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Value-Distribution in the Complex Plane

Une fonction entière, qui ne devient jamais ni à a ni à b est nécessaire-
ment une constante. Emile Picard

Many beautiful results on the value-distribution of L-functions follow from
the general theory of Dirichlet series like the Big Picard theorem (see Boas [26]
and Mandelbrojt [234]), but more advanced statements can only be proved
by exploiting the characterizing properties (the functional equation and the
Euler product). In this chapter, we study the distribution of values of Dirichlet
series satisfying a Riemann-type functional equation. These results are due to
Steuding [346, 347] and their proofs follow in the main part the methods of
Levinson [217], Levinson and Montgomery [218], and Nevanlinna theory.

7.1 Sums Over c-Values

Let c be any complex number. Levinson [217] proved that all but
� N(T )(log log T )−1 of the roots of ζ(s) = c in T < t < 2T lie in

∣∣∣∣σ −
1
2

∣∣∣∣ <
(log log T )2

log T
.

Thus, the c-values of the zeta-function are clustered around the critical line.
In particular, we see that the density estimate (1.13) alone does not indicate
the truth of the Riemann hypothesis. As we shall show in this chapter, this
distribution of c-values is typical for Dirichlet series satisfying a Riemann-type
functional equation.

Throughout this chapter, we shall assume that

L(s) =
∞∑

n=1

a(n)
ns
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satisfies the axioms (1)–(3) from the definition of the Selberg class S, and so
we may define the degree dL of L by (6.2); we shall not make use of axiom (4)
(neither do we use the condition on the real parts of the complex numbers µj
in the Gamma-factors of the functional equation), however, for simplicity we
suppose that a(1) = 1. In some places we shall assume the Lindelöf hypothesis
for L(s); by that we mean the estimate (6.18).

We give an example of a function satisfying these axioms which does not
have an Euler product. The Davenport–Heilbronn zeta-function is given by

L(s) =
1− iκ

2
L(s, χ) +

1 + iκ
2

L(s, χ), (7.1)

where

κ :=

√
10− 2

√
5− 2√

5− 1

and χ is the character mod 5 with χ(2) = i. It is easily seen that the
Davenport–Heilbronn zeta-function satisfies the functional equation

(
5
π

)s/2
Γ

(
s+ 1

2

)
L(s) =

(
5
π

)(1−s)/2
Γ
(
1− s

2

)
L(1− s).

Davenport and Heilbronn [65] introduced this function as an example for a
Dirichlet series having zeros in the half-plane σ > 1 although L(s) satisfies a
Riemann-type functional equation; see Balanzario [14] for more examples of
a similar type.

The c-values of L(s) are the roots of the equation

L(s) = c, (7.2)

which we denote by �c = βc+iγc. Our first aim is to prove estimates for sums
taken over c-values, weighted with respect to their real parts.

Theorem 7.1. Assume that L(s) satisfies the axioms (1)–(3) with a(1) = 1
and let c �= 1. Then, for any b > max{ 1

2 , 1−
1
dL
},

∑

βc>b
T <γc≤2T

(βc − b) � T.

Assuming the truth of Lindelöf ’s hypothesis for L(s),

∑

βc> 1
2

T <γc≤2T

(
βc −

1
2

)
= O(T log T ).
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The case c = 1 is exceptional since 1 = a(1) is the limit of L(s) as σ →∞:

L(s) = 1 + O(2−σ). (7.3)

We will briefly discuss this case at the end of Sect. 7.2.

Proof. In view of (7.3) there exists a positive real number A depending on c
such that all real parts βc of c-values satisfy βc < A. Put

�(s) =
L(s)− c

1− c .

Obviously, the zeros of �(s) correspond exactly to the c-values of L(s). Next we
will apply Littlewood’s lemma which relates the zeros of an analytic function
f(s) with a contour integral over log f(s).

Lemma 7.2 (Littlewood). Let b < a and let f(s) be analytic on R := {s ∈
C : b ≤ σ ≤ a, |t| ≤ T}. Suppose that f(s) does not vanish on the right edge
σ = a of R. Let R′ be R minus the union of the horizontal cuts from the zeros
of f in R to the left edge of R, and choose a single-valued branch of log f(s)
in the interior of R′. Denote by ν(σ, T ) the number of zeros � = β + iγ of
f(s) inside the rectangle with β > σ including zeros with γ = T but not those
with γ = −T . Then

∫

∂R
log f(s) ds = −2πi

∫ a

b

ν(σ, T ) dσ.

This is an integrated version of the principle of the argument. We give a
sketch of the simple proof. Cauchy’s theorem implies

∫
∂R′ log f(s) ds = 0, and

so the left-hand side of the formula of the lemma,
∫
∂R, is minus the sum of

the integrals around the paths hugging the cuts. Since the function log f(s)
jumps by 2πi across each cut (assuming for simplicity that the zeros of f in
R are simple and have different height; the general case is no harder),

∫
∂R is

−2πi times the total length of the cuts, which is the right-hand side of the
formula in the lemma. For more details we refer to Titchmarsh [353, Sect. 9.9],
or Littlewood’s original paper [224].

Let ν(σ, T ) denote the number of zeros �c of �(s) with βc > σ and T < γc ≤
2T (counting multiplicities). Now let a be a parameter with a > max{A +
1, b}. Then Littlewood’s Lemma 7.2, applied to the rectangle R with vertices
a+ iT, a+ 2iT, b+ iT, b+ 2iT , gives

∫

R
log �(s) ds = −2πi

∫ a

b

ν(σ, T ) dσ.

Since
∫ a

b

ν(σ, T ) dσ =
∑

βc>b
T <γ≤2T

∫ βc

b

dσ =
∑

βc>b
T <γc≤2T

(βc − b) (7.4)
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and this quantity is real-valued, we get

2π
∑

βc>b
T <γc≤2T

(βc − b) =
∫ 2T

T

log |�(b+ it)|dt−
∫ 2T

T

log |�(a+ it)|dt+

−
∫ a

b

arg �(σ + iT ) dσ +
∫ a

b

arg �(σ + 2iT ) dσ

=
4∑

j=1

Ij , (7.5)

say. To define log �(s) and logL(s) we may choose the principal branch of the
logarithm on the real axis, as σ → ∞; for other points s the value of the
logarithm is obtained by continuous variation along line segments (this is in
agreement with Lemma 7.2).

We start with the vertical integrals. Obviously,

I1(T, b) := I1 =
∫ 2T

T

log |L(b+ it)− c|dt− T log |1− c|. (7.6)

By Jensen’s inequality the integral is

≤ T

2
log

(
1
T

∫ 2T

T

|L(b+ it)|2 dt

)
+ O(T ).

By Corollary 6.11 (which also applies to L-functions satisfying just axioms
(1)–(3) as already remarked) this is � T for b > max{1

2 , 1 −
1
dL
}. Thus we

get I1(T, b) � T unconditionally. An immediate consequence of Lindelöf’s
hypothesis is ∫ 2T

T

∣∣∣∣L
(

1
2

+ it
)∣∣∣∣

2

dt� T 1+ε

for any positive ε. Thus, assuming the truth of Lindelöf’s hypothesis we get

I1

(
T,

1
2

)
� εT log T.

Next we consider I2. Since a > 1 we have

�(a+ it) = 1 +
1

1− c

∞∑

n=2

a(n)
na+it

, (7.7)

and in view of (7.3) the absolute value of the series is less than 1 for sufficiently
large a. Therefore, we find by the Taylor expansion of the logarithm

log |�(a+ it)| = Re
∞∑

k=1

(−1)k

k(1− c)k
∞∑

n1=2

· · ·
∞∑

nk=2

a(n1) · · · a(nk)
(n1 · · ·nk)a+it

.
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This leads to the estimate

I2 = Re
∞∑

k=1

(−1)k

k(1− c)k
∞∑

n1=2

· · ·
∞∑

nk=2

a(n1) · · · a(nk)
(n1 · · ·nk)a

∫ 2T

T

dt
(n1 · · ·nk)it

�
∞∑

k=1

1
k

( ∞∑

n=2

1
na−ε

)k
� 1 (7.8)

for sufficiently large a. It remains to estimate the horizontal integrals I3, I4.
Suppose that Re �(σ + iT ) has N zeros for b ≤ σ ≤ a. Divide the interval

[b, a] into at most N+1 subintervals in each of which Re �(σ+iT ) is of constant
sign. Then

| arg �(σ + iT )| ≤ (N + 1)π. (7.9)

To estimate N let

g(z) =
1
2

(
�(z + iT ) + �(z + iT )

)
.

Then we have g(σ) = Re �(σ + iT ). Let R = a− b and choose T so large that
T > 2R. Now, Im (z + iT ) > 0 for |z − a| < T . Thus �(z + iT ), and hence
g(z) is analytic for |z − a| < T . Let n(r) denote the number of zeros of g(z)
in |z − a| ≤ r. Obviously, we have

∫ 2R

0

n(r)
r

dr ≥ n(R)
∫ 2R

R

dr
r

= n(R) log 2.

With Jensen’s formula (see for example, Titchmarsh [353, Sect. 3.61]),
∫ 2R

0

n(r)
r

dr =
1
2π

∫ 2π

0

log
∣∣g
(
a+ 2Reiθ

)∣∣ dθ − log |g(a)|, (7.10)

we deduce

n(R) ≤ 1
2π log 2

∫ 2π

0

log
∣∣g
(
a+ 2Reiθ

)∣∣ dθ − log |g(a)|
log 2

.

By (7.7) it follows that: log |g(a)| is bounded. By Theorem 6.8, in any vertical
strip of bounded width,

L(s) � |t|B

as |t| → ∞ with a certain positive constant B. Obviously, the same estimate
holds for g(z). Thus, the integral above is � log T , and n(R) � log T . Since
the interval (b, a) is contained in the disc |z − a| ≤ R, the number N is less
than or equal to n(R). Therefore, with (7.9), we get

|I4| ≤
∫ a

b

| arg �(σ + iT )|dσ � log T.

Obviously, I3 can be bounded in the same way.
Collecting all estimates, the assertions of the theorem follow. ��
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Now we want to include most of the c-values into our observations. In view
of Lemma 6.7 and Theorem 6.8 there exist positive constants C ′, T ′ such that
there are no c-values in the region σ < −C ′, t ≥ T ′. Therefore, assume that
b < −C ′ − 1 and T ≥ T ′ + 1. By the functional equation in the form (6.13),

log |L(s)− c| = log |∆L(s)|+ log |L(1− s)|+ O

(
1

|∆L(s)L(1− s)|

)
.

In view of Lemma 6.7

log |∆L(s)| =
(

1
2
− σ
)

( dL log t+ log(λQ2)) +O
(

1
t

)
.

Thus
∫ 2T

T

log |L(b+ it)− c|dt

=
(

1
2
− b
)∫ 2T

T

( dL log t+ log(λQ2)) dt

+
∫ 2T

T

log |L(1− b− it)|dt+ O(log T ).

Now suppose that c �= 1. The first integral on the right-hand side is easily
calculated by elementary methods. The second integral is small if −b is chosen
sufficiently large (see (7.8)). Together with (7.6) we get

I1 =
(

1
2
− b
)(

dLT log
4T
e

+ T log(λQ2)
)
− T log |1− c|+ O(log T ).

By (7.5) and with the estimates for the Ij ’s from the proof of Theorem 7.1,
we obtain

Theorem 7.3. Assume that L(s) satisfies the axioms (1)–(3) with a(1) = 1
and let c �= 1. Then, for sufficiently large negative b,

2π
∑

T<γc≤2T

(βc − b) =
(

1
2
− b
)(

dLT log
4T
e

+ T log(λQ2)
)

− T log |1− c|+ O(log T ).

7.2 Riemann–von Mangoldt-Type Formulae

We can rewrite the sum over c-values from Sect. 7.1 as follows:
∑

βc

(βc − b) =
(

1
2
− b
)∑

βc

1 +
∑

βc

(
βc −

1
2

)
.
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The first sum on the right counts the number of c-values and the second sum
measures the distances of the c-values from the critical line. Let N c(T ) count
the number of c-values of L(s) with T < γc ≤ 2T . Then, subtracting the
formula of Theorem 7.3 with b + 1 instead of b from the formula with b, we
obtain

Corollary 7.4. Assume that L(s) satisfies the axioms (1)–(3) with a(1) = 1.
Then, for c �= 1,

N c(T ) =
dL
2π
T log

4T
e

+
T

2π
log(λQ2) + O(log T ).

Furthermore,

Corollary 7.5. Assume that L(s) satisfies the axioms (1)–(3) with a(1) = 1.
Then, for c �= 1,

∑

T<γc≤2T

(
βc −

1
2

)
= − T

2π
log |1− c|+ O(log T ).

Thus, for c �= 1 satisfying |1 − c| �= 1, the c-values, weighted with respect to
their distance to the critical line, lie asymmetrically distributed. Nevertheless,
our next aim is to show that most of the c-values lie close to the critical line.
Unfortunately, for this purpose we have to assume the Lindelöf hypothesis.
Define the counting functions (according multiplicities)

N c
+(σ, T ) = �{�c : T < γc ≤ 2T, βc > σ},

and
N c

−(σ, T ) = �{�c : T < γc ≤ 2T, βc < σ}.
Then

Theorem 7.6. Assume that L(s) satisfies the axioms (1)–(3) with a(1) = 1
and let c �= 1. Then, for any σ > max{1

2 , 1−
1
dL
},

N c
+(σ, T ) � T, (7.11)

and assuming the truth of the Lindelöf hypothesis, for any δ > 0,

N c
−

(
1
2
− δ, T

)
+N c

+

(
1
2

+ δ, T
)
� δT log T.

Proof. First of all, let σ > max{ 1
2 , 1−

1
dL
} and fix σ1 ∈ (max{ 1

2 , 1−
1
dL
}, σ).

Then
N c

+(σ, T ) ≤ 1
σ − σ1

∑

βc>σ
T <γc≤2T

(βc − σ1).

The sum on the right hand-side is less than or equal to

∑

βc>σ1
T <γc≤2T

(βc − σ1) �
∫ 2T

T

log |�(σ1 + it)|dt+ O(log T ),
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where we used Littlewood’s Lemma 7.2 and the techniques from Sect. 7.1 for
the latter inequality. In view of the unconditional estimate for (7.6) in the
proof of Theorem 7.1 we obtain (7.11). Assuming the truth of the Lindelöf
hypothesis, we get analogously

N c
+

(
1
2

+ δ, T
)
� ε

δ
T log T (7.12)

for any positive ε.
Next we consider N c

−. Let b be a sufficiently large constant. We have

∑

βc≥ 1
2−δ

T <γc≤2T

(βc − b) ≤
(

1
2
− b
) ∑

βc≥ 1
2−δ

T <γc≤2T

1 +
∑

βc≥ 1
2

T <γc≤2T

(
βc −

1
2

)
.

Hence

∑

T<γc≤2T

(βc − b) =
∑

βc< 1
2−δ

T <γc≤2T

(
1
2
− b+ βc −

1
2

)
+

∑

βc≥ 1
2−δ

T <γc≤2T

(βc − b)

≤
(

1
2
− b
)
N c(T ) +

∑

βc< 1
2−δ

T <γc≤2T

(
βc −

1
2

)

+
∑

βc> 1
2

T <γc≤2T

(
βc −

1
2

)
.

By Theorem 7.1, the second sum on the right is bounded by εT log T . Since
any term in the first sum on the right is < −δ, we obtain

−δN c
−

(
1
2
− δ, T

)
≥

∑

T<γc≤2T

(βc − b)−
(

1
2
− b
)
N c(T ) + O(εT log T ).

In view of Theorem 7.3 and Corollary 7.4 we get

N c
−

(
1
2
− δ, T

)
� ε

δ
T log T.

This is the same bound as for N c
+ in (7.12). Putting ε = δ2 we obtain the

assertion of the theorem. ��

Thus, subject to the truth of the Lindelöf hypothesis, we get by comparing
Corollary 7.4 and Theorem 7.6, for any positive ε,

N c
−

(
1
2
− ε, T

)
+N c

+

(
1
2

+ ε, T
)
� εN c(T ),
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so the c-values are clustered around the critical line for any c. This extra-
ordinary value distribution shows that if the Lindelöf hypothesis for L(s)
is true, the critical line is a so-called Julia line from the classical theory of
functions. Julia [151] improved the Big Picard theorem by showing: if the
analytic function f has an essential singularity at a, then there exist a real
θ0 and at most one complex number z such that for every sufficiently small
ε > 0

C \ {z} ⊂ f({a+ r exp(iθ) : |θ − θ0| < ε, 0 < r < ε});
the ray {a + r exp(iθ0) : r > 0} is called a Julia line. For more details on
Julia’s theorem we refer to Burckel [48, Sect. XII.4].

The distribution of the c-values close to the real axis is quite regular. It can
be shown that there is always a c-value in some neighbourhood of any trivial
zero of L(s) with sufficiently large negative real part, and with finitely many
exceptions there are no other in the left half-plane. The main ingredients for
the proof are Rouché’s theorem (Theorem 8.1) and Stirling’s formula (2.17).
With regard to (6.6), thus the number of these c-values having real part in
[−R, 0] is asymptotically 1

2 dLR. On the other side, by (7.3) the behaviour
nearby the positive real axis is very regular. Note that all results from above
hold as well with respect to c-values from the lower half-plane.

Now let N c
L(σ, T ) count the number of c-values �c = βc + iγc of L(s)

satisfying βc > σ, |γc| ≤ T . Using Corollary 7.4 with 2−nT for n ∈ N instead
of T and adding up, we get, for fixed σ ≤ 0,

N c
L(σ, T ) = 2

∞∑

n=1

N c(σ, 2−nT )

=
(

dL
π
T log

T

e
+
T

π
log(λQ2)

) ∞∑

n=1

1
2n

+
dL
π
T

∞∑

n=1

log 4− n log 2
2n

+ O(log T ).

The appearing infinite series are equal to 1 and 0, respectively. Hence, this
summation removes the factor 4 in the logarithmic term, and we have proved

Theorem 7.7. Assume that L(s) satisfies the axioms (1)–(3) with a(1) = 1.
For any fixed σ ≤ 0 and any complex c �= 1,

N c
L(σ, T ) =

dL
π
T log

T

e
+
T

π
log(λQ2) + O(log T ).

The case c = σ = 0 (the non-trivial zeros of L(s)) is a precise Riemann–von
Mangoldt formula (1.5). Similar results were obtained by Perelli [289] and
Lekkerkerker [214] for other classes of Dirichlet series. It should be noticed
that Tsang [355] investigated the number of c-values of ζ(s) with respect to
short intervals for the imaginary parts. Let σ < 1

2 , T (1/2)+ε ≤ H ≤ T , and



146 7 Value-Distribution in the Complex Plane

c be a complex number satisfying ε ≤ |1 − c| ≤ 1
ε with sufficiently small ε.

Assuming the truth of the Riemann hypothesis, Tsang proved

N c
ζ (σ, T +H)−N c

ζ (σ, T ) ∼ H

π
log

T

2π
with an explicit error term depending on ε,H and T ; his result holds uncon-
ditionally provided σ ≤ 0.

An immediate consequence of Theorem 7.7 is that the multiplicity of non-
trivial zeros � of L(s) is bounded by 1 + log |γ|. More advanced results on
the multiplicities of the zeros were obtained by Ivić [142] in the case of the
Riemann zeta-function.

We conclude with another result from Selberg [323] for L-functions from S.
Assuming the truth of the Riemann hypothesis and of conjecture A, he
obtained for c �= 1 the asymptotic formula

∑

βc> 1
2

0<γc<T

(
βc −

1
2

)
=
√
nL

4π3/2
T
√

log log T +
T

4π
log

|c|
1− |c|2 +

+ O
(
T

(log log log T )3√
log log T

)
.

Furthermore, for

σ(T ) :=
1
2
− ν

√
log log T
log T

and ξ :=
dLν

2
√
πnL

with positive ν, he proved
∑

βc>σ(T )
0<γc<T

(βc − σ(T ))

=
1
2

√
nL
π

(
exp(−πξ2)

2π
+ ξ − ξ

∫ ∞

ξ

exp(−πx2) dx
)
T
√

log log T

+
(

log |c|
∫ ∞

ξ

exp(−πx2) dx− log |1− c|
)
T

2π

+ O
(
T

(log log log T )3√
log log T

)
.

From these results Selberg deduced that about half of the c-values lie to the
left of the critical line, statistically well distributed at distances of order

√
log log T
log T

off σ = 1
2 , and that

N c
L(σ(T ), T ) ∼ N c

L(T )
∫ ∞

−ξ
exp(−πx2) dx.



7.3 Nevanlinna Theory 147

Most of the remaining c-values lie rather close to the critical line at distances
of order not exceeding

(log log log T )3

log T
√

log log T
.

This improves some previous results of Selberg (unpublished) and Joyner [150]
and gives a much more detailed description of the clustering of the c-values
around the critical line.

In the exceptional case c = 1 one has to consider the function

�(s) =
qs

a(q)
(L(s)− 1),

where q ≥ 1 is the least integer such that a(q) �= 0. Then, by a similar
reasoning as in the proof of Theorem 7.7, one gets analogous results. For the
special case of the zeta-function this is carried out in Steuding [348, 349] where
Levinson’s method is applied to Epstein zeta-functions. These methods also
allow to drop the condition a(1) = 1.

7.3 Nevanlinna Theory

Nevanlinna theory was created by Nevanlinna [281] in the 1920’s to tackle
the value-distribution of meromorphic functions in general. We recall some
basic facts which, for example, can be found in Nevanlinna’s monograph [281,
Chaps.VI and IX].

Let f be a meromorphic function and denote the number of poles of f(s)
in |s| ≤ r by n(f,∞, r) (counting multiplicities). The number of c-values of f
is given by

n(f, c, r) = n
(

1
f − c ,∞, r

)
.

The integrated counting function is

N(f, c, r) =
∫ r

0

(n(f, c, �)− n(f, c, 0))
d�
�

+ n(f, c, 0) log r.

The proximity function is defined by

m(f, r) =
1
2π

∫ 2π

0

log+ |f(r exp(iθ))|dθ,

and, for c ∈ C, by

m(f, c, r) = m
(

1
f − c , r

)
,

where log+ x := max{0, log x}. The function m(f, c, r) indicates how close
f(s) is to the value c on the circle |s| = r. The characteristic function of f is
defined by

T(f, r) = N(f,∞, r) + m(f, r).



148 7 Value-Distribution in the Complex Plane

Furthermore, let
T(f, c, r) = N(f, c, r) + m(f, c, r)

for c ∈ C. The first main theorem in Nevanlinna theory states states that
T(f, c, r) differs from the characteristic function by a bounded quantity:

Theorem 7.8. Let f be a meromorphic function and let c be any complex
number. Then

T(f, c, r) = T(f, r) + O(1),

where the error term depends on f and c.

The proof relies on Jensen’s formula (7.10).
Thus, T(f, c, r) for different values of c is invariant up to additive terms

that are bounded. The invariant, the characteristic function T(f, r), encodes
information about the analytic behaviour of f .

The quantity

δ(f, c) := 1− lim sup
r→∞

N(f, c, r)
T(f, r)

is called the deficiency of the value c of f . This deficiency is positive only
if there are relatively few c-values. The second main theorem in Nevanlinna
theory implies the so-called deficiency relation which states that

∑

c∈C∪{∞}
δ(f, c) ≤ 2 ;

note that only for countably many values of c the deficiency can differ from
zero. Another consequence is the Big Picard theorem.

Only recently Ye [372] computed the Nevanlinna functions for the Riemann
zeta-function. Without big effort we can extend his results to the class of
Dirichlet series under investigation. The Nevanlinna functions for those L(s)
are determined by the Gamma-factors in the functional equation.

First, let σ0 > 1 be fixed. We write s = r exp(iθ), so σ = r cos θ. It is easily
seen that

1
2π

∫

{θ:r cos θ>σ0}
log+ |L(r exp(iθ))|dθ � 1.

Further, in view of Theorem 6.8,

1
2π

∫

{θ:1−σ0≤r cos θ≤σ0}
log+ |L(r exp(iθ))|dθ � log r;

note that the Lebesgue measure of the set

{θ ∈ [0, 2π] : σ = r cos θ ∈ [1− σ0, σ0]}

is bounded by 1
r . Finally, for σ ≤ 1−σ0 we deduce from the functional equation

in the form (6.13) that
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log+ |L(r exp(iθ))| ≤
f∑

j=1

{
log+ |Γ (λj(1− r exp(iθ)) + µj)|

+ log+ |Γ (λjr exp(iθ) + µj)|
}

+ O(r).

Now we shall use Ye’s decomposition of the Gamma-function. For any z =
r exp(iθ), there is an integer n0 with n0 < r ≤ n0 + 1 such that

1
Γ (z)

= F1(z)F2(z) with F1(z) := z

(
γz −

2n0∑

n=1

z

n

)
,

where γ is the Euler–Mascheroni constant, and F2(z) is an entire function with
m(F2, r) � r. The order of growth of Γ (z) is ruled by the order of growth of
F1(z). Ye computed

log |F1(z)| = −r log r cos θ + O(r).

If λ is a positive real number and µ an arbitrary complex number, Ye’s
estimate leads to

1
2π

∫

{θ:r cos θ<1−σ0}
log+ |Γ (λ(1− r exp(iθ)) + µ)|dθ

≤ λ

2π

∫ π/2

−π/2
r log r cos θ dθ + O(r) =

λ

π
r log r + O(r),

and, similarly,

1
2π

∫

{θ:r cos θ<1−σ0}
log+ |Γ (λr exp(iθ)) + µ)|dθ ≤ λ

π
r log r + O(r).

Thus, we get

1
2π

∫

{θ:r cos θ<1−σ0}
log+ |L(r exp(iθ))|dθ ≤ dL

π
r log r + O(r).

Adding the estimates for the other cases, we obtain for the proximity function
of L(s)

m(L, r) ≤ dL
π
r log r + O(r).

Since L(s) is regular except for at most a pole at s = 1,

N(L,∞, r) �
∫ r

1

d�
�

= log r. (7.13)

Thus, we get

T(L, r) ≤ dL
π
r log r + O(r). (7.14)
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It follows from Theorem 7.7 that:

N(L, 0, r) =
dL
π
r log r + O(r). (7.15)

The first main Theorem 7.8 implies

N(L, 0, r) ≤ T(L, 0, r) = T(L, r) + O(1).

In view of (7.14) and (7.15) we get an asymptotic formula for the characteristic
function:

Theorem 7.9. For L satisfying axioms (1)–(3) with a(1) = 1,

T(L, r) =
dL
π
r log r + O(r).

We deduce from this and (7.13) for the deficiency value of infinity:

δ(L,∞) = 1− lim sup
r→∞

N(L,∞, r)
T(L, r) = 1.

In view of Theorem 7.7 the deficiency values for c �= 1,∞ are equal to zero.
In combination with Theorem 7.7 the asymptotic formula of the theorem

shows that the counting function N(L, c, r) dominates the proximity function
m(L, c, r), at least for any complex value c �= 1. In the exceptional case c = 1,
by the first main Theorem 7.8, we may deduce from Theorem 7.9 that

N1
L(T ) ≤ dL

π
T log T + O(T ).

A more sophisticated analysis would show that this is actually an equality.
However, we do not go into the details. In Sect. 9.7 we return to the distribu-
tion of c-values in the half-plane of absolute convergence.

We conclude with a description of the analytic behaviour of the Dirichlet
series L under investigation in terms of the notion of finite order. A positive
function t(r) is said to be of finite order λ if

lim sup
r→∞

log t(r)
log r

= λ;

t(r) is of maximum, mean or minimum type of order λ if the upper limit

lim sup
r→∞

t(r)
rλ

is infinite, finite and positive, or zero. A meromorphic function is defined to
be of the same order and the same type as its characteristic function T(r, f).
Thus, by Theorem 7.9, we get

Corollary 7.10. Every L satisfying the axioms (1)–(3) with a(1) = 1 is of
order one and of maximum type.
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7.4 Uniqueness Theorems

We say that two meromorphic functions f and g share a value c ∈ C∪{∞} if
the sets of pre-images of the value c under f and under g are equal, for short

f−1(c) := {s ∈ C : f(s) = c} = g−1(c). (7.16)

We say that f and g share the value c counting multiplicities (CM) if (7.16)
holds and if the roots of the equations

f(s) = c and g(s) = c

have the same multiplicities; if there is no restriction on the multiplici-
ties, f and g are said to share the value c ignoring multiplicities (IM).
Nevanlinna [280] proved two fundamental results on shared values. His
remarkable five-point theorem states that any two non-constant meromorphic
functions which share five distinct values are equal. Since f(s) = exp(s) and
g(s) = exp(−s) share the four values 0,±1,∞, the number 5 in Nevanlinna’s
statement is best possible. If multiplicities are taken into account, Nevanlinna
proved that if two meromorphic functions f and g share four distinct values
c1, . . . , c4 CM, then either f ≡ g or there exists a linear fractional transfor-
mation M such that g ≡M ◦ f and

M(c1) = c1, M(c2) = c2, M(c3) = c4, and M(c4) = c3;

in the latter case f and g do not assume the values c3 and c4. Also the number
4 for the upper bound of shared values CM is best possible. The result can be
sharpened if two of the four values are allowed to be shared IM (see [111]).
In [347], Steuding, investigated how many values L-functions can share. In
this special case better estimates are possible than those which Nevanlinna’s
theorems provide. It is expected that independent L-functions cannot share
any complex value which is actually taken.

First of all, we trivially note that two L-functions from the Selberg class
share the value∞ CM if and only if both are entire or if they both have a pole
at s = 1 of the same order (other poles cannot occur), e.g., the Riemann zeta-
function ζ(s) and a Dedekind zeta-function to a quadratic number field. If
the orders of the poles differ, they share the value ∞ IM. Further, we observe
that two different L-functions in the Selberg class cannot share the value zero
CM. This follows immediately from a theorem of M.R. Murty and V.K. Murty
[268]. To see that denote the non-trivial zeros of L ∈ S by � and let mL(�)
be the multiplicity of �. Further, define for L1,L2 ∈ S the function

DL1,L2(T ) =
∑

�

|mL1(�)−mL2(�)|,

where the summation is taken over all non-trivial zeros � of L1 and L2

(counting multiplicities). Then M.R. Murty and V.K. Murty proved that
L1,L2 ∈ S are either equal or

lim inf
T→∞

1
T
DL1,L2(T ) > 0
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(see also the related result of Bombieri and Perelli (6.8)). However, the trivial
example ζ(s) and ζ(s)2 shows that different elements of S can share the value
zero IM.

Concerning CM-shared values we shall prove that two different Dirichlet
series satisfying our axioms do not share any complex value CM. For sharing
values IM we shall only obtain an improvement of the five-point theorem under
an additional assumption on the number of distinct c-values. For this purpose
let Ñ c

L(T ) count the number of distinct roots �c of the equation L(s) = c lying
in the rectangle 0 ≤ σ ≤ 1, |t| ≤ T .

Theorem 7.11. Assume that L1,L2 satisfy the axioms (1)–(3) with a(1) = 1.

(i) If L1,L2 share a value c �=∞ CM, then L1 ≡ L2.
(ii) If L1,L2 satisfy the same functional equation and share two distinct values

c1, c2 �=∞ IM such that

lim inf
T→∞

Ñ c1
Lj

(T ) + Ñ c2
Lj

(T )

N c1
Lj

(T ) +N c2
Lj

(T )
>

1
2

+ ε (7.17)

for some positive ε with either j = 1 or 2, then L1 ≡ L2.

We briefly discuss the second assertion of the theorem. Condition (7.17)
reflects that more than 50% of the c1- and c2-values of Lj(s) are supposed to
be distinct. It should be noted that such conditions are very difficult to verify.
For instance, Farmer [78] proved that more than 63% of the zeros of ζ(s) are
distinct; however, any extension to L-functions of larger degree seems to be
hard to realize.

Proof. We start with the first assertion. In view of Theorem 7.7 two L-
functions satisfying the axioms (1)–(3) can only share a value c �= ∞ CM
if they have the same degree, d say. First of all assume that L1,L2 are both
entire functions and share the value c �= ∞ CM. Define the function

�(s) =
L1(s)− c
L2(s)− c

.

Since L1(s) assumes the value c if and only if L2(s) = c and since for any
such root the multiplicities coincide, �(s) is a non-vanishing entire function.
In view of the first main Theorem 7.8 and Theorem 7.9

T(L2, c, r) = T(L2, r) + O(1) =
d
π
r log r + O(r)

= T(L1 − c, r) + O(r).

For a meromorphic function f denote its order by λ(f). Then it follows that:

λ

(
1

L1 − c

)
= λ(L2 − c) = λ(L2) = 1.
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It is easily seen that the order of a finite product of functions of finite order is
less than or equal to the maximum of the order of the factors. Thus λ(�) ≤ 1.
By Hadamard’s factorization theorem (see [281, Sect. VIII.2]) this implies that
�(s) is of the form

�(s) = exp(P (s)),

where P is a polynomial of degree at most λ(�) ≤ 1. Since Lj(s) tends to one
as s→∞ for j = 1, 2, we have

lim
s→∞ �(s) =

1− c
1− c = 1.

This implies that the polynomial P is vanishing identically, which implies
L1 ≡ L2.

If L1(s) or L2(s) has a pole at s = 1 of order k, we may replace Lj(s)
by (s − 1)kLj(s) and repeat the argument from above. This proves the first
assertion.

Now we shall prove the second statement. If L1 and L2 satisfy the same
functional equation, they both have the same degree, d say. Now consider the
function

�(s) := L1(s)− L2(s).

Obviously, also �(s) satisfies the common functional equation for the Lj ’s.
Then the number N�(T ) of zeros of �(s) in the rectangle 0 ≤ σ ≤ 1, |t| ≤ T
(counting multiplicities) is asymptotically given by

N�(T ) ∼ d
π
T log T. (7.18)

Now suppose that L1 and L2 share two distinct complex values c1, c2 IM.
Then �(s) vanishes also for the pre-images of the ck’s. Hence, we obtain a
lower bound for the number of zeros of �(s) in terms of the c1- and c2-value
counting functions, namely

N�(T ) ≥ Ñ c1
Lj

(T ) + Ñ c2
Lj

(T ), (7.19)

where we can take j = 1 or j = 2. Taking into account Theorem 7.7 and
(7.18) we can replace N�(T ) by

1
2

(
N c1

Lj
(T ) +N c2

Lj
(T )
)

+ O(T ).

Thus we can rewrite (7.19) as

Ñ c1
Lj

(T ) + Ñ c2
Lj

(T )

N c1
Lj

(T ) +N c2
Lj

(T )
≤ 1

2
+ o(1).

This contradicts (7.17). Hence L1 and L2 can share at most one value c ∈ C.
Theorem 7.11 is proved. ��
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The functions L(s) and L(s)2 share the value zero IM. This is a special
example for two reasons. First, these functions are not independent in the sense
that they have the same primitive functions in their factorizations. Second,
they share the zeros. Bombieri and Hejhal [40] proved, assuming some widely
believed but yet unproved hypotheses, that almost all zeros of pairwise inde-
pendent L-functions are distinct. Of course, we expect the same to hold for
other c-values too. With respect to condition (7.17) this leads us to conjecture
that zero is the only possible shared value and that this happens only in cases
of dependent L-functions.

We conclude with a few words about the significance of such studies.
Some problems in arithmetic (see Chap. 13.7) could be solved if one could
show that, given distinct primitive L-functions L1(s), . . . ,Lm(s) (in the sense
of the Selberg class), then Lj(�k) = 0 holds only for j = k, where the �k
denote the non-trivial zeros of Lk(s). Clearly, this would also imply the unique
factorization into primitive elements.




