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Introduction

Dynamical systems describe the time evolution of the various states z ∈ P in
a given state space. When this description includes both (the complete) past
and future this leads to a group action1

ϕ : R× P −→ P
(t, z) 	→ ϕt(z)

of the time axis R on P, i.e. ϕ0 = id (the present) and ϕs ◦ ϕt = ϕs+t for all
times s, t ∈ R. Immediate consequences are ϕs ◦ϕt = ϕt ◦ϕs and ϕ−1

t = ϕ−t.
In case ϕ is differentiable one can define the vector field

X(z) =
d
dt

ϕt(z)
∣∣∣∣
t=0

on P and if e.g. P is a differentiable manifold then ϕ can be reconstructed
from X as its flow. Note that

ż = X(z) (1.1)

defines an autonomous ordinary differential equation on P.
Given a state z ∈ P the set {ϕt(z) | t ∈ R } is called the orbit of z.

Particularly simple orbits are equilibria, ϕt(z) = z for all t ∈ R, and periodic
orbits which satisfy ϕT (z) = z for some period T > 0 and hence ϕt+T (z) =
ϕt(z) for all t ∈ R. All other orbits define injective immersions t 	→ ϕt(z) of
R in P. By definition unions of orbits form sets M ⊆ P that are invariant
under ϕ, and if M is a differentiable manifold we call M an invariant manifold.

A complete understanding of a dynamical system ϕ is equivalent to finding
(and understanding) all solutions of (1.1) whence one often concentrates on the
long time behaviour as t→ ±∞. One approach is to determine all attractors2

1 Technical terms are explained in a glossary preceeding the references.
2 Since there are no attractors in Hamiltonian dynamical systems we do not give a

formal definition.
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in P, compact invariant subsets A satisfying ϕt(z) t→+∞−→ A for all z near A,
that are minimal with this property. Such attractors can be equilibria, periodic
orbits, invariant manifolds, or even more general invariant sets. If A is an
invariant manifold without equilibrium, then the Euler characteristic of A
vanishes and the simplest such manifolds are the n-tori T, submanifolds of P
that are diffeomorphic to T

n = R
n/

Z
n . Where we speak of n-tori we always

assume n ≥ 2 in these notes.
The flow ϕ on a torus T is parallel or conditionally periodic if there is a

global chart
T −→ T

n

z 	→ x

and a frequency vector ω ∈ R
n such that3

∧

x∈Tn

∧

t∈R

ϕt(x) = x + ωt .

In case there are no resonances 〈k, ω〉 = 0 , k ∈ Z
n every orbit on T is dense. If

there are n−1 independent resonances then ω is a multiple of an integer vector
and all orbits on T are periodic. For m ≤ n − 2 independent resonances the
motion is quasi-periodic and spins densely around invariant (n−m)-tori into
which T decomposes. The flow on a given invariant torus may be much more
complicated, this is often accompanied by a loss of differentiability. However,
if the flow is equivariant with respect to the T

n-action x 	→ x + ξ then all
motions are necessarily conditionally periodic. Our starting point is therefore
a family of tori carrying parallel flow, and we hope for persistence under
small perturbations for the measure-theoretically large subfamily where the
frequency vector satisfies a strong non-resonance condition.

Considering the long time behaviour for t→ −∞ attractors are replaced by
repellors and more generally one is interested in “minimal” invariant sets M .
Where the dynamics on M itself is understood – for equilibria, periodic orbits
and invariant tori with conditionally periodic flow – one concentrates on the
dynamics nearby. Equilibria and periodic orbits are (under quite weak condi-
tions) structurally stable with respect to small perturbations of the dynamical
system, while invariant tori and more complicated, strange invariant sets may
disintegrate. This makes it preferable to study parametrised families of such
invariant sets.

In applications the equations of motion are known only to finite precision of
the coefficients. Giving these coefficients the interpretation of parameters leads
to a whole family of dynamical systems. Under variation of the parameters
the invariant sets may then bifurcate. Bifurcations of equilibria are fairly well
understood, at least for low co-dimension, cf. [129, 173] and references therein.
Since these bifurcations concern a small neighbourhood of the equilibrium, we
speak of local bifurcations. Using a Poincaré mapping, periodic orbits can be
3 We use the same letter ϕ for the flow in the chart as well.
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studied as fixed points of a discrete dynamical system. In addition to the
analogues of bifurcations of equilibria, periodic orbits may undergo period
doubling bifurcations, cf. [223, 58].

For a family of invariant n-tori with conditionally periodic flow the fre-
quency vector ω varies in general with the parameter; let us therefore now
consider ω ∈ R

n itself as the parameter. Clearly both the resonant and the
non-resonant tori are dense in the family. Under an arbitrary small pertur-
bation (breaking the T

n-symmetry that forces the toral flows to be condi-
tionally periodic) the situation changes drastically. Using KAM-techniques
one can formulate conditions under which most invariant tori survive the
perturbation, together with their quasi-periodic flow; the families of tori are
parametrised over a Cantor set of large n-dimensional (Hausdorff)-measure,
see [159, 56, 55]. Within the gaps of the Cantor set completely new dynamical
phenomena emerge; the dynamics on the torus may cease to be conditionally
periodic4 even in case there are circumstances like normal hyperbolicity that
force the torus to persist. Note that the union of the gaps of a Cantor set
is open and dense in R

n. This is an exemplary instance of coexisting com-
plementary sets, one of which is measure-theoretically large and the other
topologically large, cf. [231].

It turns out that the bifurcations of equilibria and periodic orbits have
quasi-periodic counterparts, see [34, 284] and references therein. In the inte-
grable case where the perturbation respects the T

n-action this is an immediate
consequence of the behaviour of the reduced system obtained after reducing
the torus symmetry. In the nearly integrable case where the torus symmetry
is broken by a small perturbation one can use KAM theory to show that the
bifurcation persists on Cantor sets. Notably the bifurcating torus has to be in
Floquet form. In the same way the higher topological complexity of periodic
orbits leads to period doubling bifurcations, tori that are not in Floquet form
can bifurcate in a skew Hopf bifurcation, see [282, 60].

Bifurcations of invariant tori have a semi-local character, they concern a
neighbourhood of the invariant torus which need not be confined to a small
region of P. Exceptions are bifurcations subordinate to local bifurcations and
these were in fact the motivating examples for the above results. In contrast,
global bifurcations lead to new interactions of different parts of P not present
before or after the bifurcation. Examples are connection bifurcations involving
heteroclinic orbits (these also exist subordinate to local or semi-local bifurca-
tions).

The quasi-periodic persistence results in [159, 56, 55] are formulated and
proven in terms of Lie algebras of vector fields and this allowed for a general-
ization to volume-preserving, Hamiltonian and reversible dynamical systems,
4 For instance, if ω ∈ ω0 · Z

n only finitely many periodic orbits are expected to
survive and the perturbed flow may consist of asymptotic motions between these.
The structural stability of surviving periodic orbits is in turn the reason why a
simple resonant frequency vector opens a whole gap of the Cantor set.
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see also [216]. We will henceforth speak of dissipative systems when there is
no such structure preserved. A dynamical system is Hamiltonian if the vector
fields derives5 from a single “Hamiltonian” function by means of a Poisson
structure, a bilinear and alternating composition on A ⊆ C(P) that satis-
fies the Jacobi identity and Leibniz’ rule. An important feature of integrable
Hamiltonian systems is that the torus symmetry yields conjugate actions by
Noether’s theorem. Accordingly, invariant n-tori in integrable Hamiltonian
systems with d degrees of freedom, d ≥ n, occur as “intrinsic” n-parameter
families, without the need for external parameters.

In particular, periodic orbits form 1-parameter families, or 2-dimensional
cylinders (while equilibria remain in general as isolated as in the dissipative
case). Thus, periodic orbits in (single) integrable Hamiltonian systems may
undergo co-dimension one bifurcations, without the need of an external para-
meter. The ensuing possibilities were analysed in [205, 207], see also [208, 38,
232, 227, 228]. This yields transparent explanations for common phenomena
like the gyroscopic stabilization of a sleeping top, cf. [13, 84, 81, 147].

Interestingly, results on bifurcations of invariant n-tori (which form n-
parameter families in a Hamiltonian system) were first derived in the dis-
sipative context (where external parameters are needed), see again [34] and
references therein. Our aim is to detail the Hamiltonian part of the theory,
extending the results in [139, 50] to more general bifurcations. At the same
time we seize the occasion to put the well-known results on Hamiltonian bi-
furcations of equilibria, which are scattered throughout the literature, into a
systematic framework. See also [75, 76, 45, 44] for recent progress concerning
torus bifurcations in the reversible context.

1.1 Hamiltonian systems

A Hamiltonian system is defined by a Hamiltonian function on a phase space.
The latter is a symplectic manifold, or, more generally a Poisson space, where
the Hamiltonian H determines the vector field

XH : ż = {z, H} .

If all solutions of XH exist for all times, the flow ϕH is a group action

ϕH : R× P −→ P
(t, z) 	→ ϕH

t (z) (1.2)

on the phase space P – in case there are orbits that leave P in finite time
(1.2) is only a local group action.

Despite this simple construction where a single real valued function defines
a whole vector field, the study of Hamiltonian systems is a highly non-trivial
5 Similar to gradient vector fields defined by means of a Riemannian structure.
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task. The first systems that were successfully treated were integrable and the
study of Hamiltonian systems still starts with the search for the integrals of
motion. Since {H, H} = 0 the Hamiltonian is always6 an integral of motion,
whence all systems with one degree of freedom are integrable.

However, already in two degrees of freedom integrable systems are the ex-
ception rather than the rule, cf. [239, 117, 26]. This led to the so-called ergodic
hypothesis that the flow of a Hamiltonian system is “in general” ergodic on
the energy shell. That this hypothesis does not hold for generic Hamiltonian
systems, see [191], is one of the consequences of KAM theory.

KAM theory deals with small perturbations of integrable systems and may
in fact be thought of as a theory on the integrable systems themselves. Indeed,
in applications the special circumstances that render a Hamiltonian system in-
tegrable may not be satisfied with absolute precision and only properties that
remain valid under the ensuing small perturbations have physical relevance.

An integrable Hamiltonian system with, say, compact energy shells gives
the phase space P the structure of a ramified torus bundle. The regular fibres
of this bundle are the maximal invariant tori of the system. The singular fibres
define a whole hierarchy of lower dimensional tori, in case of (dynamically)
unstable tori together with their (un)stable manifolds. In this way there are
two types of “least degenerate” singular fibres: the elliptic tori with one normal
frequency and the hyperbolic tori T with stable and unstable manifolds of the
form T×R. These two types of singular fibres determine the distribution of the
regular fibres. Different families of maximal tori are separated by (un)stable
manifolds of hyperbolic tori and may shrink down to elliptic tori.

On the next level of the hierarchy of singular fibres of the ramified torus
bundle we can distinguish four or five different types. Lowering the dimension
of the torus once more we are led to elliptic tori with two normal frequencies,
to hypo-elliptic tori and to hyperbolic tori with four Floquet exponents. For
these latter we might want to distinguish between the focus-focus case of a
quartet ±�± i� of complex exponents and the saddle-saddle case of two pairs
of real exponents. This decision would relegate hyperbolic tori with a double
pair of real exponents to the next level of the hierarchy of singular fibres. We
can do the same with elliptic tori with two resonant normal frequencies. Where
the two normal frequencies are in 1:−1 resonance, the torus may undergo
a quasi-periodic Hamiltonian Hopf bifurcation and we always relegate these
elliptic tori to the third level of the hierarchy of singular fibres of the ramified
torus bundle.

The last type of second level singular fibres consists of invariant tori (and
their (un)stable manifolds) of the same dimension as the first level tori, but
with parabolic normal behaviour. Such tori may for instance undergo a quasi-
periodic centre-saddle bifurcation. We see that the kth level singular fibres
determine the distribution of the (k−1)th level singular fibres (where we could
abuse language and address the regular fibres as 0th level singular fibres).

6 Our Hamiltonians are autonomous, there is no explicit time dependence.
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Notably all invariant n-tori of the ramified torus bundle are isotropic,
having a (commuting) set y1, . . . , yn of actions conjugate to the toral an-
gles. Locally these may be used to parametrise the various families of n-tori.
There is a branch of KAM theory that explores non-isotropic (in particular
co-isotropic) invariant tori. In such a situation, the symplectic structure is
necessarily non-exact and it is moreover the symplectic structure that should
satisfy certain non-resonance conditions. For more information see [262] and
references therein.

The aim of KAM theory is to study the fate of this ramified torus bundle
under small perturbations of the integrable Hamiltonian system. Traditionally,
this has been done on phase spaces that are symplectic manifolds where the
perturbation of the phase space may be neglected and only the Hamiltonian
gets perturbed (but see also [175]). Furthermore, a non-degeneracy condition
forces the maximal tori to be Lagrangean, whence their dimension equals the
number d of degrees of freedom. Consequently, for superintegrable systems7

one uses part of the perturbation to construct from the unperturbed ramified
torus bundle a non-degenerate ramified torus bundle, see [6, 196, 268, 116].

Persistence of Lagrangean tori under small perturbations was first proven
in [166] under the condition that the (internal) frequencies satisfy Diophantine
conditions, a strong form of non-resonance. This allows to solve the “homolog-
ical equation” at every step of an iteration scheme, the convergence of which
is ensured by the superlinear convergence of a Newton-like approximation.
This set-up was modified in [5], restricting to only finitely many resonances in
the homological equation by means of an ultraviolet cut-off (which is in turn
increased at every iteration step). This allowed to successfully treat pertur-
bations of superintegrable systems that remove the degeneracy in [6].

The above results were obtained for analytic Hamiltonians. In an attempt
to verify the statement of [166] the validity was extended in [215] to Hamil-
tonians that are only finitely often differentiable. Subsequently the necessary
order of differentiability could be brought down in [250]. A lower bound was
provided by a counterexample in [270], sharper bounds are discussed in [109].
The machinery of the KAM iteration was condensed in [298, 299] to abstract
theorems. In [121, 71, 108] convergence of the KAM iteration scheme was
directly proven, without the need for a Newton-like approximation.

While (Lebesgue)-almost all frequency vectors are non-resonant, the com-
plement of Diophantine frequency vectors is an open and dense set. Still, the
relative measure of Diophantine frequency vectors is close to 1. In [72, 240] the
local structure of persistent tori was shown to inherit the Cantor-like struc-
ture of Diophantine frequency vectors. The local conjugacies that relate the
persistent tori to their unperturbed counterparts are patched together in [46]
to form a global conjugacy. This should allow to recover the geometry of the
bundle of maximal tori in the perturbed system.
7 In the literature these are also called properly degenerate systems.
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The first proof of persistence of elliptic tori in [216] only addressed the
case of a single normal frequency. A more general result had already been
announced in [204], but proofs appeared much later; see [55] for an extensive
bibliography. In case of hyperbolic tori one can always resort to a centre
manifold, cf. [211, 160], although this generally results in finite differentiability.
For a direct approach see [249] and references therein. Hypo-elliptic tori can
either be treated directly, cf. [159, 56, 251], or by first getting rid of the
hyperbolic part by means of a centre manifold. As pointed out in [162, 55,
279, 163] the latter approach may yield additional tori that are not in Floquet
form.

Parabolic tori are generically involved in quasi-periodic bifurcations and
may in particular cease to exist. Correspondingly, one cannot expect persis-
tence of the “isolated” family of parabolic tori; but the whole bifurcation sce-
nario has a chance to persist, in this way including the bifurcating (parabolic)
tori. A first such persistence result appeared in [139], which was generalized
in [50] to all parabolic tori one can generically encounter in Hamiltonian sys-
tems with finitely many degrees of freedom. Additional hyperbolicity may
again be dealt with by means of a centre manifold, while additional normal
frequencies can be successfully carried through the KAM iteration scheme,
cf. [296].

KAM theory does not predict the fate of close-to-resonant tori under pertur-
bations. For fully resonant tori the phenomenon of frequency locking leads to
the destruction of the torus under (sufficiently rich) perturbations, and other
resonant tori disintegrate as well. In two degrees of freedom surviving 2-tori
form barriers on the 3-dimensional energy shells, from which one can infer
that all motions are bounded, cf. [222]. Where the system has three or more
degrees of freedom there is no such obstruction to orbits connecting distant
points of the phase space. The existence of this kind of orbits has been termed
Arnol’d diffusion, for an up-to-date discussion see [91] and references therein.

While KAM theory concerns the fate of “most” trajectories and for all
times, a complementary theorem has been obtained in [220, 221, 226]. It con-
cerns all trajectories and states that they stay close to the unperturbed tori
for long times that are exponential in the inverse of the perturbation strength.
Here a form of smoothness exceeding the mere existence of ∞ many deriv-
atives of the Hamiltonian is a necessary ingredient, for finitely differentiable
Hamiltonians one only obtains polynomial times. Most results in this direc-
tion are formulated for analytic Hamiltonians, in [190] the neccessary regular-
ity assumptions have been lowered to Gevrey Hamiltonians. For trajectories
starting close to surviving tori the diffusion is even superexponentially slow,
cf. [213, 214].

A new type of invariant sets, not present in integrable systems, is con-
structed for generic Hamiltonian systems in [192, 203], using a construction
from [25]. Starting point is an elliptic periodic orbit around which another
elliptic periodic orbit encircling the former is shown to exist. Iterating this



8 1 Introduction

procedure yields a whole sequence of elliptic periodic orbits which converges
to a solenoid. The construction in [25, 192] not only yields the existence of one
solenoid near a given elliptic periodic orbit, but the simultaneous existence of
representatives of all homeomorphy-classes of solenoids.

Hyperbolic tori form the core of a construction proposed in [7] of trajecto-
ries that venture off to distant points of the phase space. The key ingredience
are resonant tori that disintegrate under perturbation leading to lower dimen-
sional hyperbolic tori, cf. [275, 276]. In the unperturbed system the union of
a family of hyperbolic tori, parametrised by the actions conjugate to the toral
angles, forms a normally hyperbolic manifold. The latter is persistent under
perturbations, cf. [151, 211], and carries again a Hamiltonian flow, with fewer
degrees of freedom.

Perturbed resonant lower dimensional tori that bifurcate according to a
quasi-periodic Hamiltonian pitchfork bifurcation are studied in [180, 178, 181,
182]. Such parabolic resonances (PR) exhibit large dynamical instabilities.
This effect can be significantly amplified by increasing the number of degrees of
freedom. This is not only due to multiple resonances (m-PR), but can also be
induced by an additional vanishing derivative of the unperturbed Hamiltonian
at the parabolic torus for so-called tangent (or 1-flat) parabolic resonances.
This latter condition makes a larger part of the energy shell accessible in the
perturbed system. In high degrees of freedom, combinations like l-flat m-PR
become a common phenomenon as well.

1.1.1 Symmetry reduction

To fix thoughts, let the phase space P be a symplectic manifold of dimen-
sion 2(n + 1), on which a locally free symplectic n-torus action

τ : T
n × P −→ P

is given. Reduction then leads to a one-degree-of-freedom problem. If the
action τ is free then the symmetry reduction is regular, cf. [206, 194, 3], and
the reduced phase space is a (2-dimensional) symplectic manifold.

Singularities of the reduced phase space are related to points with non-
trivial isotropy group T

n
z , cf. [4, 265, 230]. Note that all points in the orbit

T
n(z) =

{
τξ(z) ∈ P

∣∣∣∣ ξ ∈ T
n

}

have, up to conjugation, that same isotropy group, which can be given the
form

T
n
z
∼= Zk1 × . . .× Zkn

with k ∈ N
n. Thus, if we pass to a (k1, . . . , kn)-fold covering of P, the action τ

becomes a free8 action and regular reduction can again be applied.
8 Strictly speaking this is only true locally around the lift of the torus T

n(z).
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On the covering space the isotropy group T
n
z acts as the group of deck

transformations, fixing the lift of T
n(z). This induces a symplectic T

n
z -action

on the reduced phase space, which we locally identify with R
2. Here the origin

is the image of the lift of T
n(z) under the reduction mapping and, by Bochner’s

theorem we may assume that T
n
z acts linearly on R

2. Recall that the only finite
subgroups of SL2(R) are the cyclic groups Z�. This yields an epimorphism
from the deck group onto Z�, the kernel of which we denote by N .

Identifying all points on the (k1, . . . , kn)-fold covering space of P that are
mapped to each other by elements of N we pass to an �-fold covering of P.
This has no influence on the reduced phase space R

2, in particular the image
of the lift of T

n(z) remains a regular point. In this way the action of the deck
group Z� = T

n
z/N on R

2 becomes faithful.
Only if we go further and also identify points within the Z�-orbit on the �-

fold covering space do we introduce a singularity on the reduced phase space.
In particular, if we reduce the n-torus action τ directly on P we are led to
a singularity of type R

2/
Z�

of the reduced phase space. This has been used
in [49] to study n-tori with a normal-internal resonance; the necessary action τ
was introduced by means of normalization.

1.1.2 Distinguished Parameters

Torus bifurcations occur in families of invariant tori, and the necessary pa-
rameters enter Hamiltonian systems in various fashions. This leads to a hi-
erarchical structure where some parameters are distinguished with respect to
others. To explain the basic mechanism let us start with a family of Hamil-
tonian systems that depends on an external parameter α. Then co-ordinate
transformations z 	→ z̃ on the phase space9 P may clearly depend on the
parameter α, while re-parametrisations α 	→ α̃ are not allowed to depend on
the phase space variable z. This ensures that after re-parametrisation and co-
ordinate transformation the distinction between phase space variables z̃ and
external parameters α̃ remains valid.

Let the Hamiltonian system now be symmetric with respect to a sym-
plectic action of a compact Lie group G. According to Noether’s theorem
every (continuous) symmetry induces a conserved quantity. If we divide out
the group action, then the latter become Casimirs. Hence, we can treat their
value µ as a parameter the reduced system depends upon. In the hierarchy
the place of µ is “between” the external parameter α and the variable ζ on
the reduced phase space. Indeed, while co-ordinate transformations ζ 	→ ζ̃
now may depend on both α and µ, re-parametrisations α 	→ α̃ are not allowed
to depend on either ζ or µ – recall that (µ, ζ) constitute together with the
reduced variable along the orbit of the Lie group G the “original” variable z
on the phase space P. While a re-parametrisation µ 	→ µ̃ may (still) depend
on the external parameter α, there should be no dependence on ζ. We say
9 For simplicity we let the phase space be the same for all parameter values α.
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that the (internal) parameter µ is distinguished with respect to the (external)
parameter α, cf. [288]. If the reduction of the G-action is not regular, but
a singular reduction, then the re-parametrisation µ 	→ µ̃(α, µ) has to be re-
stricted to preserve the singular values, cf. [43]. A typical example is that µ

is the value of angular momenta and the restriction µ̃(α, 0) = 0 ∀α imposes
that the zero level be preserved.

In applications the existing symmetries often do not suffice to render the
system integrable. A possible approach is then to introduce additional sym-
metries by means of a normal form. After a co-ordinate transformation the
Hamiltonian is split into an integrable part and a small perturbation. The
first step then is to understand the dynamics defined by the integrable part
of the Hamiltonian.

Typically the additional symmetry introduced by normalization is a torus
symmetry. Dividing out the group action turns the actions conjugate to the
toral angles into Casimirs, the value I of which again plays the rôle of para-
meter. Clearly I is distinguished with respect to α and a re-parametrisation
I 	→ Ĩ should not depend on the variable of the twice reduced phase space.
But we also want I to be distinguished with respect to µ, i.e. our parameter
changes should be of the form

(α, µ, I) 	→
(

α̃(α), µ̃(α, µ), Ĩ(α, µ, I)
)

. (1.3)

In this way the new Ĩ is still the value of the momentum mapping of the
approximate symmetry, and when adding the small perturbation to the in-
tegrable part of the normal form the perturbation analysis may be per-
formed for fixed α̃ and µ̃. Where the symmetry reduction is singular the
re-parametrisation (1.3) should preserve the singular values.

Our aim is to understand what happens to the ramified torus bundle de-
fined by a single integrable Hamiltonian system under generic pertrubations.
In that setting there are no external parameters, and the perturbation does
not leave part of the symmetry of the unperturbed system intact. However, in
applications one easily encounters simultaneously two or even all three hierar-
chical levels of parameters. This leads to changes in the unfolding properties,
cf. [288, 43, 188, 53]. Nevertheless, the starting point for such modifications
would be a theory with a single class of parameters.

1.2 Outline

Bifurcations of invariant tori are to a large extent governed by their normal
dynamics. In the following Chapter 2 we therefore study bifurcations of equi-
libria in their own right. To this end we let the system depend on external
parameters.

We first concentrate on bifurcating equilibria in Hamiltonian systems with
one degree of freedom. This is indeed the situation one is led to when study-
ing bifurcations of invariant n-tori in n + 1 degrees of freedom. In one degree
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of freedom the symplectic form becomes an area form, the Hamiltonian is a
planar function and the equilibria correspond to planar singularities. Morse
singularities lead to centres and saddles. Local bifurcations are in turn gov-
erned by unstable singularities and their universal unfoldings.

Next to the simple planar singularities, which form two infinite series
(Ak)

k≥1 , (Dk)
k≥4 and a finite series E6 , E7 , E8, there are various series of

planar singularities with moduli. In Chapter 2 we address the latter only spo-
radically and leave a more systematic approach to Appendices A and B. It
turns out that the moduli of planar singularities do not lead to moduli of
bifurcations of equilibria in Hamiltonian systems with one degree of freedom.

Motivated by the reduction of the toral symmetry τ in Section 1.1.1 we
also study bifurcations of equilibria at singular points of 2-dimensional Poisson
spaces. There are two possibilities. Similar to bifurcations of regular equilibria
the Hamiltonian may change under parameter variation. Alternatively, the bi-
furcation may be triggered by local changes of the phase space, e.g. leading to
a singular point when the parameter attains the bifurcation value. In multi-
parameter systems there may also be combinations of these two mechanisms.

Next to the cyclic symmetry groups Z� which lead to singular phase spaces
there are other (discrete) symmetries of one-degree-of-freedom systems, some-
times reversing. The main example for the latter is the reflection

(q, p) 	→ (q,−p) .

Such symmetries strongly influence the bifurcations that degenerate equilibria
can undergo. The ensuing possibilities are detailed in Chapter 2 as well.

The local bifurcations of one-degree-of-freedom systems can occur in more
degrees of freedom as well. Indeed, for an equilibrium in d degrees of freedom
that has a linearization with 2d − 2 eigenvalues off the imaginary axis this
hyperbolic part can be dealt with by means of a centre manifold. The flow
on the latter is that of a one-degree-of-freedom Hamiltonian system, and the
equilibrium undergoes one-degree-of-freedom bifurcations where the remain-
ing 2 eigenvalues vanish. Where a zero eigenvalue with (algebraic) multiplic-
ity 2 coexists with further purely imaginary pairs of eigenvalues the situation
is much more complicated, cf. [43, 122].

We focus on two degrees of freedom and also content ourselves with bifur-
cations of regular equilibria, leaving aside a systematic study of local bifurca-
tions of singular points in two (or more) degrees of freedom. In fact, already
a complete understanding of co-dimension 2 bifurcations of regular equilibria
in two degrees of freedom is beyond our present possibilities.

A new phenomenon in two degrees of freedom is that one may have two
pairs of purely imaginary eigenvalues in resonance. The most important of
these is the 1:−1 resonance. In generic 1-parameter families this resonance
triggers a Hamiltonian Hopf bifurcation. The double pair of imaginary eigen-
values leads to an S1-symmetry, and reduction yields a one-degree-of-freedom
problem where the bifurcating equilibrium is a singular point of the phase
space.



12 1 Introduction

Here and also for other resonant equilibria normalization is an important
tool. This procedure allows to “push a toral symmetry through the Taylor
series” whence the system can be approximated by the integrable part of a
normal form. For the convenience of the reader this well-known method is
recalled in Appendix C.

In families of two-degree-of-freedom systems with at least 2 parameters
one may encounter equilibria with nilpotent linearization. In case the sys-
tem has an S1-symmetry one can again reduce to one degree of freedom and
can proceed as for the 1:−1 resonance. However, in the absence of symmetry
the phenomena become much more complicated. For instance, all forms of
resonant equilibria occur in an unfolding of nilpotent equilibria.

In Chapter 3 we consider bifurcations of periodic orbits. Here the Floquet
multipliers play a rôle similar to that of the eigenvalues of the linearization of
an equilibrium. One Floquet multiplier is always equal to 1 as it corresponds
to the direction tangential to the periodic orbit. All other multipliers are in
1-1 correspondence with the eigenvalues of (the linearization of) the Poincaré
mapping. In the present case of Hamiltonian systems one of these eigenvalues
is equal to 1. The (generalized) eigenvector of this Floquet multiplier spans
the direction conjugate to that of the “first” multiplier 1. Correspondingly,
periodic orbits of Hamiltonian systems form 1-parameter families. Occurring
bifurcations are determined by the distribution of the remaining Floquet mul-
tipliers.

In contrast to our treatment of equilibria we concentrate on a single Hamil-
tonian system, without dependence on external parameters. Therefore, the
bifurcations of periodic orbits we encounter are of co-dimension 1. In this way
we recover the well-known three types of bifurcations triggered by an addi-
tional double Floquet multiplier 1, by a double Floquet multiplier −1 and by a
double pair of Floquet multpliers on the unit10 circle. These are the periodic
centre-saddle bifurcation, the period-doubling bifurcation and the periodic
Hamiltonian Hopf bifurcation, respectively.

For all these bifurcations the key information is already contained in
the behaviour of the corresponding bifurcation of equilibria. For the period-
doubling bifurcation this is the Hamiltonian flip bifurcation treated in Sec-
tion 2.1.2 in which a singular equilibrium loses its stability. Since we use a
similar strategy for bifurcations of invariant tori the reasons that allow to
carry the bifurcations of equilibria over to bifurcations of periodic orbits are
presented in detail, although the results on periodic orbits themselves are
well documented in the existing literature, cf. [208, 38] and references therein.
Specifically, in [38] also multiparameter bifurcations with one distinguished
parameter are considered; this allows to understand bifurcations of periodic
orbits in families of Hamiltonian systems.
10 This double pair is different from 1 or −1.
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Invariant tori and their bifurcations are then studied in Chapter 4. Since
the n actions y1, . . . , yn conjugate to the toral angles of an invariant n-torus
serve as (internal) parameters, we may encounter bifurcations of arbitrary co-
dimension already in a single Hamiltonian system, provided the number d > n
of degrees of freedom is sufficiently large. We therefore abstain again from
including external parameters into this setting.

An important assumption we make, which is automatically fulfilled for
lower dimensional invariant tori of integrable systems, is that the torus y = y0

be reducible to Floquet form

ẋ = ω(y0) + O(y − y0, z2) (1.4a)
ẏ = O(y − y0, z3) (1.4b)
ż = Ω(y0) z + O(y − y0, z2) (1.4c)

where the matrix Ω(y0) ∈ sp(2m, R) , m = d− n is independent of the toral
angles x1, . . . , xn. The eigenvalues of this matrix are called Floquet exponents.
Their distribution determines occurring bifurcations.

In the integrable case where there is no dependence at all on x we can re-
duce (1.4) to m degrees of freedom and end up with the Hamiltonian system
defined by (1.4c). Here the origin z = 0 is an equilibrium, which undergoes a
bifurcation as the parameter y passes through y0. This puts us in the frame-
work of Chapter 2 – and the main purpose of that chapter is indeed to address
this problem independent of where it originates from. In this way the results
obtained there carry over to bifurcations of invariant tori in integrable Hamil-
tonian systems.

We therefore concentrate on those bifurcations that could be satisfactorily
treated in Chapter 2. This means we mainly restrict to m = 1 normal degree
of freedom and consider m = 2 only insofar as there is an S1-symmetry
that again allows reduction to one normal degree of freedom. In this way we
clarify the structure of the ramified d-torus bundle around invariant n-tori for
integrable systems with d = n + 1 degrees of freedom and also for some cases
with d = n + 2 degrees of freedom.

The remaining question then is what happens to this integrable picture
under small Hamiltonian perturbations. Inevitably, where perturbations of
quasi-periodic motions are concerned, small denominators enter the scene.
Correspondingly, Diophantine conditions are needed to obtain the necessary
estimates. The persistence of the bifurcation scenario is obtained by a combi-
nation of KAM theory and singularity theory.

To prove persistence of invariant tori one often uses a Kolmogorov-like
condition

det Dω(y) �= 0 (1.5)

to let the actions y1, . . . , yn control the frequencies ω1, . . . , ωn. In the present
bifurcational setting we already need the actions to control the unfolding
parameters λ1, . . . , λk. In particular, if the co-dimension k of the bifurcation
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is equal to the dimension n of the invariant torus, then the most degenerate
torus is isolated and may disappear in a resonance gap. We therefore restrict
to co-dimensions k ≤ n − 1 where even the most degenerate tori still form
continuous families in the unperturbed integrable system. Replacing (1.5) by a
Rüssmann-like condition that involves also higher derivatives of the frequency
mapping then yields a Cantor family of invariant tori in the perturbed system.
In this way one can decouple the frequencies from the Hamiltonian and obtain
persistence of invariant tori of the latter by treating the former as independent
parameters. This strategy was already very successful in the study of normally
elliptic lower dimensional tori, cf. [55] and references therein.

When proving a persistence result for a whole bifurcation scenario, the
difficult part is to keep track of the most degenerate “object” in the per-
turbed system. To this end a KAM iteration scheme is used, performing two
operations at each iteration step. First the lower11 order terms are made x-
independent. Here one has to deal with small denominators to solve a (linear)
homological equation. Then these lower order terms are transformed into the
universal unfolding of the central singularity. This is achieved by explicit co-
ordinate changes known from singularity theory. The technical details of this
procedure are deferred to Appendices D and E, where we also discuss in how
far this proof is still open to generalizations.

In the final Chapter 5 we put the results obtained into context to describe
the dynamics in integrable and nearly integrable Hamiltonian systems. A com-
pletely integrable system with d degrees of freedom has d commuting integrals
G1 = H, G2, . . . , Gd and according to Liouville’s theorem [3, 13, 16] bounded
motions starting at regular points of G : P −→ R

d are conditionally peri-
odic. Singular values of G give rise to lower dimensional invariant subsets
and yield the whole hierarchy of singular fibres of the ramified torus bundle
defined by G. Excitation of normal modes of non-hyperbolic equilibria gen-
erates periodic orbits (this is Lyapunov’s theorem, see [3, 16, 208]) and the
same mechanism explains how families of n-tori shrink down to k-tori, k < n.
In Chapter 2 we encounter many more mechanisms how the various families
of invariant tori fit together.

Under small non-integrable perturbations the ramified torus bundle is
“Cantorised” as the smooth action manifolds parametrising invariant tori are
replaced by Cantor sets of large relative measure. In the non-degenerate case
this implies that most motions of the perturbed system are quasi-periodic, and
the question arises how the various Cantor families of tori fit together. For the
excitation of normal modes it has been shown in [164, 261] that the persistent
k-tori consist of Lebesgue density points of persistent n-tori. Similar results
are obtained in Chapter 4 for all the cases treated in Chapter 2. The destruc-
tion of maximal tori with a single resonance exemplifies that “Cantorised”
11 This notion is defined by means of the singularity at hand.
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bifurcations of lower dimensional tori ocur in virtually every nearly integrable
Hamiltonian system.

In case there are more integrals than degrees of freedom the system is su-
perintegrable. The Gi no longer commute, but the compact connected compo-
nents of their level sets are still invariant tori carrying a conditionally periodic
flow. In important cases it is possible to construct an “intermediate system”
that is still integrable, but non-degenerately so. It is the ramified torus bundle
defined by this “intermediate system” that gets “Cantorised” when passing
to the original perturbed dynamics.




