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Interlude: Results from Probability Theory

Primes play a game of chance.
M. Kac

In this chapter, we briefly present facts from probability theory which will
be used later. These results can be found in the monographs of Billingsley
[21, 22], Buldygin [45], Cramér and Leadbetter [64], Heyer [133], Laurinčikas
[186], and Loève [226]. However, there are two exceptions in this crash course
in probability theory. In Sect. 3.3 we present Denjoy’s heuristic probabilistic
argument for the truth of Riemann’s hypothesis. Finally, in Sect. 3.7, we
introduce the universe for our later studies on universality, the space of ana-
lytic functions, and state some of its properties, following Conway [62] and
Laurinčikas [186].

3.1 Weak Convergence of Probability Measures

The notion of weak convergence of probability measures is a useful tool in
investigations on the value-distribution of Dirichlet series. This powerful
theory was initiated by Kolmogorov, Erdös and Kac and further developed
by Doob, Prokhorov, Skorokhod and others. To present the main properties
of weakly convergent probability measures we have to introduce the concept
of σ-field and the axiomatic setting of probability measures.

Let Ω be a non-empty set. By P(Ω) we denote the set of all subsets of Ω.
A subset F of P(Ω) is called a field (or algebra) if it satisfies the following
axioms:

• ∅, Ω ∈ F ;
• Ac ∈ F for A ∈ F , where Ac denotes the complement of A;
• F is closed under finite unions and finite intersections, i.e., if A1, . . . , An ∈
F , then

n⋃

j=1

Aj ∈ F and
n⋂

j=1

Aj ∈ F .
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F is called a σ-field (or σ-algebra) if it satisfies the first two axioms above in
addition with

• F is closed under countable unions and countable intersections, i.e., if {Aj}
is a countable sequence of events in F , then

∞⋃

j=1

Aj ∈ F and
∞⋂

j=1

Aj ∈ F .

For C ⊂ P(Ω) we denote by σ(C) the smallest σ-field containing C. This σ-field
is said to be generated by C.

A non-negative function P defined on a σ-field F with the properties:

• P(∅) = 0 and P(Ω) = 1;
• For every countable sequence {Aj} of pairwise disjoint elements of F ,

P

⎛

⎝
∞⋃

j=1

Aj

⎞

⎠ =
∞∑

j=1

P(Aj),

is called a probability measure. The triple (Ω,F ,P) is said to be a probability
space. This setting of probability dates back to Kolmogorov who introduced
it in the early 1930s.

Let S be a topological space and let B(S) denote the class of Borel sets
of S, i.e., the σ-field generated by the system of all open subsets of the space
S. Then each measure on B(S) is called Borel measure. Usually, we consider
probability measures defined on the Borel sets B(S) of some metric space S.
A class A of sets of S is said to be a determining class (also separating class)
in case the measures P and Q on (S,B(S)) coincide on the whole of S when
P(A) = Q(A) for all A ∈ A.

Given two probability measures P1 and P2 on (S1,B(S1)) and (S2,B(S2)),
respectively, there exists a unique measure P1 ×P2 such that

(P1 ×P2)(A1 ×A2) = P1(A1)P2(A2)

for Aj ∈ B(Sj). This measure is a probability measure on (S,B(S)), where
S = S1×S2 and B(S) = B(S1)×B(S2), and is said to be the product measure
of the measures P1 and P2.

In the sequel let Pn and P be probability measures on (S,B(S)). We say
that Pn converges weakly to P as n tends to infinity, and write Pn ⇒ P, if
for all bounded continuous functions f : S → R

lim
n→∞

∫

S

f dPn =
∫

S

f dP.

Since the integrals on the right-hand side completely determine P (which is
a consequence of Lebesgue’s dominated convergence theorem), the sequence
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{Pn} cannot converge weakly to two different limits at the same time. Further,
note that weak convergence depends only on the topology of the underlying
space S, not on the metric that generates it.

A set A in S whose boundary ∂A satisfies P(∂A) = 0 is called a continuity
set of P. The Portmanteau theorem provides useful conditions equivalent to
weak convergence.

Theorem 3.1. Let Pn and P be probability measures on (S,B(S)). Then the
following assertions are equivalent:

• Pn ⇒ P;
• For all open sets G,

lim inf
n→∞ Pn(G) ≥ P(G);

• For all continuity sets A of P,

lim
n→∞Pn(A) = P(A).

This theorem is part of Theorem 2.1 in Billingsley [21]. Next we state a useful
criterion for weak convergence.

Lemma 3.2. We have Pn ⇒ P if and only if every subsequence {Pnk
}

contains a subsequence {Pnkj
} such that Pnkj

⇒ P.

This is Theorem 2.3 from Billingsley [21].
Now we consider continuous mappings between metric spaces S1 and S2.

A function h : S1 → S2 is said to be measurable if

h−1(B(S2)) ⊂ B(S1).

Let h : S1 → S2 be a measurable function. Then every probability measure P
on (S1,B(S1)) induces a probability measure Ph−1 on (S2,B(S2)) defined by

(Ph−1)(A) = P ◦ h−1(A) = P(h−1(A)),

where A ∈ B(S2). This measure is uniquely determined. A function h : S1 →
S2 is continuous if for every open set G2 ⊂ S2 the set h−1(G2) is open in S1.
Continuous mappings transport the property of weak convergence.

Theorem 3.3. Let h : S1 → S2 be a continuous function. If Pn ⇒ P, then
also Pnh

−1 ⇒ Ph−1.

This theorem is a particular case of Theorem 5.1 from Billingsley [21].
A family {Pn} of probability measures on (S,B(S)) is said to be relatively

compact if every sequence of elements of {Pn} contains a weakly convergent
subsequence. A family {Pn} is called tight if for arbitrary ε > 0 there exists
a compact set K such that P(K) > 1 − ε for all P from {Pn}. Prokhorov’s
theorem is a powerful tool in the theory of weak convergence of probability
measures; it is given below as Theorem 3.4, the direct half, and as Theorem 3.5,
the converse half. These theorems connect relative compactness with the tight-
ness of a family of probability measures.
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Theorem 3.4. If a family of probability measures is tight, then it is relatively
compact.

Theorem 3.5. Let S be separable (i.e., S contains a countable dense subset)
and complete. If a family of probability measures on (S,B(S)) is relatively
compact, then it is tight.

These are Theorems 6.1 and 6.2 from Billingsley [21]. Note that a topological
space is said to be separable if it contains a countable dense subset.

In the theory of Dirichlet series we investigate the weak convergence of
probability measures PT ⇒ P, where T is a continuous parameter which
tends to infinity. As it is noted in [21], we have PT ⇒ P, as T → ∞, if and
only if PTn

⇒ P, as n→∞, for every sequence {Tn} with limn→∞ Tn = ∞.
All theorems on weak convergence analoguous to those stated above remain
valid in the case of continuous parameters.

3.2 Random Elements

The theory of weak convergence of probability measures can be paraphrased
as the theory of convergence of random elements in distribution.

Let (Ω,F ,P) be a probability space, (S,B(S)) be a metric space with its
class of Borel sets B(S), and X : Ω → S a mapping. If

X−1(A) = {ω ∈ Ω : X(ω) ∈ A} ∈ F

for every A ∈ B(S), then X is called an S-valued random element defined on
Ω; if S = R we say that X is a random variable. The distribution of an S-
valued random element X is the probability measure PX on (S,B(S)), given
by

PX(A) = P(X−1(A)) = P{ω ∈ Ω : X(ω) ∈ A}
for arbitrary A ∈ B(S) (in the sequel we will often write P in place of PX).
We say that a sequence {Xn} of random elements converges in distribution
to a random element X if the distributions Pn of the elements Xn converge
weakly to the distribution of the element X, and in this case we write

Xn
D−→

n→∞ X;

if Pn ⇒ PX , then we also write Xn
D−→

n→∞ PX .
Let S be a metric space with metric �, and let Xn, Yn be S-valued random

elements defined on (Ω,F ,P). If Xn and Yn have a common domain, it makes
sense to speak of the distance �(Xn(ω), Yn(ω)) for ω ∈ Ω. If S is separable,
then �(Xn, Yn) is a random variable. In this case, convergence in distribution
of two sequences of random elements Xn and Yn is related to the distribution
of �(Xn, Yn) (convergence in probability).
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Theorem 3.6. Let S be separable and, for n ∈ N, let Yn,X1n,X2n, . . . be
S-valued random elements, all defined on (Ω,F ,P). Suppose that

Xkn
D−→

n→∞ Xk for each k, and Xk
D−→

k→∞ X.

If for any ε > 0
lim
k→∞

lim sup
n→∞

P{�(Xkn, Yn) ≥ ε} = 0,

then Yn
D−→

n→∞ X.

This is Theorem 4.2 of Billingsley [21].
The mean (expectation value) EX of a random element X is defined by

EX =
∫

Ω

X(ω) dP

if the integral exists in the sense of Lebesgue. A simple but fundamental
result on the deviation of a random variable from its expectation value is
Chebyshev’s (respectively, Markov’s) inequality:

Lemma 3.7. Let X be a real-valued random variable, h : R → [0,∞) be a
non-negative function, and a > 0. Then

P{ω ∈ Ω : h(X) ≥ a} ≤ 1
a

Eh(X).

A proof can be found, for example, in Billingsley [22]. Taking h(x) = x2, we
deduce the classical Chebyshev’s inequality:

P{|X| ≥ a} ≤ 1
a2

EX2.

We say that some property is valid almost surely if there exists a set A ∈ F
with P(A) = 0 such that this property is valid for every ω ∈ Ω \ A. Random
variables X and Y are said to be orthogonal if EXY = 0. An important
result on almost sure convergence of series of orthogonal random variables is
the following

Theorem 3.8. Assume that the random variables X1,X2, . . . are orthogonal
and that ∞∑

n=1

E|Xn|2(log n)2 <∞.

Then the series
∑∞
n=1Xn converges almost surely.

Further, we need a similar result for independent random variables.
Random variables X and Y are said to be independent if for all A,B ∈ B(S)

P{ω ∈ Ω : X ∈ A, Y ∈ B} = P{ω ∈ Ω : X ∈ A} ·P{ω ∈ Ω : Y ∈ B}.
Usually, independence of random variables is defined via the σ-fields generated
by the related events; however, for the sake of simplicity, we introduced this
notion by the equivalent condition above.
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Theorem 3.9. Assume that the random variables X1,X2, . . . are indepen-
dent. If the series

∞∑

n=1

EXn and
∞∑

n=1

E(Xn −EXn)2

converge, then the series
∑∞
n=1Xn converges almost surely.

Proofs of the last two theorems can be found in Loève [226].
Now we present a criterion on almost sure convergence of series of inde-

pendent random variables for Hilbert spaces. Let H be a separable Hilbert
space with norm ‖·‖ and define for an H-valued random element X and a real
number c the truncated function

X(c) =
{
X if ‖X‖ ≤ c,
0 if ‖X‖ > c.

Then

Theorem 3.10. Let X1,X2, . . . be independent H-valued random elements. If
there is a constant c > 0 so that the series

∞∑

n=1

E‖X(c)
n −EX(c)

n ‖2,
∞∑

n=1

EX(c)
n , and

∞∑

n=1

P{‖Xn‖ > c}

converge, then the series
∑∞
n=1Xn converges in H almost surely.

A proof can be found in Buldygin [45].

3.3 Denjoy’s Probabilistic Argument
for Riemann’s Hypothesis

At this point our survey of probability theory will be cut in order to give a
heuristic probabilistic argument for the truth of Riemann’s hypothesis. The
Möbius µ-function is defined by µ(1) = 1, µ(n) = 0 if n has a quadratic divisor
�= 1, and µ(n) = (−1)r if n is the product of r distinct primes. It is easily seen
that µ(n) is multiplicative and appears as coefficients of the Dirichlet series
representation of the reciprocal of the zeta-function:

ζ(s)−1 =
∏

p

(
1− 1

ps

)
=

∞∑

n=1

µ(n)
ns

,

valid for σ > 1. Riemann’s hypothesis is equivalent to the estimate

M(x) :=
∑

n≤x
µ(n) � x(1/2)+ε.
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This is related to (1.11); for a proof see, for example, Titchmarsh [353,
Sect. 14.25].

Denjoy [68] argued as follows. Assume that {Xn} is a sequence of random
variables with distribution

P(Xn = +1) = P(Xn = −1) =
1
2
.

Define

S0 = 0 and Sn =
n∑

j=1

Xj ,

then {Sn} is a symmetrical random walk in Z
2 with starting point at 0. A

simple application of Chebyshev’s inequality yields, for any positive c,

P{|Sn| ≥ cn
1
2 } ≤ 1

2c2
,

which shows that large values for Sn are rare events. By the theorem of
Moivre–Laplace ([22, Theorem 27.1]) this can be made more precise. It follows
that:

lim
n→∞P

{
|Sn| < cn

1
2

}
=

1√
2π

∫ c

−c
exp
(
−x

2

2

)
dx.

Since the right-hand side above tends to 1 as c→∞, we obtain

lim
n→∞P

{
|Sn| � n

1
2+ε
}

= 1

for every ε > 0. We observe that this might be regarded as a model for the
value-distribution of Möbius µ-function. To say it with the words of Edwards:
“Thus these probabilistic assumptions about the values of µ(n) lead to the
conclusion, ludicrous as it seems, that M(x) = O(x1/2+ε) with probability
one and hence that the Riemann hypothesis is true with probability one!”
(cf. [74]). The law of the iterated logarithm [22, Theorem 9.5] would even
gives the stronger estimate

lim
n→∞P

{
|Sn| � (n log log n)1/2

}
= 1,

which suggests for M(x) the upper bound (x log log x)1/2. This estimate is
pretty close to the so-called weak Mertens hypothesis which states

∫ X

1

(
M(x)
x

)2

dx� logX.

Note that this bound implies the Riemann hypothesis and the essential sim-
plicity hypothesis. On the contrary, Odlyzko and te Riele [284] disproved the
original Mertens hypothesis [248],

|M(x)| < x 1
2 ,
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by showing that

lim inf
x→∞

M(x)
x1/2

< −1.009 and lim sup
x→∞

M(x)
x1/2

> 1.06; (3.1)

for more details see also the notes to Sect. 14 in Titchmarsh [353].

3.4 Characteristic Functions and Fourier Transforms

There is an intimate relationship between weak convergence and characteristic
functions which makes characteristic functions very useful in studying limit
distributions.

The characteristic function ϕ(τ) of a probability measure P on (Rr,B(Rr))
is defined by

ϕ(τ) =
∫

Rr
exp(i〈τ, x〉)P( dx),

where 〈τ, x〉 stands for the inner product of τ and x ∈ R
r. Notice that the

characteristic function uniquely determines the measure it comes from. Let
{Pn} be a sequence of probability measures on (Rr,B(Rr)) and let {ϕn(τ)}
be the sequence of the corresponding characteristic functions. Suppose that

lim
n→∞ϕn(τ) = ϕ(τ)

for all τ , and that ϕ(τ) is continuous at the point 0 = (0, . . . , 0). Then
Lévy’s famous continuity theorem (see [22, Sect. 26]) yields the existence of
a probability measure P on (Rr,B(Rr)) such that Pn ⇒ P, and ϕ(τ) is
the characteristic function of P. However, later we shall deal with Fourier
transforms instead of characteristic functions; their theory is quite similar to
the theory of characteristic functions (for details we refer to the first chapter
from [186]).

Let γ = {s ∈ C : |s| = 1} and denote by γm the cartesian product of m
copies of γ. Further, let P be a probability measure on (γm,B(γm)), then the
Fourier transform g(k1, . . . , km) of the measure P is defined by

g(k1, . . . , km) =
∫

γm

xk11 . . . xkm
m dP,

where kj ∈ Z and xj ∈ γ for 1 ≤ j ≤ m. Similarly to the characteristic
function, the measure P is uniquely determined by its Fourier transform.
The role of Lévy’s continuity theorem in the theory of Fourier transforms is
played by

Theorem 3.11. Let {Pn} be a sequence of probability measures on
(γm,B(γm)) and let {gn(k1, . . . , km)} be the sequence of the corresponding
Fourier transforms. Suppose that for every vector (k1, . . . , km) ∈ Z

m the limit

g(k1, . . . , km) = lim
n→∞ gn(k1, . . . , km)
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exists. Then there is a probability measure P on (γm,B(γm)) such that Pn ⇒
P, and g(k1, . . . , km) is the Fourier transform of P.

Theorem 3.11 is a special case of a more general continuity theorem for
probability measures on compact abelian groups. A proof of this result can
be found in Heyer [133, Theorem 1.4.2].

3.5 Haar Measure and Characters

Let G be a set equipped with the structures of a group and of a topological
space. If the function h : G×G→ G, defined by h(x, y) = xy−1, is continuous,
then G is called a topological group. A topological group is said to be compact
if its topology is compact. In what follows, G is assumed to be compact.

A Borel measure P on a compact topological group G is said to be invariant
if

P(A) = P(xA) = P(Ax)

for all A ∈ B(G) and all x ∈ G, where xA and Ax denote the sets {xy : y ∈ A}
and {yx : y ∈ A}, respectively. An invariant Borel measure on a compact
topological group is called Haar measure.

Theorem 3.12. On every compact topological group there exists a unique
probability Haar measure.

The uniqueness follows from m(G) = 1. For the proof see Hewitt and Ross
[132, Chap. IV] or Theorem 5.14 in Rudin [313].

In the sequel, we denote the Haar measure associated with a compact topo-
logical group G simply by m; there will be no confusion about the underlying
group.

Now assume further that G is a commutative group. A continuous homo-
morphism χ : G → C is called a character of G. The character of G which
is identically 1 is called trivial or principal, and we denote it by χ0; other
characters are said to be non-trivial or non-principal. The characters build up
a group Ĝ, the character group. The Fourier transform of a function f defined
on G is given by

f̂(χ) =
∫

G

χ(g)f(g)m( dg),

where χ is a character of G. Then f̂ is a continuous map defined on Ĝ. The
orthogonality relation for characters states

∫

G

χ(g)m( dg) =
{

1 if χ = χ0,
0 if χ �= χ0.

(3.2)

This generalizes the concept of Dirichlet characters.
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3.6 Random Processes and Ergodic Theory

To be able to identify later the explicit form of the limit measure in limit
theorems, we recall some facts from ergodic theory.

Let (Ω,F ,P) be a probability space and let T denote a parameter set. A
finite real function X(τ, ω) with τ ∈ T and ω ∈ Ω is said to be a random (or
stochastic) process if ω �→ X(τ, ω) is a random variable for each fixed τ ∈ T .
For fixed ω ∈ Ω, the function τ �→ X(τ, ω) is called a sample path of the ran-
dom process. Let τ1, . . . , τn be an arbitrary set of values of T . Then the family
of all common distributions of random variables X(τ1, ω), . . . , X(τn, ω), i.e.,

P{X(τ1, ω) < x1, . . . , X(τn, ω) < xn}

for all n ∈ N and all possible values of τj with 1 ≤ j ≤ n, is called a
family of finite-dimensional distributions of the process X(τ, ω). Part of the
structure of the random process is specified by its finite-dimensional distri-
butions. However, they do not determine the character of the sample paths
(see [22, Sect. 23], for a nice example). Kolmogorov’s existence theorem (see
Theorem 36.1 in [22]) states that if a family of finite dimensional distributions
satisfies certain consistency conditions, then there exists on some probability
space a random process having exactly the same finite-dimensional distribu-
tions. For instance, a special application of Kolmogorov’s existence theorem
yields a model for Brownian motion with continuous paths.

Let Y be the space of all finite real-valued functions y(τ) with τ ∈ R.
In this case it is known that the family of finite-dimensional distributions of
each random process determines a probability measure P on (Y,B(Y )). Then,
on the probability space (Y,B(Y ),P), we define for real u the translation gu
which maps each function y(τ) ∈ Y to y(τ + u). It is easily seen that the
translations gu form a group. A random process X(τ, ω) is said to be strongly
stationary if all its finite-dimensional distributions are invariant under the
translations by u. It is known that if a process X(τ, ω) is strongly stationary,
then the translation gu is measure preserving, i.e., for any set A ∈ B(Y ) and
all u ∈ R the equality

P(A) = P(Au), where Au := gu(A)

holds. A set A ∈ B(Y ) is called an invariant set of the process X(τ, ω) if for
each u the sets A and Au differ from each other by a set of zero P-measure.
In other words, P(A∆Au) = 0, where ∆ denotes the symmetric difference of
two sets A and B:

A∆B := (A \B) ∪ (B \A).

It is easy to see that all invariant sets of Y form a σ-field which is a sub-σ-field
of B(Y ). We say that a strongly stationary process X(τ, ω) is ergodic if its
σ-field of invariant sets consists only of sets having P-measure equal to 0 or 1.
For ergodic processes the Birkhoff–Khintchine theorem gives an expression
for the expectation of X(0, ω) in terms of an integral taken over the sample
paths.
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Theorem 3.13. Let X(τ, ω) be an ergodic process with E|X(τ, ω)| < ∞ and
almost surely Riemann-integrable sample paths over every finite interval. Then

lim
T→∞

1
T

∫ T

0

X(τ, ω) dτ = EX(0, ω)

almost surely.

A proof of this theorem can be found in Cramér and Leadbetter [64].

3.7 The Space of Analytic Functions

Let G be a simply connected region in the complex plane. We denote by H(G)
the space of analytic functions f defined on G equipped with the topology of
uniform convergence on compacta.

In order to introduce an appropriate metric on H(G) we note

Lemma 3.14. For any open set G in the complex plane there exists a sequence
of compact subsets Kj of G with the properties:

• Kj ⊂ Kj+1 for any j ∈ N;
• If K is compact and K ⊂ G, then K ⊂ Kj for some j ∈ N;

such that

G =
∞⋃

j=1

Kj

The proof is straightforward and can be found in Conway’s book [62,
Sect. VII.1].

Now, for f, g ∈ H(G) let

�j(f, g) = max
s∈Kj

|f(s)− g(s)|

and put

�(f, g) =
∞∑

j=1

2−j
�j(f, g)

1 + �j(f, g)
.

This defines a metric on H(G) which induces the desired topology; of course,
the metric � depends on the family {Kj}. Note that the series above is dom-
inated by

∑
j 2−j and therefore convergent.

Theorem 3.15. Let G be a simply connected region in the complex plane.
Then H(G) is a complete separable metric space.

In Conway [62, Sect. VII.1], it is shown that H(G) is a complete metric space;
the separability, i.e., the existence of a countable dense subset, follows from
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Runge’s approximation theorem (see [312, Sect. 13]) which states that the set
of polynomials is dense in H(G).

In our later studies, we deal with the supports of H(G)-valued random
elements. Let S be a separable metric space and let P be a probability
measure on (S,B(S)). The minimal closed set SP ⊆ S with P(SP) = 1 is
called the support of P. Note that SP consists of all x ∈ S such that for
every neighbourhood U of x the inequality P(U) > 0 is satisfied. Let X be a
S-valued random element defined on the probability space (Ω,F ,P). Then
the support of the distribution P(X ∈ A) for A ∈ B(S) is called the support
of the random element X. We denote the support of X by SX .

Theorem 3.16. Let {Xn} be a sequence of independent H(G)-valued random
elements, and suppose that the series

∑∞
n=1Xn converges almost everywhere.

Then the support of the sum of this series is the closure of the set of all
f ∈ H(G) which may be written as a convergent series

f =
∞∑

n=1

fn, where fn ∈ SXn
.

This is Theorem 1.7.10 of Laurinčikas [186]. The proof follows the lines of an
analogous statement for independent real variables due to Lukacs [231]. We
only sketch the main ideas. Suppose that the random elements Xn are defined
on a probability space (Ω,F ,P∗). Put

X :=
∞∑

n=1

Xn = LN +RN ,

where

LN :=
N∑

n=1

Xn and RN :=
∞∑

n=N+1

Xn.

Since the series
∑∞
n=1Xn converges almost surely, we have

lim
N→∞

P∗{ω ∈ Ω : �(RN , 0) ≥ ε} = 0.

Let
PN (A) = P∗{LN ∈ A} and P(A) = P∗{X ∈ A}

for A ∈ B(H(G)). It follows that Pn ⇒ P, which implies

SP ⊂ limSPN
, (3.3)

where limSPN
denotes the set of all f ∈ H(G) such that any neighbourhood

of f contains at least one g which belongs to SPn
for almost all n ∈ N.

To show the converse inclusion, put

QN (A) = P∗{RN ∈ A}
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for A ∈ B(H(G). The distribution of X = LN+RN is given by the convolution
PN ∗QN , defined by

(PN ∗QN )(A) =
∫

H(G)

PN (A− g)QN ( dg).

The support of X = LN +RN is the closure of the set

{f ∈ H(G) : f = f1 + f2, where f1 ∈ SLN
, f2 ∈ SRN

}. (3.4)

For g ∈ limSPN
let

Aε := {f ∈ H(G) : �(f, g) < ε}.

It follows that PN (Aε) = P∗(LN ∈ Aε) > 0 and QN (Aε) > 0 for N large
enough. This leads to

P(A2ε) ≥ PN (Aε)QN (Aε) > 0.

This implies
SX = SP ⊃ limSPN

.

By (3.3) it follows that the latter inclusion is an equality. In view of (3.4) the
support of LN is the set of all g ∈ H(G) which have a representation

g =
N∑

n=1

fn,

where fn ∈ SXn
. From the definition of limSPN

we deduce that for any
f ∈ SX there exists a sequence of gN ∈ SLN

which converges to f . This yields
the assertion of the theorem.




