s (Xi) + εi, 1 ≤ i ≤ n.

One assumes the explanatory variables X1, . . . , Xn to be independent (but
nonnecessarily i.i.d.) and the regression errors ε1, . . . , εn to be i.i.d. with
E [εi | Xi] = 0. s is the so-called regression function.

• Binary classification

As in the regression setting, one still observes independent pairs

(X1, Y1) , . . . , (Xn, Yn)

but here we assume those pairs to be copies of a pair (X,Y ), where the
response variables Y take only two values, say: 0 or 1. The basic problem of
statistical learning is to estimate the so-called Bayes classifier s defined by

s (x) = 1lη(x)≥1/2

where η denotes the regression function, η (x) = E [Y | X = x] .
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• Gaussian white noise

Let s ∈ L2

(
[0, 1]d

)
. One observes the process ξ(n) on [0, 1]d defined by

dξ(n) (x) = s (x) +
1√
n
dB (x) , ξ(n) (0) = 0,

where B denotes a Brownian sheet. The level of noise ε is here written as
ε = 1/

√
n for notational convenience and in order to allow an easy comparison

with the other frameworks.
In all of the above examples, one observes some random variable ξ(n) with

unknown distribution which depends on some quantity s ∈ S to be estimated.
One can typically think of s as a function belonging to some space S which
may be infinite dimensional. For instance

• In the density framework, s is a density and S can be taken as the set of
all probability densities with respect to µ.

• In the i.i.d. regression framework, the variables ξi = (Xi, Yi) are indepen-
dent copies of a pair of random variables (X,Y ), where X takes its values
in some measurable space X . Assuming the variable Y to be square inte-
grable, the regression function s defined by s (x) = E [Y | X = x] for every
x ∈ X belongs to S = L

2 (µ), where µ denotes the distribution of X.

One of the most commonly used method to estimate s is minimum contrast
estimation.

1.1.1 Minimum Contrast Estimation

Let us consider some empirical criterion γn (based on the observation ξ(n))
such that on the set S

t → E [γn (t)]

achieves a minimum at point s. Such a criterion is called an empiricalcontrast
for the estimation of s. Given some subset S of S that we call a model, a
minimum contrastestimator ŝ of s is a minimizer of γn over S. The idea
is that, if one substitutes the empirical criterion γn to its expectation and
minimizes γn on S, there is some hope to get a sensible estimator of s, at least
if s belongs (or is close enough) to model S. This estimation method is widely
used and has been extensively studied in the asymptotic parametric setting
for which one assumes that S is a given parametric model, s belongs to S and
n is large. Probably, the most popular examples are maximum likelihood and
least squares estimation. Let us see what this gives in the above functional
estimation frameworks. In each example given below, we shall check that a
given empirical criterion is indeed an empirical contrast by showing that the
associated natural loss function

� (s, t) = E [γn (t)] − E [γn (s)] (1.1)
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is nonnegative for all t ∈ S. In the case where ξ(n) = (ξ1, . . . , ξn), we shall
define an empirical criterion γn in the following way:

γn (t) = Pn [γ (t, .)] =
1
n

n∑
i=1

γ (t, ξi) ,

so that it remains to specify for each example what is the adequate function
γ to be considered.

• Density estimation

One observes ξ1, . . . , ξn which are i.i.d. random variables with unknown
density s with respect to some given measure µ. The choice

γ (t, x) = − ln (t (x))

leads to the maximum likelihood criterion and the corresponding loss function
� is given by

� (s, t) = K (s, t) ,

where K (s, t) denotes the Kullback–Leibler information number between the
probabilities sµ and tµ, i.e.,

K (s, t) =
∫

s ln
(s
t

)

if sµ is absolutely continuous with respect to tµ and K (s, t) = +∞ otherwise.
Assuming that s ∈ L2 (µ), it is also possible to define a least squares criterion
for density estimation by setting this time

γ (t, x) = ‖t‖2 − 2t (x)

where ‖.‖ denotes the norm in L2 (µ) and the corresponding loss function � is
in this case given by

� (s, t) = ‖s− t‖2 ,

for every t ∈ L2 (µ).

• Regression

One observes (X1, Y1) , . . . , (Xn, Yn) with

Yi = s (Xi) + εi, 1 ≤ i ≤ n,

where X1, . . . , Xn are independent and ε1, . . . , εn are i.i.d. with E [εi | Xi] = 0.
Let µ be the arithmetic mean of the distributions of the variables X1, . . . , Xn,
then least squares estimation is obtained by setting for every t ∈ L2 (µ)

γ (t, (x, y)) = (y − t (x))2 ,

and the corresponding loss function � is given by

� (s, t) = ‖s− t‖2 ,

where ‖.‖ denotes the norm in L2 (µ).
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• Binary classification

One observes independent copies (X1, Y1) , . . . , (Xn, Yn) of a pair (X,Y ),
where Y takes its values in {0, 1}. We take the same value for γ as in the least
squares regression case but this time we restrict the minimization to the set S
of classifiers i.e., {0, 1}-valued measurable functions (instead of L2 (µ)). For a
function t which takes only the two values 0 and 1, we can write

1
n

n∑
i=1

(Yi − t (Xi))
2 =

1
n

n∑
i=1

1lYi �=t(Xi)

so that minimizing the least squares criterion means minimizing the num-
ber of misclassifications on the training sample (X1, Y1) , . . . , (Xn, Yn). The
corresponding minimization procedure can also be called empirical risk min-
imization (according to Vapnik’s terminology, see [121]). Setting

s (x) = 1lη(x)≥1/2

where η denotes the regression function, η (x) = E [Y | X = x], the corre-
sponding loss function � is given by

� (s, t) = P [Y �= t (X)] − P [Y �= s (X)] = E [|2η (X) − 1| |s (X) − t (X)|] .

Finally, we can consider the least squares procedure in the Gaussian white
noise framework too.

• Gaussian white noise

Recall that one observes the process ξ(n) on [0, 1]d defined by

dξ(n) (x) = s (x) +
1√
n
dB (x) , ξ(n) (0) = 0,

where W denotes a Brownian sheet. We define for every t ∈ L2

(
[0, 1]d

)

γn (t) = ‖t‖2 − 2
∫ 1

0

t (x) dξ(n) (x) ,

then the corresponding loss function � is simply given by

� (s, t) = ‖s− t‖2 .

1.1.2 The Model Choice Paradigm

The main problem which arises from minimum contrast estimation in a
parametric setting is the choice of a proper model S on which the minimum
contrast estimator is to be defined. In other words, it may be difficult to guess
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what is the right parametric model to consider in order to reflect the nature of
data from the real life and one can get into problems whenever the model S is
false in the sense that the true s is too far from S. One could then be tempted
to choose S as big as possible. Taking S as S itself or as a “huge” subset of S
is known to lead to inconsistent (see [7]) or suboptimal estimators (see [19]).
We see that choosing some model S in advance leads to some difficulties:

• If S is a “small” model (think of some parametric model, defined by 1 or
2 parameters for instance) the behavior of a minimum contrast estimator
on S is satisfactory as long as s is close enough to S but the model can
easily turn to be false.

• On the contrary, if S is a “huge” model (think of the set of all continuous
functions on [0, 1] in the regression framework for instance), the minimiza-
tion of the empirical criterion leads to a very poor estimator of s even if s
truly belongs to S.

Illustration (White Noise)

Least squares estimators (LSE) on a linear model S (i.e., minimum contrast
estimators related to the least squares criterion) can be computed explicitly.
For instance, in the white noise framework, if (φj)1≤j≤D denotes some ortho-
normal basis of the D-dimensional linear space S, the LSE can be expressed
as

ŝ =
D∑
j=1

(∫ 1

0

φj (x) dξ(n) (x)
)
φj .

Since for every 1 ≤ j ≤ D

∫ 1

0

φj (x) dξ(n) (x) =
∫ 1

0

φj (x) s (x) dx +
1√
n
ηj ,

where the variables η1, . . . , ηD are i.i.d. standard normal variables, the quad-
ratic risk of ŝ can be easily computed. One indeed has

E

[
‖s− ŝ‖2

]
= d2 (s, S) +

D

n
.

This formula for the quadratic risk perfectly reflects the model choice para-
digm since if one wants to choose a model in such a way that the risk of the
resulting least square estimator is small, we have to warrant that the bias term
d2 (s, S) and the variance term D/n are small simultaneously. It is therefore
interesting to consider a family of models instead of a single one and try to
select some appropriate model among the family. More precisely, if (Sm)m∈M

is a list of finite dimensional subspaces of L2

(
[0, 1]d

)
and (ŝm)m∈M be the

corresponding list of least square estimators, an ideal model should minimize
E

[
‖s− ŝm‖2

]
with respect to m ∈ M. Of course, since we do not know the
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bias term, the quadratic risk cannot be used as a model choice criterion but
just as a benchmark.

More generally if we consider some empirical contrast γn and some (at most
countable and usually finite) collection of models (Sm)m∈M, let us represent
each model Sm by the minimum contrast estimator ŝm related to γn. The pur-
pose is to select the “best” estimator among the collection (ŝm)m∈M. Ideally,
one would like to consider m (s) minimizing the risk E [� (s, ŝm)] with respect
to m ∈ M. The minimum contrast estimator ŝm(s) on the corresponding
model Sm(s) is called an oracle (according to the terminology introduced by
Donoho and Johnstone, see [47] for instance). Unfortunately, since the risk
depends on the unknown parameter s, so does m (s) and the oracle is not an
estimator of s. However, the risk of an oracle can serve as a benchmark which
will be useful in order to evaluate the performance of any data driven selection
procedure among the collection of estimators (ŝm)m∈M. Note that this notion
is different from the notion of true model. In other words, if s belongs to some
model Sm0 , this does not necessarily imply that ŝm0 is an oracle. The idea
is now to consider data-driven criteria to select an estimator which tends to
mimic an oracle, i.e., one would like the risk of the selected estimator ŝ

m̂
to

be as close as possible to the risk of an oracle.

1.1.3 Model Selection via Penalization

Let us describe the method. The model selection via penalization procedure
consists in considering some proper penalty function pen: M → R+ and take
m̂ minimizing the penalized criterion

γn (ŝm) + pen (m)

over M. We can then define the selected model S
m̂

and the selected estimator
ŝ
m̂

.
This method is definitely not new. Penalized criteria have been proposed

in the early 1970s by Akaike (see [2]) for penalized log-likelihood in the den-
sity estimation framework and Mallows for penalized least squares regression
(see [41] and [84]), where the variance σ2 of the errors of the regression frame-
work is assumed to be known for the sake of simplicity. In both cases the
penalty functions are proportional to the number of parameters Dm of the
corresponding model Sm

• Akaike : Dm/n
• Mallows’ Cp : 2Dmσ2/n.

Akaike’s heuristics leading to the choice of the penalty function Dm/n
heavily relies on the assumption that the dimensions and the number of the
models are bounded with respect to n and n tends to infinity.

Let us give a simple motivating example for which those assumptions are
clearly not satisfied.
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A Case Example: Change Points Detection

Change points detection on the mean is indeed a typical example for which
these criteria are known to fail. A noisy signal ξj is observed at each time j/n
on [0, 1]. We consider the fixed design regression framework

ξj = s (j/n) + εj , 1 ≤ j ≤ n

where the errors are i.i.d. centered random variables. Detecting change points
on the mean amounts to select the “best” piecewise constant estimator of the
true signal s on some arbitrary partition m with endpoints on the regular
grid {j/n, 0 ≤ j ≤ n}. Defining Sm as the linear space of piecewise constant
functions on partition m, this means that we have to select a model among the
family (Sm)m∈M, where M denotes the collection of all possible partitions
by intervals with end points on the grid. Then, the number of models with
dimension D, i.e., the number of partitions with D pieces is equal to

(
n−1
D−1

)
which grows polynomially with respect to n.

The Nonasymptotic Approach

The approach to model selection via penalization that we have developed (see
for instance the seminal papers [20] and [12]) differs from the usual parametric
asymptotic approach in the sense that:

• The number as well as the dimensions of the models may depend on n.
• One can choose a list of models because of its approximation proper-

ties: wavelet expansions, trigonometric or piecewise polynomials, artificial
neural networks etc.

It may perfectly happen that many models in the list have the same
dimension and in our view, the “complexity” of the list of models is typically
taken into account via the choice of the penalty function of the form

(C1 + C2Lm)
Dm

n

where the weights Lm satisfy the restriction
∑
m∈M

e−LmDm ≤ 1

and C1 and C2 do not depend on n.
As we shall see, concentration inequalities are deeply involved both in the

construction of the penalized criteria and in the study of the performance of
the resulting penalized estimator ŝ

m̂
.
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The Role of Concentration Inequalities

Our approach can be described as follows. We take as a loss function the
nonnegative quantity � (s, t) and recall that our aim is to mimic the oracle,
i.e., minimize E [� (s, ŝm)] over m ∈ M.

Let us introduce the centered empirical process

γn (t) = γn (t) − E [γn (t)] .

By definition a penalized estimator ŝ
m̂

satisfies for every m ∈ M and any
point sm ∈ Sm

γn
(
ŝ
m̂

)
+ pen (m̂) ≤ γn (ŝm) + pen (m)

≤ γn (sm) + pen (m)

or, equivalently if we substitute γn (t) + E [γn (t)] to γn (t)

γn
(
ŝ
m̂

)
+ pen (m̂) + E

[
γn

(
ŝ
m̂

)]
≤ γn (sm) + pen (m) + E [γn (sm)] .

Subtracting E [γn (s)] on each side of this inequality finally leads to the
following important bound

�
(
s, ŝ

m̂

)
≤ � (s, sm) + pen (m)

+ γn (sm) − γn
(
ŝ
m̂

)
− pen (m̂) .

Hence, the penalty should be

• heavy enough to annihilate the fluctuations of γn (sm) − γn
(
ŝ
m̂

)
;

• but not too large since ideally we would like that � (s, sm) + pen (m) ≤
E [� (s, ŝm)].

Therefore, we see that an accurate calibration of the penalty should rely
on a sharp evaluation of the fluctuations of γn (sm)−γn

(
ŝ
m̂

)
. This is precisely

why we need local concentration inequalities in order to analyze the uniform
deviation of γn (u)− γn (t) when t is close to u and belongs to a given model.
In other words, the key is to get a good control of the supremum of some
conveniently weighted empirical process

γn (u) − γn (t)
a (u, t)

, t ∈ Sm′ .

The prototype of such bounds is by now the classical Gaussian concen-
tration inequality to be proved in Chapter 3 and Talagrand’s inequality for
empirical processes to be proved in Chapter 5 in the non-Gaussian case.
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1.2 Concentration Inequalities

More generally, the problem that we shall deal with is the following. Given
independent random variables X1, . . . , Xn taking their values in Xn and some
functional ζ : Xn → R, we want to study the concentration property of
Z = ζ (X1, . . . , Xn) around its expectation. In the applications that we have
in view the useful results are sub-Gaussian inequalities. We have in mind to
prove inequalities of the following type

P [Z − E [Z] ≥ x] ≤ exp
(
−x2

2v

)
, for 0 ≤ x ≤ x0, (1.2)

and analogous bounds on the left tail.
Ideally, one would like that v = Var (Z) and x0 = ∞. More reasonably, we

shall content ourselves with bounds for which v is a “good” upper bound for
Var (Z) and x0 is an explicit function of n and v.

1.2.1 The Gaussian Concentration Inequality

In the Gaussian case, this program can be fruitfully completed. We shall
indeed see in Chapter 3 that whenever Xn=R

n is equipped with the canonical
Euclidean norm, X1, . . . , Xn are i.i.d. standard normal and ζ is assumed to
be Lipschitz, i.e.,

|ζ (y) − ζ (y′)| ≤ L ‖y − y′‖ , for every y, y′ in R
n

then, on the one hand Var (Z) ≤ L2 and on the other hand the Cirelson–
Ibragimov–Sudakov inequality ensures that

P [Z − E [Z] ≥ x] ≤ exp
(
− x2

2L2

)
, for all x ≥ 0.

The remarkable feature of this inequality is that its dependency with respect
to the dimension n is entirely contained in the expectation E [Z]. Extending
this result to more general situations is not so easy. It is in particular unclear to
know what kind of regularity conditions should be required on the functional ζ.
A Lipschitz type condition with respect to the Hamming distance could seem
to be a rather natural and attractive candidate. It indeed leads to interesting
results as we shall see in Chapter 5. More precisely, if d denotes Hamming
distance on Xn defined by

d (y, y′) =
n∑
i=1

1lyi �=y′i , for all y, y′ in Xn

and ζ is assumed to be Lipschitz with respect to d

|ζ (y) − ζ (y′)| ≤ Ld (y, y′) , for all y, y′ in Xn (1.3)
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then it can be proved that

P [Z − E [Z] ≥ x] ≤ exp
(
− 2x2

nL2

)
, for all x ≥ 0.

Let us now come back to the functional which naturally emerges from the
study of penalized model selection criteria.

1.2.2 Suprema of Empirical Processes

Let us assume T to be countable in order to avoid any measurability problem.
The supremum of an empirical process of the form

Z = sup
t∈T

n∑
i=1

ft (Xi)

provides an important example of a functional of independent variables both
for theory and applications. Assuming that supt∈T ‖ft‖∞ ≤ 1 ensures that
the mapping

ζ : y → sup
t∈T

n∑
i=1

ft (yi)

satisfies the Lipschitz condition (1.3) with respect to the Hamming distance
d with L = 2 and therefore

P [Z − E [Z] ≥ x] ≤ exp
(
−x2

2n

)
, for all x ≥ 0. (1.4)

However, it may happen that the variables ft (Xi) have a “small” variance
uniformly with respect to t and i. In this case, one would expect a better
variance factor in the exponential bound but obviously Lipschitz’s condition
with respect to Hamming distance alone cannot lead to such an improvement.

In other words Lipschitz property is not sharp enough to capture the
local behavior of empirical processes which lies at the heart of our analysis of
penalized criteria for model selection. It is the merit of Talagrand’s inequality
for empirical processes to provide an improved version of (1.4) which will turn
to be an efficient tool for analyzing the uniform increments of an empirical
process as expected.

It will be one of the main goals of Chapter 5 to prove the following version
of Talagrand’s inequality. Under the assumption that supt∈T ‖ft‖∞ ≤ 1, there
exists some absolute positive constant η such that

P [Z − E [Z] ≥ x] ≤ exp
(
−η

(
x2

E [W ]
∧ x

))
, (1.5)

where W = supt∈T
∑n
i=1 f

2
t (Xi). Note that (1.5) a fortiori implies some sub-

Gaussian inequality of type (1.2) with v = E [W ] / (2η) and x0 =
√

E [W ].
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1.2.3 The Entropy Method

Building upon the pioneering works of Marton (see [87]) on the one hand
and Ledoux (see [77]) on the other hand, we shall systematically derive con-
centration inequalities from information theoretic arguments. The elements
of information theory that we shall need will be presented in Chapter 2 and
used in Chapter 5. One of the main tools that we shall use is the duality
formula for entropy. Interestingly, we shall see how this formula also leads to
statistical minimax lower bounds. Our goal will be to provide a simple proof
of Talagrand’s inequality for empirical processes and extend it to more gen-
eral functional of independent variables. The starting point for our analysis is
Efron–Stein’s inequality. Let X ′ = X

′
1, . . . , X

′
n be some independent copy of

X = X1, . . . , Xn and define

Z ′
i = ζ (X1, . . . , Xi−1,X

′
i,Xi+1, . . . , Xn) .

Setting

V + =
n∑
i=1

E

[
(Z − Z ′

i)
2
+ | X

]
,

Efron–Stein’s inequality (see [59]) ensures that

Var (Z) ≤ E
[
V +

]
. (1.6)

Let us come back to empirical processes and focus on centered empirical
processes for the sake of simplicity. This means that we assume the vari-
ables Xi to be i.i.d. and E [ft (X1)] = 0 for every t ∈ T . We also assume T to
be finite and consider the supremum of the empirical process

Z = sup
t∈T

n∑
i=1

ft (Xi) ,

so that for every i

Z ′
i = sup

t∈T

⎡
⎣
⎛
⎝

n∑
j �=i

ft (Xj)

⎞
⎠ + ft (X ′

i)

⎤
⎦ .

Taking t∗ such that supt∈T
∑n
j=1 ft (Xj) =

∑n
j=1 ft∗ (Xj), we have for every

i ∈ [1, n]
Z − Z ′

i ≤ ft∗ (Xi) − ft∗ (X ′
i)

which yields
(Z − Z ′

i)
2
+ ≤ (ft∗ (Xi) − ft∗ (X ′

i))
2

and therefore by independence of X ′
i from X we derive from the centering

assumption E

[
ft

(
X

′
i

)]
= 0 that
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E

[
(Z − Z ′

i)
2
+ | X

]
≤ f2

t∗ (Xi) + E
[
f2
t∗ (X ′

i)
]

.

Hence, we deduce from Efron–Stein’s inequality that

Var (Z) ≤ 2E [W ] ,

where W = supt∈T
∑n
i=1 f

2
t (Xi).

The conclusion is therefore that the variance factor appearing in
Talagrand’s inequality turns out to be the upper bound which derives from
Efron–Stein’s inequality. The main guideline that we shall follow in Chapter 5
is that, more generally, the adequate variance factor v to be considered in
(1.2) is (up to some absolute constant) the upper bound for the variance of Z
provided by Efron–Stein’s inequality.




