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A General Approach to Stabilization

The first Almighty Cause acts not by partial,
but by gen’ral laws.

A. Pope

In this short chapter we develop a general approach for stabilized evaluation of
a closed unbounded operator using von Neumann’s theorem and the spectral
theory of bounded self-adjoint operators as basic tools. Recall that the essential
problem of evaluating an unbounded linear operator L : D(L) ⊆ H1 → H2 at a
vector x ∈ D(L) given only an approximation xδ ∈ H1 satisfying ‖x−xδ‖ ≤ δ
is that in general xδ /∈ D(L), and even if xδ ∈ D(L) one can not guarantee
that Lxδ → Lx as δ → 0, since L is discontinuous. Our goal in this chapter
is to develop general approximations to Lx of the form Sαx, where Sα is
a bounded linear operator depending on a parameter α > 0. Since Sα is
bounded the vector Sαxδ is defined for all xδ ∈ H1 and for each α > 0
the mapping xδ �→ Sαxδ is stable. The next ingredient in the stabilization
strategy is a parameter choice scheme α = α(δ) that ensures the regularity of
the approximations, that is, so that

‖Sα(δ)x
δ − Lx‖ → 0 as δ → 0.

3.1 A General Method

The key to our development is von Neumann’s theorem. Recall that this states
that if L : D(L) ⊆ H1 → H2 is a closed densely defined linear operator, then
the operator L̃ : H1 → H2 defined by

L̃ = (I + L∗L)−1

is bounded and self-adjoint with σ(L̃) ⊆ [0, 1] and the operator LL̃ : H1 → H2

is bounded with ‖LL̃‖ ≤ 1. In the same way the operator L̂ : H2 → H2

defined by
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L̂ = (I + LL∗)−1

is bounded and self-adjoint and the operator L∗L̂ : H2 → H1 is bounded.
Before proceeding we notice a simple property of these operators.

Theorem 3.1. If f ∈ C[0, 1] and x ∈ D(L), then f(L̃)x ∈ D(L) and
f(L̂)Lx = Lf(L̃)x.

Proof. For any x ∈ H1 we have L̃x ∈ D(L∗L) and (I+L∗L)L̃x = x. Therefore,
if x ∈ D(L), then

Lx = L(I + L∗L)L̃x = (I + LL∗)LL̃x.

We then have
L̂Lx = (I + LL∗)−1Lx = LL̃x

and from this it follows that

p(L̂)Lx = Lp(L̃)x

for any polynomial p. If f ∈ C[0, 1], then by the Weierstrass approximation
theorem there is a sequence of polynomials {pn} that converges uniformly to
f . For x ∈ D(L) we then have

f(L̂)Lx = lim
n

pn(L̂)Lx = lim
n

Lpn(L̃)x.

For any y ∈ D(L∗) it follows that

〈f(L̂)Lx, y〉 = limn〈Lpn(L̃)x, y〉

= limn〈pn(L̃)x,L∗y〉

= 〈f(L̃)x,L∗y〉.

Therefore, using Theorem 2.7, we find that

f(L̃)x ∈ D(L∗∗) = D(L)

and
Lf(L̃)x = f(L̂)Lx. ��

In the same way one finds that f(L̃)L∗x = L∗f(L̂)x for all x ∈ D(L∗).

Corollary 3.2. If f(t) =
√

tg(t) where g ∈ C[0, 1], then Lf(L̃) is bounded
and

‖Lf(L̃)‖ ≤ ‖g‖∞
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Proof. If x, z ∈ D(L), then

〈(Lf(L̃))∗(Lf(L̃))x, z〉 = 〈Lf(L̃)x,Lf(L̃)z〉

= 〈f(L̂)Lx, f(L̂)Lz〉

= 〈L̂1/2g(L̂)Lx, L̂1/2g(L̂)Lz〉

= 〈L̂g(L̂)Lx, L̂g(L̂)Lz〉

= 〈L̂Lg(L̃)x,Lg(L̃)z〉

= 〈L∗L̂Lg(L̃)x, g(L̃)z〉.

But
L∗L̂L = I − L̃

and therefore,

〈(Lf(L̃))∗(Lf(L̃))x, z〉 = 〈(I − L̃)g(L̃)x, g(L̃)z〉.

But, since I − L̃ and g(L̃) are bounded linear operators, this identity extends
to all x, z ∈ H1, and hence

‖Lf(L̃)‖2 ≤ ‖I − L̃‖‖g(L̃)‖2 ≤ (‖g‖∞)2. ��

A general stabilization procedure is suggested by the formal identity Lx =
LL̃L̃−1x. Stable approximations {yα} to Lx will be formed in the following
way:

yα = LL̃Tα(L̃)x (3.1)

where Tα ∈ C[0, 1] for each α > 0 and the family of functions is shaped to
approximate t−1 in the following sense:

Tα(t) → t−1 as α → 0 for each t ∈ (0, 1] (3.2)

and
|tTα(t)| is uniformly bounded for α > 0, t ∈ [0, 1]. (3.3)

Note that, since LL̃ and Tα(L̃) are both (by von Neumann’s theorem) bounded
linear operators, the approximations yα given by (3.1) are defined for all
x ∈ H1, not just for x ∈ D(L), and the mapping x �→ yα is stable. In particular
this means that the approximations

yδ
α = LL̃Tα(L̃)xδ

are defined and stable for approximations xδ ∈ H1 to x ∈ D(L) satisfying
‖x − xδ‖ ≤ δ even if xδ /∈ D(L). A general stable approximation scheme
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for Lx then consists of a choice of a family {Tα} satisfying (3.2) and (3.3)
matched with a parameter choice strategy α = α(δ) designed to ensure that
yδ

α(δ) → Lx as δ → 0. Before treating some specific cases we establish basic
convergence and stabilization results. We consider first the case of error-free
data x.

Theorem 3.3. Suppose L : D(L) ⊆ H1 → H2 is a closed densely defined lin-
ear operator and {Tα} is a family of continuous real-valued functions defined
on [0, 1] satisfying (3.2) and (3.3).

(i) For all x ∈ H1, xα = L̃Tα(L̃)x → x as α → 0.

(ii) If x ∈ D(L), then yα = Lxα → Lx as α → 0.

(iii) If x /∈ D(L), then ‖yα‖ → ∞ as α → 0.

Proof. First note that

x − xα = (I − L̃Tα(L̃))x

But by (3.2) and (3.3), the function 1 − tTα(t) converges in a pointwise and
uniformly bounded manner to the function

ϕ(t) =
{

1, t = 0
0, t ∈ (0, 1]

The spectral theorem applied to the bounded self-adjoint operator L̃ then
gives

x − xα → P
N(L̃)

x = 0, as α → 0.

By Lemma (3.1), if x ∈ D(L), then

Lx − yα = L(I − L̃Tα(L̃))x = (I − L̂Tα(L̂))Lx.

The spectral theorem applied to the bounded self-adjoint operator L̂ then
gives

Lx − yα → P
N(L̂)

Lx = 0, as α → 0.

To establish the final assertion, note that if {‖yα‖} has a bounded sequence,
then it has a weakly convergent subsequence, say yαn

⇀ w, for some sequence
αn → 0. Now yαn

= Lxn where xn = L̃Tαn
(L̃)x and by the properties of {Tα}

and the Spectral Theorem,

xn → x − P
N(L̃)

x = x as n → ∞

But since the graph of L is closed and convex, and hence weakly closed,
xn → x and Lxn ⇀ w, and we have x ∈ D(L) and Lx = w. So if x /∈ D(L),
then {‖yα‖} must be unbounded. ��
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Suppose now that xδ ∈ H1 is an approximation to x ∈ D(L) satisfying
‖x − xδ‖ ≤ δ. The stability error

yα − yδ
α := LL̃Tα(L̃)x − LL̃Tα(L̃)xδ

may be estimated as follows:

‖yα − yδ
α‖2 = 〈L∗LL̃Tα(L̃)(x − xδ), L̃Tα(L̃)(x − xδ)〉

= 〈(I − L̃)Tα(L̃)(x − xδ), L̃Tα(L̃)(x − xδ)〉

≤ δ2||(I − L̃)Tα(L̃)‖‖L̃Tα(L̃)‖.

Therefore, if r(α) is a function satisfying

|(1 − t)Tα(t)| ≤ r(α) for t ∈ [0, 1] (3.4)

then, since ‖L̃Tα(L̃)‖ is uniformly bounded, we find that

‖yα − yδ
α‖ ≤ δO(

√
r(α)).

Putting these results together we obtain the following general stabilization
result:

Theorem 3.4. If x ∈ D(L) and ‖x − xδ‖ ≤ δ then

yδ
α = LL̃Tα(L̃)xδ → Lx as δ → 0

if α = α(δ) → 0 as δ → 0 in such a way that δ
√

r(α(δ)) → 0.

Under appropriate conditions an actual rate of convergence can be obtained
in terms of a function ω(α, ν) satisfying

max
t∈[0,1]

|(1 − tTα(t))tν | ≤ ω(α, ν) (3.5)

Theorem 3.5. Suppose x ∈ D(L) and Lx ∈ R(L̂ν) for some ν > 0. If {Tα}
satisfies (3.5), then

‖Lx − LL̃Tα(L̃)x‖ = O(ω(α, ν)).

Proof. This is immediate for if Lx = L̂νw, then

Lx − LL̃Tα(L̃)x = L̂νw − L̂Tα(L̂)L̂νw

= (I − L̂Tα(L̂))L̂νw. ��
Note that in the particular case ν = 1 the requirement on x in the previous
theorem may be expressed simply as x ∈ D(LL∗L) since by Lemma 2.8

D(LL∗L) = {x ∈ D(L) : Lx ∈ R(L̂)}.

Also, the relaxed assumption that x ∈ D(L∗L) leads to a special convergence
rate.
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Theorem 3.6. If x ∈ D(L∗L), then ‖Lx − LL̃Tα(L̃)x‖ = O(ω(α, 1/2)).

Proof. Write
Lx − LL̃Tα(L̃)x = LSα(L̃)x

where Sα(t) = 1 − tTα(t). Then, on setting w = x + L∗Lx, we find that

‖Lx − LL̃Tα(L̃)x‖2 = 〈L∗LSα(L̃)x, Sα(L̃)x〉

= 〈−Sα(L̃)x + Sα(L̃)w,Sα(L̃)x〉

≤ 〈Sα(L̃)w,Sα(L̃)L̃w〉

= ‖Sα(L̃)L̃1/2w‖2 ≤ ω(α, 1/2)2‖w‖2. ��

3.2 Some Cases

We now illustrate the general results of the previous section on some spe-
cific stable approximate evaluation methods. In some of the examples the
stabilization parameter has a continuous range of positive values, while in
other iterative methods the role of the stabilization parameter is played by
a discrete iteration number that tends to infinity. Depending on the particu-
lar method under consideration, the stabilization parameter may take values
which approach either 0 or ∞.

3.2.1 The Tikhonov-Morozov Method

The best known stabilization procedure is what we call the Tikhonov-Morozov
method in which y = Lx is approximated by

yα = L(I + αL∗L)−1x (3.6)

where α is a positive stabilization parameter converging to zero.
Before taking up general results for the Tikhonov-Morozov method, we

illustrate the method on a couple of simple examples of unbounded opera-
tors that were discussed in Chapter 1. For example, if L is the Dirichlet-to-
Neumann map on the unit disk with domain

D(L) =

{
f ∈ L2(∂D) :

∑
n∈Z

|n|2|f̂(n)|2 < ∞
}

defined by
(Lf)(eiθ) =

∑
n∈Z

|n|f̂(n) exp(inθ).
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where

f̂(n) =
1
2π

∫ 2π

0

f(t)e−int dt .

then one sees easily that

yδ
α(eiθ) = L(I + αL∗L)−1fδ(exp iθ) =

∑
n∈Z

(
|n|

1 + αn2

)
f̂δ(n) exp (inθ).

As another illustration consider the problem of reconstructing a source distri-
bution g in the heat problem

∂u

∂t
=

∂2u

∂x2
+ g(x), 0 < x < π, 0 < t,

where u(x, t) is subject to the boundary conditions

u(0, t) = u(π, t) = 0, 0 < t

and initial condition
u(x, 0) = 0, 0 ≤ x ≤ π,

from knowledge of the temperature distribution f(x) = u(x, 1) at time t = 1.
We found in Chapter 1 that g = Lf where

D(L) =

{
h :

∞∑
m=1

m4a2
m < ∞, am =

2
π

∫ π

0

h(s) sin msds

}

and

Lf(x) =
2
π

∞∑
n=1

n2

1 − e−n2 sinnx

∫ π

0

f(s) sin nsds.

In this case the Tikhonov-Morozov approximation to g is found to be

gδ
α = L(I + αL∗L)−1fδ

=
π

2

∞∑
n=1

αn sin nx

∫ π

0

fδ(s) sin nsds

where

αn =
(

n2

1 − e−n2

)
/

(
1 + α

(
n2

1 − e−n2

)2
)

.

Returning to the general situation, we find that since

(I + αL∗L)−1 = ((1 − α)I + α(I + L∗L))−1 = L̃((1 − α)L̃ + αI)−1
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the Tikhonov-Morozov method fits into our general scheme if we take

Tα(t) = (α + (1 − α)t)−1, t ∈ [0, 1].

Note that this class of functions satisfies criteria (3.2) and (3.3) and hence

L(I + αL∗L)−1x → Lx as α → 0

for each x ∈ D(L). Also, since

max
t∈[0,1]

|(1 − t)Tα(t)| =
1
α

we may take r(α) = 1/α in Theorem 3.4. That is, if we set

xα = (I + αL∗L)−1x and xδ
α = (I + αL∗L)−1xδ

then we have:

Corollary 3.7. If x ∈ D(L) and ‖x − xδ‖ ≤ δ, then

‖Lxα − Lxδ
α‖ ≤ δ/

√
α.

Therefore, if xδ ∈ H1 is some approximation to x ∈ D(L) satisfying ‖x−xδ|| ≤
δ and if δ = ◦(

√
α(δ)), then by Theorem 3.4

L(I + α(δ)L∗L)−1xδ → Lx as δ → 0.

In order to apply Theorem 3.5 and obtain a convergence rate we require
an upper bound for

(1 − tTα(t))tν =
α(1 − t)tν

α + (1 − α)t
.

For 0 < ν ≤ 1 we claim that

α(1 − t)tν

α + (1 − α)t
≤ αν for t ∈ [0, 1]. (3.7)

This is the same as
(1 − t)(t/α)ν

1 + (1 − α)(t/α)
≤ 1.

But setting z = t/α, this is seen to be equivalent to

zν − αzν+1 ≤ 1 + (1 − α)z, for z ∈ [0, 1/α]. (3.8)

The function on the left of the inequality above has a maximum of
(

ν

ν + 1

)ν 1
ν + 1

α1−ν
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which is clearly not greater than 1 for 0 < ν ≤ 1 and hence for 0 < ν ≤ 1 and
0 < α < 1 inequality (3.8) holds and hence so does the bound (3.7). We may
therefore take

ω(α, ν) = αν

for the Tikhonov-Morozov method. An immediate application of Theorems
3.5 and 3.6 gives:

Corollary 3.8. If x ∈ D(L) and Lx ∈ R(L̂) (equivalently, x ∈ D(LL∗L)),
then

‖Lx − yα‖ = O(α).

If x ∈ D(L∗L), then
‖Lx − yα‖ = O(

√
α).

A converse of the first rate in Corollary 3.8 may be of interest. We provide
two proofs of such a converse as each is instructive in its own way. In the
first converse we assume that L̂ is compact, that is, that LL∗ has compact
resolvent. For operators LL∗ with compact resolvent, we show that if x ∈ D(L)
and ‖Lx − Lxα‖ = O(α) as α → 0, then x ∈ D(LL∗L). To see this suppose
the self-adjoint bounded operator L̂ is compact and let {uj ;λj} be a complete
orthonormal eigensystem for L̂. Note that the eigenvalues {λj} lie in the
interval (0, 1]. Suppose they are ordered as:

0 < . . . ≤ λn+1 ≤ λn ≤ . . . ≤ λ2 ≤ λ1.

Then
Lxα = LL̃(αI + (1 − α)L̃)−1x

= L̂(αI + (1 − α)L̂)−1Lx

=
∑∞

j=1

λj

α + (1 − α)λj
〈Lx, uj〉uj

and hence

‖Lx − Lxα‖2 = α2
∑∞

j=1

(1 − λj)2

(α + (1 − α)λj)2
|〈Lx, uj〉|2

≥ α2(1 − λ1)2
∑∞

j=1(α + (1 − α)λj)−2|〈Lx, uj〉|2.

Therefore, if ‖Lx − Lxα‖ = O(α), we have

∞∑
j=1

(α + (1 − α)λj)−2|〈Lx, uj〉|2 ≤ C
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for some constant C and all α ∈ (0, 1]. In particular, all of the partial sums of
the above series are uniformly bounded by C. Letting α → 0+ in each of the
individual partial sums shows that

n∑
j=1

λ−2
j |〈Lx, uj〉|2 ≤ C

for each n and hence the series
∑∞

j=1 λ−2
j |〈Lx, uj〉|2 is convergent. The vector

z =
∞∑

j=1

λ−1
j 〈Lx, uj〉uj

is therefore well-defined and

L̂z =
∞∑

j=1

〈Lx, uj〉uj = Lx,

that is, Lx ∈ R(L̂) and hence x ∈ D(LL∗L) in light of Lemma 2.8. We now
drop the assumption that L̃ is compact.

Theorem 3.9. If x ∈ D(L) and ‖Lx − Lxα‖ = O(α), then x ∈ D(LL∗L).

Proof. First note that

xα = (I + αL∗L)−1x ∈ D(L∗L)

and hence
Lxα = (I + αLL∗)−1Lx ∈ D(LL∗).

and
Lxα − Lx = −αLL∗Lxα.

Therefore, by the hypothesis

‖LL∗Lxα‖ = O(1). (3.9)

By Theorem 2.11 we know that LL∗ is closed. This can be seen in another
way by using Theorem 2.7. Indeed, if {yn} ⊆ D(LL∗) satisfies, yn → y and
LL∗yn → p, then, using Theorem (2.7), we have for any u ∈ D(LL∗) =
D(L∗∗L∗)

〈LL∗u, y〉 = limn→∞〈LL∗u, yn〉 = limn→∞〈u,L∗∗L∗yn〉

= limn→∞〈u,LL∗yn〉 = 〈u, p〉.
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Therefore, y ∈ D(LL∗) and LL∗y = p, that is, LL∗ is closed. Hence the
graph of LL∗ is closed and convex, and hence weakly closed. By (3.9) there is
then a sequence αn → 0 with

LL∗Lxαn
⇀ w

for some w. But Lxαn
→ Lx, by Theorem 3.3 (ii). Since the graph of LL∗ is

weakly closed, it follows that Lx ∈ D(LL∗) and LL∗Lx = w. In particular,
x ∈ D(LL∗L) as claimed. ��

An application of Theorem 3.5 and Theorem 3.4 gives:

Theorem 3.10. Suppose x ∈ D(L) and Lx ∈ R(L̂ν) for some 0 < ν ≤ 1.
If ‖x − xδ‖ ≤ δ and the stabilization parameter is chosen in the form α =
Cδ2/(2ν+1), then

‖yδ
α(δ) − Lx‖ = O(δ2ν/(2ν+1)).

Note that this theorem gives a best rate of O(δ2/3) for the case ν = 1. In the
next chapter we shall show that this rate is essentially best possible.

3.2.2 The Iterated Tikhonov-Morozov Method

In this section we briefly investigate an iterative stabilization method related
to the Tikhonov-Morozov method. The simplest iterative stabilization method
is suggested by the approximation

1
t

=
1

1 − (1 − t)
≈

n−1∑
j=0

(1 − t)j =
1 − (1 − t)n

t
=: Tn(t).

It is easy to see that the family {Tn(t)} satisfies (3.2) and (3.3). Furthermore,

tTn(t) = (1 − t)tTn−1(t) + t, T0(t) = 0

and hence one is led via the general spectral approach to the iterative method

xn = (I − L̃)xn−1 + L̃x

or equivalently

(I + L∗L)xn = L∗Lxn−1 + x, x0 = 0 (3.10)

This gives, for each n, a stable approximation yn = Lxn to the value Lx.
The method (3.10) is a special case (for α = 1, see below) of the iterated
Tikhonov-Morozov method.

Approximation orders that are arbitrarily near to the order of error in the
data, O(δ), are achievable by use of iteration methods. One such method is the
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iterated Tikhonov-Morozov method. A different iterative stabilization method
is studied in the next section. In the iterated Tikhonov-Morozov method a
positive parameter α is fixed and the job of stabilization is assumed by an
iteration number n (so in this case the stabilization parameter n → ∞). In
the ordinary Tikhonov-Morozov method with parameter α the value Lx is
approximated by a stable approximation Lxα where xα satisfies

(I + αL∗L)xα = x.

In the iterated method approximations x0, x1, . . . are given by x0 = 0 and

(I + αL∗L)xn = x + αL∗Lxn−1 (3.11)

where α is a fixed positive parameter.
In the case when only an approximate data vector xδ is available satisfying

‖x− xδ‖ ≤ δ, the approximations generated in the same way with x replaced
by xδ will be denoted {xδ

n}. We emphasize that in this case the stabilization
parameter is the iteration number n which satisfies n → ∞, rather than the
parameter α → 0, as in the general discussion of the first section, and we trust
that this trivial modification will cause no confusion.

The iterated method (3.11) may be expressed in terms of the operator
L̃ = (I + L∗L)−1 by

(αI + (1 − α)L̃)xn = L̃x + α(I − L̃)xn−1.

In other words the stabilized approximations to Lx are given by yn = Lxn

where xn = L̃Tn(L̃)x and the functions {Tn} are defined iteratively by T0(t) =
0 and

Tn(t) =
1

(1 − α)t + α

[
1 +

α(1 − t)
t

Tn−1(t)
]

, n = 1, 2, . . .

for t ∈ (0, 1], or equivalently

Tn(t) =
1
t

(
1 −
(

α(1 − t)
(1 − α)t + α

)n)
.

The definition Tn(0) = 0 extends these functions continuously to [0, 1]. Note
that |tTn(t)| ≤ 1 for all n and Tn(t) → 1/t as n → ∞ for each t ∈ (0, 1],
therefore {Tn} satisfies (3.2) and (3.3) and hence the approximations satisfy
Lxn → Lx as n → ∞.

The general stability estimate requires a bound r(n) for the function

(1 − t)Tn(t) =
1
α

1 − s

s
(1 − (1 − s)n)
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where s = t/(α + (1 − α)t) ∈ [0, 1]. But note that

1 − s

s
(1 − (1 − s)n) =

n∑
j=1

(1 − s)j ≤ n

and hence we may take r(n) = n/α. We therefore have

Corollary 3.11. Suppose x ∈ D(L) and ‖x − xδ‖ ≤ δ. If n = n(δ) → ∞ as
n → ∞ while δ

√
n(δ) → 0, then Lxδ

n(δ) → Lx.

We shall give another proof of this result from an entirely different perspective
in the next chapter.

To obtain an error bound we notice that

tν(1 − tTn(t)) = αν(1 − s)n

(
s

(1 − s) + sα

)ν

where again s = t/(α+(1−α)t) ∈ [0, 1]. We may assume that α < 1 and then

αν(1 − s)n

(
s

(1 − s) + sα

)ν

≤ (1 − s)nsν

≤
(

n

n + ν

)n(
ν

n + ν

)ν

= O(n−ν).

If x ∈ D(L) and Lx ∈ R(L̂ν) for some ν > 0, we then find that

‖yn − Lx‖ = O(n−ν).

Combining this with the previous result gives

Corollary 3.12. If x ∈ D(L) and Lx ∈ R(L̂ν) for some ν > 0, then for
‖x − xδ‖ ≤ δ if the iteration parameter n = n(δ) is chosen so that n(δ) ∼
δ−2/(2ν+1) we have

‖yδ
n(δ) − Lx‖ = O(δ2ν/(2ν+1)).

Note that the restriction ν ≤ 1 is not imposed here and hence rates arbitrarily
close to O(δ) are in principle achievable by the iterated Tikhonov-Morozov
method. In the next chapter we will study the nonstationary Tikhonov-
Morozov method in which the value of the constant α may change from one
iteration to the next.

3.2.3 An Interpolation-Based Method

Of course there are many other possible choices for the family {Tα} that
lead to stabilization methods. For example, another arises from interpolatory
function theory. Let Tn be the polynomial of degree not greater than n that
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interpolates the function f(t) = 1/t at t = β−1
1 , β−1

2 , . . . , β−1
n , where {βj} are

positive numbers satisfying 1 ≥ βn → 0 as n → ∞ and
∑

βj = ∞, that is

Tn(t) =
1
t

⎛
⎝1 −

n∏
j=1

(1 − βjt)

⎞
⎠ .

Note that {Tn} is given iteratively by T1(t) = β1 and

Tn+1(t) = βn+1 + (1 − βn+1t)Tn(t), n = 1, 2, . . . . (3.12)

It is evident that |tTn(t)| ≤ 1 and therefore {Tn} satisfies (3.3). Also,

0 ≤
n∏

j=1

(1 − βjt) ≤
n∏

j=1

e−tβj = exp

⎛
⎝−

n∑
j=1

βjt

⎞
⎠→ 0 as n → ∞

for t ∈ (0, 1], and hence {Tn} satisfies (3.2). We therefore immediately obtain
from Theorem 3.3 that the iteratively defined sequence

yn+1 = βn+1LL̃x +
(
I − βn+1L̂

)
yn, n = 0, 1, . . . y0 = 0 (3.13)

converges to Lx for each x ∈ D(L). In order to obtain a stability result we
need a candidate for the function r(n) in equation (3.4) (again in this instance
the iteration number n plays the role of a stability parameter). This is easily
had from the iterative formulation (3.12):

|(1 − t)Tn+1(t)| ≤ βn+1 + |(1 − t)Tn(t)|

and hence

max
t∈[0,1]

|(1 − t)Tn(t)| ≤
n∑

j=1

βj =: σn.

From the general stability result of the previous section we then obtain

‖yδ
n − yn‖ ≤ δσ1/2

n .

Therefore, if the iteration parameter n = n(δ) grows at a rate controlled so
that δ2σn(δ) → 0 as δ → 0, then Theorem 3.4 guarantees that

yδ
n(δ) → Lx, as δ → 0

where yδ
n is defined as in (3.13) with x replaced by xδ satisfying ‖x−xδ‖ ≤ δ.

For convergence rates we need a function ω(n, ν) satisfying (3.5). But note
that

0 ≤ (1 − tTn(t))tν ≤ tν
n∏

j=1

e−tβj = tνe−σnt.
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However, the function on the right of the inequality above achieves for t ∈ [0, 1]
a maximum value of νν(eσn)−ν and hence we may use

ω(n, ν) =
(ν

e

)ν

σ−ν
n .

From Theorem 3.5 we obtain:

Corollary 3.13. If x ∈ D(L) and Lx ∈ R(L̂ν) for some ν > 0, then

‖yn − Lx‖ = O(σ−ν
n ).

Combining the results of Theorem (3.4) and Theorem (3.5) we therefore
obtain:

Corollary 3.14. If x ∈ D(L) and Lx ∈ R(L̂ν) for some ν > 0, then for
‖x − xδ‖ ≤ δ if the iteration parameter n = n(δ) is chosen so that σn(δ) ∼
δ−2/(2ν+1) we have

‖yδ
n(δ) − Lx‖ = O(δ2ν/(2ν+1)).

Under appropriate conditions one can achieve rates that are arbitrarily
close to optimal for this method by use of an a posteriori choice of the iteration
parameter rather than with an a priori choice as in Theorem 3.14. In fact,
note that

yn = L

⎛
⎝I −

n∏
j=1

(
I − βjL̃

)⎞⎠x = Lxn (3.14)

where

xn =

⎛
⎝I −

n∏
j=1

(
I − βjL̃

)⎞⎠x, x0 = 0 (3.15)

and {xδ
n} is defined in the same way with x replaced by xδ. The approxima-

tions {xδ
n} can be compared with the available data xδ in order to monitor

the convergence of {yδ
n} to Lx. First note that xδ

n → xδ as n → ∞ and

‖xδ − xδ
n‖ =

∥∥∥(I − βnL̃
)

(xδ − xδ
n−1)

∥∥∥ ≤ ‖xδ − xδ
n−1‖.

We assume that for a given constant τ > 1, the signal-to-noise ratio is not
less than τ , i.e., we assume that

‖xδ − xδ
0‖ = ‖xδ‖ ≥ τδ.

There is then a first value n = n(δ) ≥ 1 of the iteration index for which

‖xδ − xδ
n(δ)‖ < τδ. (3.16)

Note that this iteration number is chosen in an a posteriori manner as the
computation proceeds.
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Lemma 3.15. If xn(δ) is given by (3.15) where n(δ) satisfies (3.16), then

‖x − xn(δ)‖ ≤ (τ + 1)δ.

Proof. From (3.15), using the approximate data xδ in one case and “clean”
data x ∈ D(L) in the other, we have

xδ
n(δ) − xn(δ) =

⎛
⎝I −

n(δ)∏
j=1

(I − βjL̃)

⎞
⎠ (xδ − x).

Now
x − xn(δ) = xδ − xδ

n(δ) + x − xδ + xδ
n(δ) − xn(δ)

= xδ − xδ
n(δ) +

(∏n(δ)
j=1 (I − βjL̃)

)
(x − xδ).

Since ‖I − βjL̃‖ ≤ 1, we have by (3.16)

‖x − xn(δ)‖ ≤ τδ + ‖x − xδ‖ ≤ (τ + 1)δ. ��

We now need an inequality.

Lemma 3.16. For µ > 0, ‖L̂µz‖ ≤ ‖z‖1/(2µ+1)‖L̂µ+1/2z‖2µ/(2µ+1).

Proof. Let {Eλ} be a resolution of the identity for H2 generated by the
bounded self-adjoint operator L̂ : H2 → H2. By Hölder’s inequality

‖L̂µz‖2 =
∫ 1

0
1 · λ2µd‖Eλz‖2

≤
(∫ 1

0
1d‖Eλz‖2

)1/(2µ+1) (∫ 1

0
λ2µ+1d‖Eλz‖2

)2µ/(2µ+1)

= ‖z‖2/(2µ+1)
(
‖L̂µ+1/2z‖2

)2µ/(2µ+1)

. ��

Lemma 3.17. If x ∈ D(L) and x = L̃µw for some w ∈ D(L), then

‖Lx − Lxn(δ)‖ = O(δµ/(µ+1)).

Proof. From (3.14) and lemma 3.1 we find

Lx − Lxn(δ) = L
(∏n(δ)

j=1 (I − βjL̃)
)

L̃µw

=
(∏n(δ)

j=1 (I − βjL̂)
)

L̂µLw = L̂µzn(δ)

where zn(δ) =
(∏n(δ)

j=1 (I − βjL̂)
)

Lw and hence ‖zn(δ)‖ ≤ ‖Lw‖.
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Applying the previous lemma, we find

‖Lx − Lxn(δ)‖ ≤ ‖Lw‖1/(2µ+1)‖L̂µ+1/2zn(δ)‖2µ/(2µ+1)

= ‖Lw‖1/(2µ+1)‖L̂1/2(Lx − Lxn(δ))‖2µ/(2µ+1).

(3.17)

However, since ‖x − xn(δ)‖ ≤ (τ + 1)δ and ‖LL̃‖ ≤ 1,

‖L̂1/2(Lx − Lxn(δ))‖2 = 〈L̂(Lx − Lxn(δ)), Lx − Lxn(δ)〉

= 〈LL̃(x − xn(δ)), Lx − Lxn(δ)〉

≤ (τ + 1)δ‖Lx − Lxn(δ)‖.

Therefore (3.17) gives

‖Lx − Lxn(δ)‖ = O(δµ/(2µ+1))‖Lx − Lxn(δ)‖µ/(2µ+1)

that is,
‖Lx − Lxn(δ)‖ = O(δµ/(µ+1)). ��

Theorem 3.18. Suppose that x ∈ D(L) and x = L̃µw for some w ∈ D(L)
and µ > 1/2. If xδ ∈ H1 satisfies ‖x − xδ‖ ≤ δ and n(δ) is chosen by (3.16),
then

‖Lxδ
n(δ) − Lx‖ = O(δmin((2µ−1)/(2µ),µ/(µ+1))).

Proof. First note that

(xn−1 − xδ
n−1) − (x − xδ) = −

⎛
⎝n−1∏

j=1

(
I − βjL̃

)⎞⎠ (x − xδ)

and hence by (3.16)

‖xn(δ)−1 − x‖ = ‖xδ
n(δ)−1 − xδ + (xn(δ)−1 − xδ

n(δ)−1) − (x − xδ)‖

≥ ‖xδ
n(δ)−1 − xδ‖ − ‖

(∏n(δ)−1
j=1

(
I − βjL̃

))
(x − xδ)‖

≥ τδ − δ = (τ − 1)δ

(3.18)

If x = L̃µw, then

‖xn−1 − x‖ =

∥∥∥∥∥∥L̃
µ

n−1∏
j=1

(
I − βjL̃

)
w

∥∥∥∥∥∥ = O(σ−µ
n−1).



70 3 A General Approach to Stabilization

However, σn/σn−1 → 1 as n → ∞ and hence σ−µ
n−1 = O(σ−µ

n ), therefore

‖xn(δ)−1 − x‖ = O(σ−µ
n(δ)).

In light of (3.18), we then have

σn(δ) = O(δ−1/µ). (3.19)

By the general stability estimate

‖Lxδ
n(δ) − Lxn(δ)‖ = ‖yδ

n(δ) − yn(δ)‖ ≤ δ
√

σn(δ) = O(δ(2µ−1)/(2µ)).

Combining this with the previous lemma gives the result. ��

We note that this result says that rates arbitrarily close to optimal may in
principle be obtained by use of the iteration number choice criterion (3.16).

3.2.4 A Method Suggested by Dynamical Systems

We begin with some heuristics and then we develop a theoretical method
for stable approximation of Lx. This method will then be used to give an-
other motivation for the iterated Tikhonov-Morozov method at the end of
this section.

Given data xδ ∈ H1 our goal is to produce a smoothed approximation
z(α) ∈ D(L) to xδ with Lz(α) → Lx as α → ∞ (again in this section we
find it convenient to reverse the direction of the stabilization parameter).
That is, if w(α) = xδ − z(α) we want w(0) = xδ and w(α) → 0 as α → ∞
in an appropriate way as δ → 0. We are only concerned with unbounded
operators L and in this case the positive unbounded operator L∗L has an
unbounded spectrum. On the other hand the operator (L∗L)† typically has
positive eigenvalues that converge to 0. In order to suppress high frequency
components in w one might then seek the long term trend in the solution of

dw

dα
= −(L∗L)†w, w(0) = xδ. (3.20)

This has the formal solution

xδ − z(α) = w(α) = exp (−(L∗L)†α)xδ

or equivalently
z(α) =

(
I − exp (−(L∗L)†α)

)
xδ

which in light of Theorem 2.13 suggests the definition

zδ(α) = L̃Tα(L̃)xδ
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where

Tα(t) =

⎧⎨
⎩

1
t

(
1 − e−αt/(1−t)

)
, t ∈ (0, 1)

0 , t = 0, 1.

Note that these functions are continuous on [0, 1] and satisfy conditions (3.2)
and (3.3) (of course, with the modification that α → ∞). While this does
not result in a computable method, the theory of the previous section applies
nevertheless. Setting s = t/(1 − t) we find that

max
t∈[0,1]

|(1 − t)Tα(t)| = max
s∈[0,∞)

(1 − e−αs)/s = α

Therefore, we may set r(α) = α in Theorem 3.4 and hence if α = α(δ) → ∞
and δ2α(δ) → 0 , then Lzδ(α(δ)) → Lx as δ → 0.

With the same transformation t → s we find that for ν > 0

(1 − tTα(t))tν =
(

s

s + 1

)ν

e−αs ≤ sνe−αs ≤
(ν

e

)ν

α−ν .

Therefore we may take ω(α, ν) = O(α−ν) in Theorem 3.5. Combining these
two results we obtain

Corollary 3.19. Suppose x ∈ D(L) and ‖x − xδ‖ ≤ δ. If Lx ∈ R(L̃ν) for
some ν > 0 and α(δ) = Cδ−2/(2ν+1) then

‖Lzδ(α(δ)) − Lx‖ = O(δ2ν/(2ν+1)).

Working formally, (3.20) suggests

L∗L
dw

dα
= −w

or since w(α) = xδ − z(α)

L∗L
dz

dα
= xδ − z(α). (3.21)

If we approximate the solution of the differential equation by the simple
implicit forward difference method

L∗L
zn − zn−1

h
= xδ − zn, z0 = 0

with step size h, we find on setting β = 1/h and rearranging that

(I + βL∗L)zn = βL∗Lzn−1 + xδ

which is the iterated Tikhonov-Morozov method. An entirely different motiva-
tion and convergence proof for this method will be given in the next chapter.
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The iterated Tikhonov-Morozov method may be motivated by equation
(3.21) in a slightly different way. Specifically, from (3.21), we have

L∗L

∫ αn+1

αn

dz

dτ
dτ = (αn+1 − αm)xδ −

∫ αn+1

αn

z(τ)dτ

or, on setting β = 1/(αn+1 − αn), and using the right hand rule on the last
integral, we are led to

zn+1 + βL∗Lzn+1 = xδ + βL∗Lzn

which is the iterated Tikhonov-Morozov method. This approach suggests the
use of other closed quadrature rules on the integral above. While we do not
suggest that such rules will lead to methods that offer any computational
advantage over the Tikhonov-Morozov method, it is instructive to see how
the general theory applies to another method. For example, if the trapezoidal
rule is used we are led to the approximation

βL∗L(zn+1 − zn) = xδ − (zn+1 + zn)/2

or, setting γ = 2β > 0,

(I + γL∗L)zn+1 = 2xδ + γL∗Lzn − zn.

Equivalently,
zn = L̃Tn(L̃)xδ

where T0(t) = 0 and

Tn+1(t) =
2

γ(1 − t) + t
+

γ(1 − t) − t

γ(1 − t) + t
Tn(t), n = 0, 1, . . . .

One finds immediately that

Tn(t) =
1
t

(
1 −
(

γ(1 − t) − t

γ(1 − t) + t

)n)

and from this it follows that

|(1 − t)Tn(t)| ≤ 2
γ

n.

Therefore, one may take r(n) = O(n) in the general stability estimate. How-
ever, for this method the convergence analysis given previously does not
automatically apply since

−1 ≤ γ(1 − t) − t

γ(1 − t) + t
< 1

for t ∈ (0, 1] with the equality holding at t = 1. Therefore, the convergence of
the spectral approximation may fail if the resolution of the identity generated
by L̃ has a jump discontinuity at t = 1. This is equivalent to the condition
that {0} �= N(I − L̃) = N(L) (see Lemma 2.9).
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3.3 Notes

Lardy [34] was the first to exploit von Neumann’s theorem in applications
to series representations for the Moore-Penrose inverse of a closed unbounded
linear operator. The general spectral approach to stabilized approximate eval-
uation based on von Neumann’s theorem was introduced in [15]. Another
approach to general stabilization theory, based on the theory of regulariza-
tion and Theorem 2.10 is suggested in [21].

The best known specific instance of the general method is the Tikhonov-
Morozov method. This method was developed by V.A. Morozov and his
co-workers and is summarized in [39]. A much more extensive treatment of
this method, based on our spectral approach, emerges in the following chap-
ters. See also [40] and [22] for further developments. The line of reasoning in
the proof of Theorem 3.9 is inspired by an argument of Neubauer [41]. The
iterative stabilization method that is motivated by functional interpolation
appears in [18]; the techniques of that paper owe a lot to [27]. It would appear
that other stabilization methods based on numerical integration techniques for
initial value problems for ordinary differential equations could be developed.

In appropriate circumstances the Tikhonov-Morozov method can be
adapted to stably evaluate certain nonlinear operators A. We outline the the-
ory of Al’ber [1] for accomplishing this. Suppose that A : D(A) ⊆ H → H
is a nonlinear monotone operator defined on a subset D(A) of a real Hilbert
space H, that is

〈Ax − Ay, x − y〉 ≥ 0

for all x, y ∈ D(A). Given xδ ∈ H and x ∈ D(A) with

‖x − xδ‖ ≤ δ

we wish to stably approximate Ax using the data xδ. We assume that A is
discontinuous in the usual sense, but satisfies a weak condition called hemi-
continuity, namely that A is weakly continuous along rays, that is

A(u + tv) ⇀ Au as t → 0+

when u + tv ∈ D(A) for sufficiently small nonnegative t.
Under these conditions it can be shown, by use of a fundamental result on

maximal monotone operators, that for α > 0 the nonlinear operator I + αA
has a single valued continuous inverse defined on all of H (see, e.g., [49]). The
mapping

xδ �→ (I + αA)−1xδ

is therefore a stable operation. Also,

A(I + αA)−1 =
1
α

(I − (I + αA)−1)
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and hence, for fixed α > 0, the operation

xδ �→ A(I + αA)−1xδ = Axδ
α

where xδ
α be the unique solution of

xδ
α + αAxδ

α = xδ

is a stable operation. Let xα be the solution of the same equation using the
“clean” data x:

xα + αAxα = x.

The goal is to show that Axδ
α → Ax if α = α(δ) → 0 in some appropriate

sense as δ → 0. First, we show that Axα → Ax as α → 0.
Note that, by the monotonicity of A

0 ≤ 〈Axα − Ax, xα − x〉

= −α〈Axα − Ax,Axα〉

≤ −α‖Axα‖2 + α‖Ax‖‖Axα‖

and hence
‖Axα‖ ≤ ‖Ax‖.

From the definition of xα we then have

‖xα − x‖ = α‖Axα‖ = O(α)

and hence xα → x as α → 0.
Suppose v ∈ H is arbitrary and t ≥ 0. Then

0 ≤ 〈Axα − A(x + tv), xα − (x + tv)〉

= 〈Axα, xα − x〉 − t〈Axα, v〉 − 〈A(x + tv), xα − x − tv〉.

Since ‖Axα‖ is bounded, for any sequence αn → 0, there is a subsequence,
which we again denote by αn, and a y ∈ H such that

Axαn
⇀ y.

Therefore, taking limits as αn → 0 above, and using the fact that xαn
→ x,

we arrive at

0 ≤ −〈y, v〉 + 〈A(x + tv), v〉 = 〈A(x + tv) − y, v〉.

By the hemicontinuity of A we then have

0 ≤ 〈Ax − y, v〉
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for any v ∈ H. Therefore, Ax = y, that is,

Axα ⇀ Ax as α → 0.

However, since ‖Axα‖ ≤ ‖Ax‖, it follows from the weak lower semicontinuity
of the norm that ‖Axα‖ → ‖Ax‖ and hence

Axα → Ax as α → 0.

The convergence of {Axδ
α} will now be established. First, we have

‖Axδ
α − Ax‖ ≤ ‖Axδ

α − Axα‖ + ‖Axα − Ax‖

and
‖Axδ

α − Axα‖ = α−1‖(xδ − xδ
α) + (xα − x)‖

≤ δ/α + α−1‖xα − xδ
α‖.

(3.22)

But, since
xδ

α − xα + α(Axδ
α − Axα) = xδ − x,

one finds, using the monotonicity of A,

‖xδ
α − xα‖2 ≤ ‖xδ

α − xα‖2 + 〈Axδ
α − Axα, xδ

α − xα〉

= 〈xδ − x, xδ
α − xα〉 ≤ δ‖xδ

α − xα‖

and hence ‖xδ
α − xα‖ ≤ δ. From (3.22), we then obtain

‖Axδ
α − Axα‖ ≤ 2δ/α.

Therefore, if α = α(δ) → 0 in such a way that δ/α → 0, then

Axδ
α − Axα → 0.

But, as previously established, Axα → Ax and hence

Axδ
α → Ax.




