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1 Introduction

Everything has its exceptional character, and the analytic number theory is
no exception, it has one which is real and most perplexed. In this article I
will tell the story how the existence or the non-existence of such a character
shaped developments in arithmetic, especially for studies in the distribution of
prime numbers. Many researchers are affected by this dangerous yet beautiful
beast, and this author is no exception. I shall address questions and present
results which I witnessed during my own studies.

Of course, the Grand Riemann Hypothesis for the Dirichlet L-functions
rules out any exception! Nevertheless, after powerful researchers made serious
attacks on the beast and got painfully defeated, it is now understandable that
these people consider the problem to be as hard as the GRH itself. Some
experts go further with prediction that the GRH will be established first for
complex zeros, while the real zeros may wait long for a different treatment. In
the meantime we have many ways of living with or without the exceptional
character. In this article I try to show that this little dose of uncertainty is
enjoyable and stimulating for many new ideas.
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2 The exceptional character and its zero

The characters χ (mod D) were introduced by G. L. Dirichlet for his proof
of the equidistribution of primes in reduced residue classes modulo D, the
essential ingredient being the non-vanishing of the series

L(s, χ) =
∞∑

1

χ(n)n−s (2.1)

at s = 1. It is already in this connection that the case of real character is
different from all the complex characters.

Throughout we assume that χ = χD is the real, primitive character of
conductor D, so it is given by the Kronecker symbol

χ(n) =
(
D∗

n

)

, (2.2)

where D∗ = χ(−1)D. This character is associated with the field

K = Q
(√
D∗
)
, (2.3)

which is real quadratic if χ(−1) = 1, or imaginary quadratic if χ(−1) = −1.
The celebrated Class Number Formula of Dirichlet asserts that

L(1, χ) =
πh√
D

if D∗ < −4 (2.4)

and similar formula holds in other cases. Here h = h(−D) is the class number
of K. By the obvious bound h � 1 one gets

L(1, χ) � π√
D
. (2.5)

Hence L(1, χ) �= 0, but one can also show this directly as follows.
Consider the convolution λ = 1 ∗ χ, i.e.

λ(n) =
∑

d|n
χ(d) =

∏

pα‖n

(
1 + χ(p) + · · · + χ(pα)

)
� 0.

For squares we have λ(m2) � 1. Hence

T (x) =
∑

n�x

λ(n)n−1/2 >
1
2

log x.

On the other hand we find that
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T (x) =
∑

dm�x

χ(d)(dm)−1/2

=
∑

d�y

χ(d)d−1/2
∑

m�x/d

m−1/2 +
∑

m�x/y

m−1/2
∑

y<d�x/m

χ(d)d−1/2

=
∑

d<y

χ(d)
d1/2

{

2
(x

d

)1/2

+ c + O

((d

x

)1/2
)}

+ O
(
Dx1/2y−1

)

= 2L(1, χ)x1/2 +O
(
Dx1/2y−1 + x−1/2y

)

= 2L(1, χ)
√
x+O(

√
D )

for x � D by choosing y = (xD)1/2, where the implied constant is absolute.
Letting x→ ∞ these inequalities imply

L(1, χ) �= 0. (2.6)

For showing (2.6) the class number formula (2.4) is dispensable, but it
is a good starting place for estimating the class number h = h(−D) of the
imaginary quadratic fields. To this end one needs estimates of L(1, χ) (clearly
(2.5) would give nothing new). By the Riemann Hypothesis for L(s, χ) it
follows that

(log logD)−1 � L(1, χD) � log logD, (2.7)

hence the corresponding bounds for the class number
√
D(log logD)−1 � h(D) �

√
D log logD. (2.8)

Here the implied constants are absolute, effectively computable.
No chance to prove (2.8) by means available today. The best known upper

bound is L(1, χD) � logD, which is easy (up to a constant). A lower bound for
L(1, χD) is more important and the current knowledge is even less satisfactory.
This problem is closely related to the zero-free region for L(s, χD).

At present we know that L(s, χ) �= 0 for s = σ + it in the region

σ > 1 − c

logD(|t| + 1)
, (2.9)

where c is a positive absolute constant, for any character χ (mod D) with at
most one exception. The exceptional character is real and the exceptional zero
is real and simple. This follows by classical arguments of de la Vallée-Poussin
(cf. E. Landau [L1]). Hence the question:

Does the Exceptional Zero Exist?

In this article we shall try to illuminate this matter in bright and dark colors.
Let χ (mod D) be the real primitive character of conductor D and β = βχ

be the largest real zero of L(s, χ). Conjecturally βχ = 0,−1 if χ(−1) = 1,−1,
respectively. We say that χ is exceptional if
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β > 1 − c

logD
(2.10)

for some positive constant c. One could make this concept more definite by
fixing a sufficiently small value of the constant c, however we feel this would
only obscure the presentation.

E. Landau [L1] said that H. Hecke knew that if χ was not exceptional, then

L(1, χ) � (logD)−1. (2.11)

Remark . In the exceptional case of odd character χ = χD (which is associated
with the imaginary quadratic field K = Q (

√
−D )) there are several, quite

precise relations between βχ, h and L(1, χ), see [GSc], [G1], [GS].

Landau made a first breakthrough in the exceptional zeros area. Let
χ (mod D) and χ′ (mod D′) be two distinct real primitive characters and
β, β′ be real zeros of L(s, χ), L(s, χ′), respectively. He showed that

min(β, β′) � 1 − b

logDD′ (2.12)

with some positive, absolute constant b. This shows that the exceptional zeros
occur very rarely. For example, calibrating the constant c in (2.10) to c = b/3
one can infer from (2.12) that if χ (mod D) is exceptional then the next
exceptional one χ′ (mod D′) appears no sooner than for some D′ � D2.

There is a great idea in Landau’s arguments which is still exercised in
modern works. Generalising slightly we owe to Landau the product L-function
(a quadratic lift)

Lan(s, f) = L(s, f)L(s, f ⊗ χ) =
∞∑

1

af (n)n−s (2.13)

where

L(s, f) =
∞∑

1

λf (n)n−s (2.14)

can be any natural L-function and L(s, f ⊗ χ) is derived from L(s, f) by
twisting (= multiplying) its coefficients λf (n) with χ(n). This is particularly
interesting for L-functions having finite degree Euler product. Then the prime
coefficients of Lan(s, f) are

af (p) = λ(p)λf (p) (2.15)

where
λ(p) = 1 + χ(p). (2.16)

The key observation is that if L(1, χ) is small then the class number h is small
and χ(p) = 1 is a rare event (not many primes split in the field K). Therefore
χ(p) = −1 and af (p) = 0 quite often. In other words χ(m) pretends to be
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the Möbius function µ(m) on squarefree numbers. In this scenario L(s, f ⊗χ)
pretends to be L(s, f)−1 up to a small Euler product, and Lan(s, f) behaves
like a constant. This indicates that L(s, f) cannot vanish at s near one, unless
L(s, f ⊗ χ) has a pole at s = 1 (natural L-functions are regular at s �= 1).

Remark . Landau worked with

ζ(s)L(s, χ)L(s, χ′)L(s, χχ′)

which is the product of two Lan(s, f) for ζ(s) and L(s, χ).

Paraphrasing the above observation one may say that if the exceptional
zero is very close to s = 1 then the other zeros are further away of s = 1;
not only the zeros of L(s, χ), but also of any other L-function. This kind of
a repelling property of the exceptional zero was nicely exploited in the works
of M. Deuring [D] and H. Heilbronn [H] with a remarkable result that

h(−D) → ∞ as D → ∞. (2.17)

Shortly after that, E. Landau [L2] performed a quantitative analysis of the
repelling effects and made a cute logical maneuver ending up with the lower
bound

h(−D) � D
1
8−ε (2.18)

for any ε > 0, the implied constant depending on ε (the original statement
was a little different, but easily equivalent to (2.18)). In the same year and the
same journal (the very first volume of Acta Arithmetica of 1936) C. L. Siegel
[S] published the still stronger estimate

h(−D) � D
1
2−ε. (2.19)

Note. Siegel was a much broader mathematician than Landau, however in my
opinion Landau’s ideas pioneered the above developments, so why did Siegel
ignore Landau’s contribution entirely?

3 How was the class number problem solved?

All three results (2.17), (2.18), (2.19) suffer from the serious defect of be-
ing ineffective (the implied constants in the Landau–Siegel estimates are not
computable in terms of ε). For that reason one cannot use the results for the
determination of all the imaginary quadratic fields with a given fixed class
number h. Gauss conjectured that there are exactly nine fields with h = 1
(that is to say with unique factorization), the last one for K = Q (

√
−163 ).

Before the problem was completely solved it was known that there can be at
most one more such field.

The Class Number One problem was eventually solved by arithmetical
means (complex multiplication and Weber invariants) by K. Heegner [He] and
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later re-done independently by H. Stark [St]. A completely different solution
was given by A. Baker [B] using transcendental number theory means (lin-
ear forms in three logarithms of algebraic numbers). Next it was recognized
that the linear forms in two logarithms could do the job, so the 1948 work
of A. O. Gelfond and Yu. V. Linnik [GL] was sufficient to resolve the non-
existence of the tenth discriminant. H. Stark also settled the class number
two problem.

Recently A. Granville and H. Stark [GS] showed a new inequality between
the class number h(−D) of K = Q (

√
−D ) and reduced quadratic forms

(a, b, c) of discriminant −D, that is solutions of the equation

−D = b2 − 4ac (3.1)

in integers a, b, c with

−a < b � a < c, or 0 � b � a = c. (3.2)

Note that the reduction condition (3.2) means that the root

z =
−b+ i

√
D

2a
(3.3)

is in the standard fundamental domain of the modular group Γ = SL2(Z).
They showed that

h(−D) �
(π

3
+ o(1)

) √
D

logD

∑

(a,b,c)

a−1. (3.4)

Since the principal form with a = 1 is always there we get h(−D) �√
D/ logD, and with some extra work one can deduce from (3.4) that χ = χD

is not exceptional. Fine, but the formula (3.4) of Granville–Stark is condi-
tional, they need a uniform abc-conjecture for number fields, specifically for
the Hilbert class field which is an extension of K of degree h(−D)! In spite
of this criticism I strongly recommend this paper for learning a number of
beautiful arguments.

A new excitement arose with the work of D. Goldfeld [G2] who succeeded
in giving an effective lower bound

h(−D) �
∏

p|D

(

1 − 2
√
p

p+ 1

)

logD. (3.5)

We shall give a brief sketch how this remarkable bound is derived. But first
we point out some historical facts. In principle there is no reason to abandon
the repelling property of an exceptional zero; one can still produce an effec-
tive result provided such an exceptional zero has a numerical value. OK, but
believing in the Grand Riemann Hypothesis one cannot expect to find a real
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zero of any natural L-function which would be qualified to play a role of the
repellent. A close analysis of Siegel’s arguments reveals that any zero β > 1

2
has some power of repelling; although not as strong as the zero near the point
s = 1, yet sufficient for showing effectively that

h(−D) � Dβ− 1
2 (logD)−1.

The only hope along such ideas is to use an L-function which vanishes at the
central point β = 1

2 , at least this assumption does not contradict the GRH.
Hence the first question is: does the central zero have an effect on the class
number? In the remarkable paper by J. Friedlander [F] we find the answer:
yes it does, and the impact depends on the order of the central zero! The
second question is: how to find L-functions which do vanish at the central
point? If L(s, f) is self-dual and has the root number −1, that is the complete
function Λ(s, f) which includes the local factors at infinite places satisfies the
functional equation

Λ(s, f) = −Λ(1 − s, f), (3.6)

then, of course, L(1
2 , f) = 0. Alas, no such function was known until

J. V. Armitage [A] gave an example of an L-function of a number field (the
Dirichlet L-functions L(s, χ) cannot vanish at s = 1

2 by a folk conjecture).
After this example Friedlander was able to apply his ideas giving an effec-
tive estimate for the class number of relative quadratic extensions. His work
anticipated further research by Goldfeld.

A lot more possibilities were offered by elliptic curves. According to the
Birch–Swinnerton-Dyer conjecture, the Hasse–Weil L-function of an elliptic
curve E/Q vanishes at the central point to the order equal to the rank of the
group of rational points. Goldfeld needed an L-function with central zero of
order at least three. It is easy to point out a candidate as it is easy to construct
an elliptic curve of rank g = 3, but proving that it is modular with the
corresponding L-function vanishing to that order is a much harder problem.
Ten years after Goldfeld’s publication such an L-function was provided by
B. Gross and D. Zagier [GZ], making the estimate (3.5) unconditional. Still,
to make (3.5) practical (for example for the determination of all the imaginary
quadratic fields K = Q (

√
−D ) with the class number h = 3, 4, 5, etc.) one

needs a numerical value of the implied constant; so J. Oesterlé [O] refined
Goldfeld’s work and obtained a pretty neat estimate (3.5) with the implied
constant 1/55.

The best one can hope for to obtain along Goldfeld’s arguments is
h(−D) � (logD)g−2 when an L-function with the central zero of multiplicity
g is employed. However there are popular problems which require a better
effective lower bound for h(−D), such as the
Euler Idoneal Number Problem. Find all discriminants −D for which
the class group of K = Q (

√
−D ) has exactly one class in each genus.

By the genus theory, if −D is an idoneal discriminant then h(−D) =
2ω(D)−1, where ω(D) is the number of distinct prime divisors of D. Because
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ω(D) can be as large as logD/ log logD, the problem of Euler calls for an
effective lower bound

h(−D) � Dc/ log log D, with c > log 2. (3.7)

Of course, Landau’s estimate (2.18) tells us that the number of idoneal dis-
criminants is finite, yet we cannot determine all of them.

4 How and why do the central zeros work?

Very briefly we mention the main ideas behind the bound (3.5). There is no
particular reason to restrict ourselves to the Hasse–Weil L-functions of elliptic
curves, except that they are natural and available sources for multiple central
zeros.

Let f ∈ Sk(N) be a primitive cusp form of weight k � 2, k-even, and level
N , that is a Hecke form on Γ0(N). This has the Fourier expansion

f(z) =
∞∑

1

λf (n)n(k−1)/2e(nz) (4.1)

with coefficients λf (n) which are eigenvalues of Hecke operators Tn for all n.
With our normalization the associated L-function

L(s, f) =
∞∑

1

λf (n)n−s (4.2)

converges absolutely in Re s > 1 (because of the Ramanujan conjecture
|λf (n)| � τ(n) proved by P. Deligne), it has the Euler product

L(s, f) =
∏

p

(
1 − λf (p)p−s + χ0(p)p−2s

)−1 (4.3)

where χ0 (mod N) is the principal character, and the complete product

Λ(s, f) =

(√
N

2π

)s

Γ
(
s+

k − 1
2

)
L(s, f) (4.4)

(which is entire) satisfies the self-dual functional equation

Λ(s, f) = w(f)Λ(1 − s, f). (4.5)

Here w(f) = ±1 is called the root number, or the sign of the functional
equation.

Let χ = χD be the real character (the Kronecker symbol) associated with
the imaginary quadratic field K = Q (

√
−D ). For simplicity assume that

(D,N) = 1. The twisted form
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fχ(z) =
∞∑

1

χ(n)λf (n)n(k−1)/2e(nz) (4.6)

is also a primitive form of weight k and level Nχ = ND2, the L-function

L(s, fχ) =
∞∑

1

χ(n)λf (n)n−s (4.7)

has appropriate Euler product, while the complete product

Λ(s, fχ) =

(
D
√
N

2π

)s

Γ
(
s+

k − 1
2

)
L(s, fχ) (4.8)

is entire and satisfies the functional equation

Λ(s, fχ) = w(fχ)Λ(1 − s, fχ) (4.9)

with the root number
w(fχ) = χ(−N)w(f). (4.10)

Given f and χ we consider the Landau product

L(s) = L(s, f)L(s, fχ) =
∞∑

1

a(n)n−s. (4.11)

This is an L-function with Euler product of degree four. The complete product

Λ(s) = QsΓ 2
(
s+

k − 1
2

)
L(s, f)L(s, fχ) (4.12)

with
Q =

DN

4π2
(4.13)

satisfies the functional equation

Λ(s) = wΛ(1 − s), w = χ(−N). (4.14)

From here we compute the derivative of order g � 0 of Λ(s) at s = 1
2 by way

of moving the integration in

g!
2πi

∫

(1)

Λ(s+ 1
2 )s−g−1ds.

We obtain
Q−1/2Λ(g)(1/2) =

(
1 + (−1)gw

)
S (4.15)

where



106 Henryk Iwaniec

S =
∞∑

1

a(n)√
n
V
( n

Q

)
(4.16)

and V (y) is the Mellin transform of g!Γ 2(s+ k/2)s−g−1.
Assuming that L(s) vanishes at s = 1

2 of order larger than g and that

w = (−1)g (4.17)

we get
S = 0. (4.18)

This is not possible if the class number h = h(−D) is very small. The key
point is that many coefficients a(n) vanish so S is well approximated by a
product over small primes. Waving hands a bit we can pull out from S a
positive factor which takes squares, then we reduce S to a sum which looks
like

S� =
∑�

m<Q

a(m)√
m

(

log
Q

m

)g

. (4.19)

Here the superscript � means that the summation is restricted to squarefree
numbers. For m squarefree we have

a(m) = λ(m)λf (m) � λ(m)τ(m).

One also shows that

∑�

y<m�x

λ(m)τ(m)m−1/2 � h
(1
y

+
x

D

)1/2

. (4.20)

Now, another crucial point is that the sum S� runs over m < Q with Q� D
(for N fixed), so (4.20) is extremely sharp in this range, giving

S� =
∑

m<y

a(m)√
m

(

log
Q

m

)g

+ O(h) (4.21)

with y = (logD)2g. Now assuming that h� (logD)g−2 one can approximate
the short sum (4.21) essentially by the product

(logD)g
∏

p<y

(

1 +
a(p)
√
p

)

(4.22)

and eventually one draws a contradiction. Of course, in details the arguments
are more complicated (cf. [IK]), but their key points look like above. As we
mentioned in the transition from S to S� a factor taking squares is pulled out,
this factor is essentially L(1, sym2f) which is positive. We would also like to
point out that the L-functions L(s, f) for automorphic forms f on GLn with
n > 2 would not do the job, because the corresponding partial sum S� is
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longer than D. On the other hand if we could employ L(s, f) with f on GL1

then S� is of length
√
D and arguments similar to the above yield

h(−D) � D1/4 logD. (4.23)

Well, this is a wishful thinking; the GL1 automorphic L-functions are just
the Dirichlet L-functions for real characters, and none of these is expected to
vanish at the central point s = 1

2 !
However one can derive the effective bound (4.23) from the more plausible

hypothesis that
L(1/2, χD) � 0. (4.24)

Indeed we have (cf. (22.60) of [IK])

ζK(1/2) = ζ(1/2)L(1/2, χD) =
1
2

∑

(a,b,c)

a−1/2 log

(√
D

2a

)

+ O
(
hD−1/4

)
,

where (a, b, c) runs over reduced forms, so 1 � a �
√
D/3. Since ζ( 1

2 )L( 1
2 , χD)

� 0 this yields

h�
∑
(√

D

a

)1/4

log

√
D

a
(4.25)

giving (4.23) from just one term a = 1 (the principal form).
Because of the spectacular consequence (4.23) of the assumption (4.24), it

seems that the latter is out of reach by the current technology. Of course, the
GRH implies (4.24), but it also implies (2.8), so taking this road is pointless.

Closing this section we state an effective lower bound for h(−D) which
can be rigorously established by following the above guidelines.

Theorem 4.1 Suppose that L(s) given by (4.11) vanishes at s = 1
2 to order

m � 3. Then
h(−D) � θ(D) (logD)g−1 (4.26)

where g = m − 1 or g = m − 2 according to the parity condition (−1)g = w.
Here θ(D) is a mild factor, precisely

θ(D) =
∏

p|D

(

1 +
1
p

)−3(

1 +
2
√
p

p+ 1

)−1

while the implied constant depends only on the cusp form f ∈ Sk(N) and is
effectively computable.

Remark . For the purpose of proving Goldfeld’s lower bound (3.5) Gross–
Zagier delivered the following elliptic curve

E : −139 y2 = x3 + 10x2 − 20x+ 8, (4.27)

which is modular of conductor N = 37 · 1392 and rank r = 3.
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5 What if the GRH holds except for real zeros?

If you are not afraid of confrontation with complex zeros of the L(s), then
be more productive working with the logarithmic derivative L′(s)/L(s) rather
than with the partial sums of L(g)(s). P. Sarnak and A. Zaharescu [SZ] have
taken this route to improve Goldfeld’s bound (3.5) significantly.

Theorem 5.1 Let L(s, f) vanish at s = 1
2 of order � 3. Let −D be a fun-

damental discriminant with χD(N) = 1. Suppose L(s) = L(s, f)L(s, f ⊗ χD)
has all its zeros either on the critical line Re s = 1

2 or on the real line Im s = 0.
Then

h(−D) � D
1
6−δ (5.1)

for any δ > 0, the implied constant depending effectively on δ and f .

Theorem 5.1 is our variation on the work of Sarnak–Zaharescu. Their
arguments are somewhat different and their bound (5.1) has the exponent 1/10
in place of 1/6. Moreover they worked only with the L-functions associated
with the elliptic curve (4.27). But they also established a few other interesting
results, some of which are ineffective.

To explain what is behind the proof of Theorem 5.1 we appeal to the so
called “explicit formula”

∑

L(ρ)=0

φ
( γ

2π
logR

)
= 2 φ̂(0)

logD
logR

+ φ(0)

− 2
∑

p�D

λf (p)
λ(p)
√
p
φ̂
( log p

logR

) log p
logR

+ O
( log logD

logR

)
. (5.2)

This is derived by integrating L′(s)/L(s) against a test function φ, using
the functional equation (4.14) and Cauchy’s residue theorem. Here φ(x) is
an even function whose Fourier transform φ̂(y) is continuous and compactly
supported, so φ(x) is entire, R � 2 is a parameter to be chosen later, and
the implied constant depends only on the cusp form f ∈ Sk(N) and the test
function φ. To be fair we must admit that the exact explicit formula contains
terms over prime powers which we put into the error term; this involves an
estimate for the logarithmic derivative of L(s, sym2f) which follows by using
the standard zero-free region near s = 1.

Suppose φ̂(y) is supported in [−1, 1]. Thinking of h = h(−D) being small,
say h � D

1
6−δ, we can estimate the sum over primes in (5.2) by

∑

p<R

λ(p)
√
p

log p
logR

� (logD)−δ (5.3)

for any R with hD1/2 � R � h−2D1−3δ. Later we shall choose R = D
2
3−δ.

This is not an easy bound; it shows that λ(p) = 1 + χ(p) = 0 very often.
Hence the explicit formula (5.2) reduces to
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∑

L(ρ)=0

φ
( γ

2π
logR

)
= 2 φ̂(0)

logD
logR

+ φ(0) + O
(
(logD)−δ

)
. (5.4)

Now we are ready to play with (5.4), that is to say we want to pick up
a test function φ(x) for which (5.4) is false. Already at first glance (5.4) is
an improbable expression for most reasonable φ(x), because for what reason
the zeros ρ = β + iγ of L(s) can be so regularly distributed to generate the
functional φ −→ 3 φ̂(0) + φ(0) ? As we do not know much about the spacing
of zeros, our chance for contradiction goes by estimations. More chance if we
can make every term φ

(
(γ/2π) logR

)
non-negative, so we can pick up the

largest one and drop the others. For this reason we assume that all the zeros
lay on two lines, β = 1

2 or γ = 0. Specifically we choose the Fourier pair (as
in Sarnak–Zaharescu)

φ(x) =
( sinπx

πx

)2

, φ̂(y) = max(1 − |y|, 0) (5.5)

giving

m � 2
logD
logR

+ 1 + O
(
(logD)−δ

)
, (5.6)

where m is the multiplicity of the zero of L(s) at s = 1
2 . For R = D

2
3−δ this

implies m < 4, that is m � 3. However we assumed that L(s, f) has zero at
s = 1

2 of order � 3, and we also know that L(s) = L(s, f)L(s, f ⊗ χ) has
the root number w = χ(−N) = χ(−1) = −1, so m is even, m � 4. This
contradiction completes the proof of Theorem 5.1.

Remarks. The final blow in the proof of Theorem 5.1 is powered by the positiv-
ity arguments. This is an excellent example of the strength of the real-variable
harmonic analysis when coupled with the positivity ideas. The positivity ar-
guments are hard to implement to complex domains, so the hypothesis that
all zeros are on specific lines is critical.

6 Subnormal gaps between critical zeros

A simple central zero of an L-function yields no effect on the class number,
still if it has large order then it does. But what about the complex zeros on
the critical line, so to speak the critical zeros, which appear in abundance?
More hopefully one should ask if some clustering of the critical zeros can be
as effective as the high order central zero. This possibility was contemplated
in the literature long before the central zero effects. Indeed the fundamental
work of H. L. Montgomery [M] on the pair correlation of zeros was motivated
by the class number problems. In a joint paper Montgomery–Weinberger [MW]
used zeros of a fixed real Dirichlet L-function which are close to the central
point s = 1

2 , by means of which they were able to perform quite strong
computations for the imaginary quadratic fields K = Q (

√
−D ) with the
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class number h = h(−D) = 1, 2 (see [MW] for precise results and for some
other relevant claims).

Recently B. Conrey and H. Iwaniec [CI] considered the Hecke L-function

L(s;ψ) =
∑

a

ψ(a)(Na)−s (6.1)

associated with the imaginary quadratic field K = Q (
√
−D ). Here a runs

over the non-zero integral ideals of K and ψ ∈ Ĉ�(K) is a character of the
class group. Although L(s;ψ) does not factor as the Landau product (2.13)
(unless ψ is a genus character), it possesses the same crucial feature, namely
the lacunarity of the coefficients

λψ(n) =
∑

Na=n

ψ(a) (6.2)

if the class number h(−D) is ridiculously small.
Have in mind that the corresponding theta series

θ(z;ψ) =
∞∑

0

λψ(n) e(nz),

with λψ(0) = h/2 for the trivial character and λψ(0) = 0 otherwise, is a
modular form of weight k = 1, level D and Nebentypus χD (it is a cusp form
if ψ is a complex character). This yields the functional equation (self-dual)

Λ(s;ψ) =

(√
D

2π

)s

Γ (s)L(s;ψ) = Λ(1 − s; ψ). (6.3)

By contour integration one can show that the number of zeros of L(s;ψ) in
the rectangle s = σ + it with 0 � σ � 1, 0 < t � T satisfies

N(T ;ψ) =
T

π
log

T
√
D

2πe
+ O(logDT ). (6.4)

Hence one can say (assuming GRH) that the average gap between consecutive
zeros ρ = 1

2 + iγ and ρ′ = 1
2 + iγ′ is about π/ log γ.

We have shown in [CI] that if the gap is a little smaller than the average for
sufficiently many pairs of zeros on the critical line (no GRH is required) then
h(−D) �

√
D(logD)−A for some constant A > 0. This result may not appeal

to everybody, because our L-function L(s;ψ) is intimately related with the
field K = Q (

√
−D ), so are its zeros. Well, we can draw a more impressive

statement from the zeta function of K (the case of the trivial class group
character)

ζK(s) = ζ(s)L(s, χD). (6.5)

Since we do not need all the zeros, we choose only those of ζ(s) which appar-
ently have nothing in common with the character χD.



Conversations on the exceptional character 111

Theorem 6.1 Let ρ = 1
2 + iγ denote the zeros of ζ(s) on the critical line and

ρ′ = 1
2 + iγ′ denote the nearest zero to ρ on the critical line (ρ′ = ρ if ρ is a

multiple zero). Suppose

#
{
ρ ; 0 < γ < T, |γ − γ′| � π

log γ

(
1 − 1√

log γ

)}
� T (log T )4/5 (6.6)

for any T � 2005. Then

h(−D) �
√
D (logD)−90 (6.7)

where the implied constant is effectively computable.

Have in mind that each of ζ(s), L(s, χD) has asymptotically half the num-
ber of zeros of ζK(s), so that relative to ζ(s) in Theorem 6.1 we are counting
the gaps which are a little smaller than the half of the average gap. Our
condition (6.6) is quite realistic, because the Pair Correlation Conjecture of
Montgomery asserts that the zeros of ζ(s) are not equidistributed. In fact the
PCC implies that

|γ − γ′| < 2πϑ
log γ

(6.8)

with any ϑ > 0, for a positive proportion of zeros. The best unconditional
estimate (6.8) is known with ϑ = 0.68 by Montgomery–Odlyzko [MO], ϑ =
0.5171 by Conrey–Ghosh–Gonek [CGG] and ϑ = 0.5169 by Conrey–Iwaniec
(unpublished). For the effective bound (6.7) we need (6.8) with some ϑ < 1

2 .

Remark . At the meeting in Seattle of August 1996 D. R. Heath-Brown gave
a talk “Small Class Number and the Pair Correlation of Zeros” in which he
showed how the assumption of the class number being small distorts the Pair
Correlation Conjecture of Montgomery. His and our arguments have similar
roots.

The main principles of the proof of Theorem 6.1 can be seen quickly (but of
course, the details are formidable) from the “approximate functional equation”

L(s;ψ) =
∑

n�t
√

D

λψ(n)n−s + X(s)
∑

n�t
√

D

λψ(n)ns−1 + . . .

on the line s = 1
2 +it. Because λψ(n) are lacunary (assuming the class number

is relatively small) the two partial sums can be shortened substantially, so the
variation of L(s;ψ) in t is mostly controlled by the gamma factor

X(1
2 + it) =

( 2πe
t
√
D

)2it{
1 +O(1/t)

}

(a “root number” in the t-aspect). In other words the “infinite place” leads the
spin while the “finite places” are too weak and too few to disturb. Therefore
in this illusory scenario the zeros of L(s;ψ) should follow the equidistribution
law, but we postulated otherwise, hence the contradiction.
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From the above discussion one may also get an idea why the PCC predicts
a density function for differences between zeros to be other than constant; the
reason might be that the “finite places” generate the periodicities nit with
distinct frequencies as n varies around t.

Another interesting lesson one can draw from the above situation is that
the very popular perception that the zeros of very different L-functions operate
in their own independent ways, that they do not see each other so cannot
conspire, is not wise. This idealistic view may appeal to math philosophers,
but when the tools of analytic number theory break the sky we find a more
fascinating and complex structure.

7 Fifty percent is not enough!

. . . for winning in a democracy, neither for ruling out the exceptional char-
acter. In recent investigations we (see Iwaniec–Sarnak [IS]) took an oppo-
site direction for attacking the problem of the exceptional character. Rather
than using the central zeros of L-functions as repellents, we need families of
L-functions whose central values are positive, not very small.

For this presentation we take the set Hk(N) of cusp forms f of weight
k � 2, k-even which are primitive on the group Γ0(N) (i.e. which are eigen-
functions of all the Hecke operators Tn, n = 1, 2, 3, . . . ). The basic properties
of the associated L-functions are (4.1)–(4.14). The Hilbert space structure
of the linear space Sk(N) plays a role in our arguments (the Petersson for-
mula brings Kloosterman sums which are our tools), and the transition from
spectral to arithmetical normalizations is achieved by the factors

ωf = ζN (2)L(1, sym2f)−1, (7.1)

where ζN (s) denotes the zeta function with the local factors at primes p |N
omitted, and L(s, sym2f) is the L-function associated with the symmetric
square representation of f . These are mild factors since

(log kN)−2 � L(1, sym2f) � (log kN)2. (7.2)

The upper bound is an easy consequence of the Ramanujan conjecture (proved
by P. Deligne), while the lower bound is essentially saying that L(s, sym2f)
has no exceptional zero which is now known as fact due to Hoffstein–Lockhart
[HL]. Actually we do not make use of (7.2), because the factors ωf are kept
present in our averagings over the family Hk(N). We have

∑

f∈Hk(N)

ωfXf ∼ N (7.3)

for each of the vectors Xf = 1, Xf = L( 1
2 , f), Xf = L( 1

2 , fχ), and
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∑

f∈Hk(N)

ωf L( 1
2 , f)L( 1

2 , fχ) ∼ NL(1, χ) (7.4)

as N → ∞ over squarefree numbers, uniformly for D � N δ with δ > 0 a small
fixed constant (recall that D is the conductor of χ = χD).

The great attraction of the formula (7.4) is the fact that the central values
L(1

2 , f), L( 1
2 , fχ) are known unconditionally to be non-negative. Of course,

one can deduce this from the GRH, yet we can do it without (see Walds-
purger [Wa], Kohnen–Zagier [KZ], Katok–Sarnak [KS], Guo [Gu]). The non-
negativity of L(1

2 , f) has much to do with f being a GL2 form. Recall that
this property for self-dual GL1 forms (the Dirichlet real characters) would
have immediate consequences for the class number (see (4.23)), unfortunately
it is not provable without recourse to the GRH. It is not easy to show that
L(1

2 , f) � 0, L( 1
2 , fχ) � 0 for any cusp form f ∈ Hk(N), but these estimates

are not actually deep. One may get an idea why the central values are non-
negative by considering a simple example of f whose coefficients are

a(n) =
∑

ad=n

χ(a)χ(d)(a/d)ir.

In this case
L( 1

2 , f) =
∣
∣L( 1

2 + ir, χ)
∣
∣2 � 0.

One may express the central values of automorphic L-functions by sums of
squares in a more profound fashion. For the CM forms F.Rodŕıguez Villegas
[R-V] takes squares of a theta-series. A cute proof of L(1

2 , f) � 0 follows as a
by-product in the recent investigations of W. Luo–P. Sarnak [LS] in quantum
chaos.

Another important feature of the asymptotic formula (7.4) is its “purity”,
that is to say the absence of lower order terms involving the derivative L′(1, χ).
Therefore if L(1, χ) is very small then almost all the products L(1

2 , f)L( 1
2 , fχ)

are very small. Before speculating further let us restrict the summation (7.4)
to forms for which the root number of L(s, f)L(s, fχ) is one,

w = wf wfχ
= wf wf χ(−N) = χ(−N) = 1

(because the L-functions with root number −1 vanish at the central point
trivially by the functional equation).

One can establish that a lot of L( 1
2 , f) and L( 1

2 , fχ) are not very small,
say

L( 1
2 , f) � (logN)−2 (7.5)

L( 1
2 , fχ) � (logN)−2, (7.6)

using the classical idea of averaging of mollified values. If the two sets of f ’s for
which both (7.5) and (7.6) hold had a large intersection (positive percentage)
we could conclude from (7.3), (7.4) by the non-negativity that
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L(1, χ) � (logD)−4. (7.7)

We did succeed to show that (7.5) holds for at least 50% of forms f ∈ Hk(N)
with εf = 1, and that (7.6) holds for at least 50% of forms f ∈ Hk(N)
with εfχ

= 1. These results are just too short to ensure a significantly large
intersection.

It is hard to believe that a character χ (mod D) can be so vicious to divide
(by twisting) any respectful family of L-functions into two equal size classes
(almost), giving all the power to one class and nothing for the other class.
Yet, we cannot destroy such feature by present tools. Having (7.6) for 50%
forms it suffices to get (7.5) for slightly more than 50%. The latter task seems
to be quite promising, because the character issue is irrelevant! Not really!
Actually we undertook the task with stronger tools offered by averaging over
the level N . Consequently we were able to attach to L(1

2 , f) a mollifying factor
longer than N (which puts us beyond diagonal) leading to (7.5) for more than
50% of the forms f with wf = 1. But (7.6) is not useful for every N , here
we need the root number condition χ(−N) = 1. Ironically, if one installs this
condition to averaging over the level, then the off-diagonal terms are badly
affected, and the excess over 50% disappears! We are convinced there is a
magic conspiracy out there which prevents us from cracking the existence of
the exceptional character along our lines.

Perhaps one should build a comprehensive theory which explains all the
peculiar loops in which we are often trapped when venturing beyond the
diagonal path.

8 Exceptional primes

An easy way of handling problems is to avoid them. Better yet one may find
that the obstacle which is hard to eliminate can be exploited to reach the goal
in other ways. The case of the exceptional character is a spectacular example
in this regard. We shall present a few applications of the exceptional character
for producing primes in tide areas where even the GRH fails to work. Having
tasted the results one may only wish that the exceptional character is a real
thing, not an illusion which researchers of several generations tried to kill.

The good reason for liking the real exceptional characters χ(m) is that they
pretend to be the Möbius function µ(m) at almost all squarefree integers m.
In the same time the characters are periodic functions, so one can apply a
Fourier analysis in place of zeros of L-functions. One needs a quantitative
measure of how closely χ(m) approximates to µ(m). To this end consider

∆(z, x) =
∑

z<n�x

λ(n)n−1. (8.1)

Recall that λ = 1∗χ, and χ is the real character of conductorD, not necessarily
exceptional. We have



Conversations on the exceptional character 115

∆(z, x) = L(1, χ) [log x+O(log z)] (8.2)

if x > z � D2. Hence λ(n) vanishes very often if L(1, χ) is very small, and
χ(p) = −1 very often. We can see this phenomenon better from estimates for

δ(z, x) =
∑

z�p<x

λ(p)p−1. (8.3)

By the inequality δ(z, x)∆(1, z) � ∆(z, xz) we get by (8.2)

δ(z, x)∆(1, z) � L(1, χ) [log x+O(log z)]. (8.4)

Applying the trivial bound ∆(1, z) � 1 we get

δ(z, x) � L(1, χ) [log x+O(log z)] (8.5)

if x > z � D2. One can also estimate δ(z, x) in terms of any real zero, say β,
of L(s, χ). Indeed we have

∆(1, z) > zβ−1
∑

1�n<z

λ(n)n−β
(
1 − n

z

)

=
1

2πi

∫

(1)

ζ(s+ β)L(s+ β, χ)zs+β−1 ds
s(s+ 1)

= L(1, χ)(1 − β)−1(2 − β)−1 + O
(
q1/4z−1/2

)

> L(1, χ)(1 − β)−1

by moving the integration to the line Re s = 1
2 − β, provided x > z � D2.

Inserting this bound to (8.4) we obtain

δ(z, x) < (1 − β) [log x+O(log z)]. (8.6)

The implied constants in (8.5), (8.6) are absolute. These inequalities show that
δ(z, x) is very small so χ(p) = −1 for almost all p in the range D2 � p � DA,
A constant, provided χ is exceptional.

Now how this observation can be used for applications to prime numbers?
We start from the zeta-function of K = Q (

√
D∗ )

ζK(s) =
∞∑

1

λ(n)n−s = ζ(s)L(s, χ). (8.7)

Define the multiplicative function ν(m) by

1
ζK(s)

=
∞∑

1

ν(m)m−s. (8.8)

Note that |ν(m)| � λ(m) and
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ν(m) = µ(m)λ(m) if m is squarefree. (8.9)

If λ(n) is lacunary (i.e. λ(n) vanishes very often), then so is µ(m). Next,
writing ζ ′(s)/ζ(s) = L(s, χ)ζ ′(s)/ζK(s) we find

Λ(n) =
∑

klm=n

χ(k)(log l)ν(m). (8.10)

We also introduce the function

λ′(d) =
∑

kl=d

χ(k) log l, (8.11)

so (8.10) becomes
Λ(n) =

∑

dm=n

λ′(d)ν(m). (8.12)

One can easily view λ′(d) as a divisor-like function, because log is smooth and
slowly increasing while χ is periodic with a relatively small period. Moreover,
if χ is exceptional then ν(m) is lacunary, so it contributes to (8.12) very little
only at small m. Therefore one can see (8.12) as an approximation to the
von Mangoldt function by a divisor-like function. By means of this formula in
many interesting applications one can accomplish results for primes as strong
as for the divisor function.

The situation described above is a little bit oversimplified. In practice a
serious difficulty occurs with handling the lacunary part of (8.12), say

Λ∗(n) =
∑

dm=n
m>D2

λ′(d)ν(m), (8.13)

especially when Λ∗(n) is applied against a sparse sequence A = (an). We
estimate (8.13) by

|Λ∗(n)| � τ(n)(log n)
∑

m|n
m>D2

λ(m).

We deal with τ(n) log n crudely by special devices which allow us to ignore
this factor, so we are left essentially with

Λ∞(n) =
∑

m|n
m>D2

λ(m). (8.14)

From the above partitions we arrive at (essentially)
∑

n�x

anΛ(n) =
∑

dm�x

m�D2

admλ
′(d)ν(m) + O

(
(log x)2005

∑

n�x

anΛ∞(n)
)
.
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In estimating the sum ∑

n�x

anΛ∞(n) (8.15)

we cannot forget that in our mind λ(m) is lacunary. If A = (an) is not sparse
then one can disconnect an from Λ∞(n) by Cauchy’s inequality and estimate
the resulting sums separately and quite easily. A great challenge appears for
very sparse sequences. We open the convolution λ = 1 ∗ χ in (8.14) and
consider Λ∞(n) to be like the divisor function τ3(n) rather than like τ(n) in
the main term. After having opened the λ(m) our analysis of the error term
must be asymptotically accurate, because at the end we must observe a crucial
cancellation which reflects the lacunarity of λ(m).

Having said this we conclude that the existence of the exceptional character
creates a useful substitute for Λ(n) in terms of divisor-like functions of degree
three. Therefore various methods of analytic number theory which are capable
of showing an asymptotic formula for

∑

n�x

anτ3(n) (8.16)

are likely to be modified to yield an asymptotic formula for
∑

n�x

anΛ(n). (8.17)

In a series of papers J. Friedlander and H. Iwaniec [FI2], [FI3], [FI4] realized
these ideas for a few very sparse sequences. For example we got the following
formula for primes in a short interval

ψ(x) − ψ(x− y) = y
{
1 +O

(
L(1, χ)(log x)rr)}

(8.18)

for x � y � x39/79, x � Dr where r = 18, 290 and the implied constant
is absolute. The result is unconditional, but it is useful only under special
conditions, such as

L(1, χ) � (logD)−1−rr

and Dr � x � D2r. Note that 39
79 < 1

2 , so the interval in (8.18) can be
very short. The Riemann Hypothesis does not work for intervals shorter than
[x−√

x, x].
Similar ideas (however more precise with respect to the powers of loga-

rithms) were used earlier by D. R. Heath-Brown [H-B1] with an impressive
conclusion that if there is an infinite sequence of exceptional zeros, then there
are infinitely many twin primes.

9 The least prime in an arithmetic progression

9.1 Introduction

In the previous sections we have been trying either to eliminate the excep-
tional character from the surface of the Earth, or to employ it for producing



118 Henryk Iwaniec

impressive, yet illusory results. However one can play both tunes in a comple-
mentary fashion to end up with completely unconditional results and effective
ones, unlike the Landau–Siegel type. The celebrated work of Yu. V. Linnik [L]
on the least prime in an arithmetic progression is a true masterpiece of this
kind.

Let pmin(q, a) denote the first prime p ≡ a (mod q). Linnik proved that

pmin(q, a) � qL (9.1)

for any q > 1, (a, q) = 1, where L and the implied constant are absolute
and effectively computable. The GRH gives (9.1) with any L > 2, while the
best known result with L = 5.5 is due to D.R. Heath-Brown [H-B3]. The best
possible (9.1) should be with any L > 1.

Using arguments similar to these in the proof of (8.18) we [FI2] showed
that

ψ(x; q, a) =
ψ(x)
ϕ(q)

{
1 +O

(
L(1, χ)(log x)rr)}

(9.2)

for (a, q) = 1, D �q and any x � max
{
q462/233, Dr

}
with r = 554, 401, where

the implied constant is absolute. If χ (mod D) is exceptional in the sense that

L(1, χ) � (logD)−1−rr

(9.3)

then (9.2) implies (9.1) with L = 2 − 1
59 for q in the range

Dr � q � exp
(
L(1, χ)−r/(rr+1)

)
. (9.4)

Earlier Heath-Brown [H-B2] also succeeded in bringing the Linnik constant L
close to 2, but not below 2, under the assumption of the existence of excep-
tional characters (our condition (9.3) is a bit stronger).

As we described in the previous section at some point our arguments de-
pend on the sum (8.16), specifically for the sequence A = (an) of the char-
acteristic function of the progression n ≡ a (mod q). By no means this is an
easy sum if x < q2; just mention we had to modify the result of [FI1], which
is proved by an appeal to the Riemann Hypothesis for varieties.

Back to Linnik’s bound (9.1) there are several interesting points to say
about its original proof in regard to the theory of Dirichlet L-functions. All
the proofs up to now use essentially the following three principles:

P1: The Zero-Free Region (2.9).

P2: The Log-Free Zero Density Estimate:
∑

χ (mod q)

Nχ(α, T ) � a(qT )b(1−α) (9.5)

where Nχ(α, T ) denotes the number of zeros ρ = β+ iγ of L(s, χ) with β � α,
|γ| < T for 1

2 � α � 1, T � 1, and a, b are positive absolute constants.
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P3: The Exceptional Zero Repulsion:
If β > 1 − c/ log q is a real zero of L(s, χ) for a real character χ (mod q),
then there is no other zero of any L-functions with characters modulo q in the
region

σ � 1 − d | log(1 − β) log q |
log q(|t| + 1)

(9.6)

where c, d are positive, small, absolute constants.

The first principle is classical, the other two are due to Linnik. The prin-
ciples P2, P3 set the theory of Dirichlet L-functions at the most profound
level. Yes, they will be obsolete soon after the GRH is proved, but for the
time being (perhaps a very long time) these principles are treasures on their
own right.

Having paid tribute to P2, P3, we are going to show the Linnik bound
(9.1) without using these principles. Our arguments (a joint work with
J. Friedlander) reveal a new potential of sieve methods. First we treat the
case when the exceptional character is available, because the arguments are
quick and require almost nothing from the theory of L-functions, not even
P1 nor the Prime Number Theorem. The second case, with no exceptional
character existing, is somewhat longer. In this case we do use P1, however
by a hard work one could dispense with it. The point is that using sieve we
are not aiming at an asymptotic formula for primes p ≡ a (mod q), so the
“parity barrier” of linear sieve is not a problem, the primes can be produced
along the elementary lines à la Chebyshev. Anyway, there is no reason to work
hard without P1, when the derivation of the zero-free region (2.9) is by today
standards very easy.

We replace P2 by a much simpler result:

Proposition 9.1 Let ρ = β+ iγ run over the zeros of L(s, χ) for a character
χ (mod q). Put

A(t) =
∑

ρ

(
1 + (1 − β) log q

)−1(1 + |t− γ| log q
)−2

. (9.7)

For any real t we have

A(t) � 3
2

+
log(|t| + c)

2 log q
(9.8)

where c is a positive absolute constant .

Remark . A bound for A(t) with |t| � q by any fixed number suffices for
our applications, because we are not going to give a numerical value of the
constant L in (9.1).

Proof of (9.8). For any s = σ + it with 1 < σ � 2 we have



120 Henryk Iwaniec

−Re
L′

L
(s, χ) =

1
2

log q|s| −
∑

ρ

Re
1

s− ρ
+O(1),

∣
∣
∣
∣
L′

L
(s, χ)

∣
∣
∣
∣ � −ζ

′

ζ
(σ) =

1
σ − 1

+O(1),

Re
1

s− ρ
=

σ − β

(σ − β)2 + (t− γ)2
� 1

σ − β

(

1 +
|t− γ|
σ − 1

)−2

.

Hence

∑

ρ

σ − 1
σ − β

(

1 +
|t− γ|
σ − 1

)−2

� 1 +
1
2
(σ − 1)

(
log q|s| +O(1)

)
.

For σ = 1 + 1/ log q the left side is equal to A(t) giving the bound (9.8).

9.2 The case with an exceptional character

Let χ (mod q) be a real, non-principal character. We do not really assume
that χ is exceptional, so we end up with unconditional results, which will be
useful in the final conclusion only when χ is the exceptional character.

We shall apply sieve to the sequence A =
(
λ(n)an

)
, where λ = 1 ∗ χ and

an is the characteristic function of the arithmetic progression n ≡ a (mod q)
with (a, q) = 1. Clearly we must assume that

χ(a) = 1, (9.9)

or else there is nothing but zero in A. We need to evaluate the sums of type

Ad(x) =
∑

n�x

n≡0 (d)

λ(n)an =
∑

n�x/d

n≡ad (q)

λ(dn)

for (d, q) = 1. Think of λ(n) as the Hecke eigenvalues of the Eisenstein se-
ries of weight one and the central character (Nebentypus) χ. Hence λ(n) is
multiplicative,

λ(dn) =
∑

δ|(d,n)

µ(δ)χ(δ)λ(d/δ)λ(n/δ).

This yields
Ad(x) =

∑

δ|d
µ(δ)χ(δ)λ(d/δ)A

(
x/δd; q, a δd

)

where
A(y; q, α) =

∑

m�y

m≡α (q)

λ(m).
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Here we write

λ(m) =
∑

kl=m

χ(k) =
(
1 + χ(m)

) ∑

kl=m
k<l

χ(k) + χ(
√
m )

for (m, q) = 1, where the last term χ(
√
m ) vanishes, unless

√
m is an integer

(a traditional convention), that is if m = k2. This gives

A(y; q, α) =
(
1 + χ(α)

)
A∗(y; q, α) + O(

√
y )

where

A∗(y; q, α) =
∑

kl�y, k<l

kl≡α (mod q)

χ(k) =
1
q

∑

k<
√

y

χ(k)
(y

k
− k
)

+ O(
√
y )

= L(1, χ) y q−1 + O(
√
y ).

Hence
A(y; q, α) =

(
1 + χ(α)

)
L(1, χ) y q−1 + O(

√
y )

where the implied constant is absolute. Here we have α = a δd, χ(α) =
χ(a)χ(d/δ) = χ(d/δ) = 1, or else λ(d/δ) = 0. Hence we obtain

Ad(x) = 2L(1, χ)
ν(d)x
dq

+ O
(
τ3(d)

√
x/d

)
(9.10)

where

ν(d) =
∑

δ|d
µ(δ)

χ(δ)
δ

λ
(d

δ

)
.

This is multiplicative with

ν(p) = 1 + χ(p)
(
1 − 1

p

)
. (9.11)

We write the approximation (9.10) in the familiar sieve format

Ad(x) = g(d)X + rd(x) (9.12)

where g(d) = ν(d)/d stands for the sifting density function,

X = 2L(1, χ)x q−1 (9.13)

and rd(x) is the error term, rd(x) � τ3(d)
√
x/d. Hence the remainder term

of level y satisfies

R(x, y) =
∑

d<y

|rd(x)| �
√
xy (log y)2,
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where the implied constant is absolute.
We seek primes so we wish to estimate S(A,√x ). Under normal condi-

tions the task would be beyond the capability of a linear sieve. However we
think that χ(p) = −1 very often for the exceptional character, so the density
function at such primes is very small, g(p) = p−2. In this scenario we have
a sieve problem of small dimension, and the Fundamental Lemma of sieve
theory does the job,

S(A, z) = X V (z)
{
1 +O(e−s)

}
+O

(√
xy (log y)2

)
(9.14)

where s = log y/ log z � 2 and

V (z) =
∏

p<z
p�q

(
1 − g(p)

)
=
∏

p<z
p�q

(
1 − 1

p

)(
1 − χ(p)

p

)
. (9.15)

We do not need the full strength of e−s in (9.14), a weaker term s−1 suffices.
Choosing

y =
x

q3(log x)8
, x � q8, (9.16)

we see that the error term in (9.14) is negligible giving

S(A, z) = X V (z)
{

1 +O
( log z

log x

)}
. (9.17)

From S(A, z) we go to S(A,√x ) by Buchstab’s formula

S(A,
√
x ) = S(A, z) −

∑

z�p<
√

x

S(Ap, p).

For every z � p <
√
x we estimate S(Ap, p) by an upper-bound sieve of level

y/p getting
S(Ap, p) � g(p)V (p)X +

√
xy/p (log y)2.

Adding these estimates we arrive at

S(A,
√
x ) = X V (z)

{
1 +O

( log z
log x

+ δ(z, x)
)}

(9.18)

where δ(z, x) is defined by (8.3) and was estimated twice in (8.5) and (8.6),
in the range x > z � q2. Hence we conclude (still unconditional result)

Lemma 9.2 Let χ (mod q) be a real, non-principal character and β be any
real zero of L(s, χ). Suppose χ(a) = 1. Then for x � q8 we have

π(x; q, a) = 2L(1, χ)V (q2)
x

q

{
1 +O

( log q
log x

+ (1 − β) log x
)}

(9.19)
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where the implied constant is absolute. The factor 1 − β can be replaced by
L(1, χ).

Corollary 9.3 Let the condition of Lemma 9.2 be satisfied. Then for x in
the segment

qA � x � e1/A(1−β), (9.20)

where A is any large constant, A � 8, we have

π(x; q, a) >
xL∗(1, χ)
ϕ(q) log q

(9.21)

where
L∗(1, χ) = L(1, χ)

∏

p<q2

(
1 − χ(p)

)
. (9.22)

Of course, the segment (9.20) is not void only if 1 − β � A−2(log q)−1,
which with a large constant A means that χ is an exceptional character.
Assuming that this is the case we get the Linnik bound (9.1) with L = A.

9.3 A parity-preserving sieve inequality

Next we are going to apply sieve to the sequence A = (an) which is the
characteristic function of the arithmetic progression n ≡ a (mod q). Our goal
is to estimate

S(A, z) =
∑

n�x
(n, P (z))=1

an

for z =
√
x. For (d, q) = 1 we have

Ad(x) =
x

dq
+O(1)

so we have a problem of linear sieve. For the level of distribution of A we take

y =
x

q
(log x)−4/3. (9.23)

Recall that the lower-bound linear sieve works only in the range z � √
y,

which is not a problem because

S(A,
√
x ) = S(A,√y ) +O

( x log q
ϕ(q)(log x)2

)
(9.24)

by the Brun-Titchmarsh estimate.
Next the linear sieve gives (see [I], Rutgers notes)

S(A,√y ) = S−(A,√y ) +
∑

n even

Sn(A,√y ).
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Usually one discards all terms Sn(A,√y ) getting the lower bound

S(A, z) � S−(A, z) = X V −(y, z) +O(y),

where X = xq−1 and O(y) is the bound for the remainder term. The main
term equals

V −(y, z) =
{
f(s) +O

(
(log y)−1/3

)}
V (z)

with s = log y/ log z. For z =
√
y we get f(2) = 0, so the sum S−(A,√y ) is

negligible, and we must keep the terms Sn(A,√y ). We get

S(A,√y ) �
∑

n even

Sn(A,√y ) + O(y). (9.25)

We only exploit the term for n = 4, which is

S4(A,
√
y ) =

∑′
. . .
∑′

p4<p3<p2<p1<
√

y

S(Ap1p2p3p4 , p4)

where the summation is restricted by the conditions p1p
3
2 < y, p1p2p3p

3
4 � y.

Dropping more terms we deduce that

S(A,√y ) � 1
24

∑′′
. . .
∑′′∑

p4p3p2p1p�x
p4p3p2p1p≡a (q)

1 + O(y) (9.26)

where the superscript ′′ indicates that the prime variables pr run indepen-
dently over the segment

y1/6 < pr < y1/5, r = 1, 2, 3, 4. (9.27)

Remarks. In (9.26) we have estimated a sum over primes (essentially) by a
sum over products of five primes. The other sums Sn(A,√y ) with n even
(which we discarded) run essentially over products of n + 1 primes (if y is
close to x), so the parity is odd throughout all terms of (9.25). Therefore
the formula (9.25) does not break the parity which is the barrier for getting
primes within the traditional axioms of sieve theory.

We have chosen to work with products of five primes p4p3p2p1p rather
than three for technical advantage (products of larger fixed odd number of
primes would also be fine).

Before applying characters to detect the congruence p4p3p2p1p ≡ a (mod q)
we exploit the positivity, and partition the sum

∑′′
. . .
∑′′∑ in (9.26) into

suitable blocks so the separation of variables will not be an issue later. It is
essential that we can do it at this point without much loss, because the forth-
coming arguments will be so delicate that anything like partial summation
will inflict unreparable damage (certainly losing a logarithmic factor will kill
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the arguments). To this end we fix a smooth function f(u) supported on
[
1
2 , 1
]

with 0 � f(u) � 1, and put

ψX (x; q, a) =
∑

. . .
∑

p p1p2p3p4≡a (q)
xr<pr<2xr

f(p p1p2x3x4/x) log p

where X = [x1, x2, x3, x4] runs over the vectors of dyadic partition points of
the segment [y1/6, y1/5]. Then (9.26) yields

S(A,√y ) � 1
24 log x

∑

X
ψX (x; q, a) + O(y). (9.28)

Notice that we did not partition p and we included the variables p1, p2 together
with p in the argument of the smoothing function f , while p3, p4 are excluded
from f . These seemingly technical devices will play nicely in relevant character
sums.

Let ψX (x) denote the corresponding sum over p p1p2p3p4 with the congru-
ence condition dropped, i.e. ψX (x) = ψX (x; 1, 1), so we have

ψX (x) � x/(log x1)(log x2)(log x3)(log x4), (9.29)

where the implied constant depends only on f . Our goal is to show that

ψX (x; q, a) � ψX (x)
ϕ(q)

(9.30)

for all relevant X subject to some conditions on x, q, a to be specified later.
Hence we derive by (9.24), (9.28) that

π(x; q, a) � π(x)
ϕ(q)

(9.31)

subject to the same conditions on x, q, a.

9.4 Estimation of ψX (x; q, a)

Applying the orthogonality of characters we write

ψX (x; q, a) =
1

ϕ(q)

∑

χ (mod q)

χ(a)ψX (x, χ)

where

ψX (x, χ) =
∑

. . .
∑

p p1p2p3p4
xr<pr<2xr

χ(p p1p2p3p4) f(p p1p2x3x4/x) log p. (9.32)

Denote W = [x1, x2], w = x/x3x4 and
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ψW(w,χ) =
∑∑∑

p p1p2
xr<pr<2xr

χ(p p1p2) f(p p1p2/w) log p, (9.33)

so (9.32) becomes

ψX (x, χ) = ψW(w,χ)
( ∑

x3<p3<2x3

χ(p3)
)( ∑

x4<p4<2x4

χ(p4)
)
. (9.34)

The principal character χ0 (mod q) gives the main term. We also put aside
the contribution of the real character, say χ1 (mod q), because it will require
a special treatment when χ1 is exceptional. We get

ψX (x; q, a) =
1

ϕ(q)
{
ψX (x) + χ1(a)ψX (x, χ1) +∆X (x; q, a)

}
(9.35)

where ∆X (x; q, a) denotes the contribution of all the characters χ �= χ0, χ1.
We estimate ∆X (x; q, a) in the following fashion which resembles the circle

method for ternary additive problems (we have here a multiplicative analog):

∣
∣∆X (x; q, a)

∣
∣ �

max
χ�=χ0,χ1

∣
∣ψW(w,χ)

∣
∣
(∑

χ

∣
∣
∣
∑

p3

χ(p3)
∣
∣
∣
2 )1/2(∑

χ

∣
∣
∣
∑

p4

χ(p4)
∣
∣
∣
2 )1/2

.

It is easy to see that for any X � q2

∑

χ (mod q)

∣
∣
∣
∑

X<p<2X

χ(p)
∣
∣
∣
2

�
(

X

logX

)2

where the implied constant is absolute. To this end square out and estimate
the resulting sum over primes p1 ≡ p2 (mod q) by the Brun-Titchmarsh
theorem.

Now we need a modest, but non-trivial estimate of ψW(w,χ) for every
χ �= χ0, χ1 (it is like asking for a non-trivial estimate of the corresponding
exponential sum in the circle method at every point of the minor arc). In
Section 9.6 we prove that for χ �= χ0, χ1

ψW(w,χ) �
(

log q
logw

+
1

log q

)
w

(log x1)(log x2)
(9.36)

provided x1, x2 � q and x1x2q
2 � w3/4. Hence we get

∆X (x; q, a) �
(

log q
log x

+
1

log q

)

ψX (x) (9.37)

where the implied constant is absolute (we assume that x � q8).
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For estimating ψX (x, χ1) with the real character χ1 we have two options.
First in Section 9.6 we prove that

ψW(w,χ1) �
(

1
(1 − β1) logw

+
log q
logw

+
1

log q

)
w

(log x1)(log x2)
, (9.38)

where β1 is the largest real zero of L(s, χ1). Hence by trivial estimations of
sums over p3, p4 in (9.34) we get

ψX (x, χ1) �
(

1
(1 − β1) log x

+
log q
log x

+
1

log q

)

ψX (x). (9.39)

The second option is to replace every χ(p), χ(pr), r = 1, 2, 3, 4 in (9.32)
by −1 getting

ψX (x, χ1) = −
{
1 +O

(
δ(z, x)

)}
ψX (x)

where δ(z, x) is defined by (8.3). Using (8.6) we get

ψX (x, χ1) = −
{
1 +O

(
(1 − β1) log x

)}
ψX (x). (9.40)

9.5 Conclusion

We are now ready to derive Linnik’s bound (9.1) from the assorted results in
Sections 9.2, 9.3, 9.4.

Suppose χ1 (mod q) is a non-principal real character such that L(s, χ1) has
a real zero β1 with

(1 − β1) log q � A−2, (9.41)

where A is a large constant, A � 8. If χ1(a) = 1 then (9.21) yields (9.1) with
L = A. If χ1(a) = −1 then (9.35), (9.40), (9.37) yield

ψX (x; q, a) =
2

ϕ(q)
ψX (x){1 +O(1/A)}

for qA � x � e1/A(1−β1). Hence we get (9.31) which yields (9.1) with L = A.
Now we can assume that the largest real zero β1 of L(s, χ1) does not satisfy

(9.41). Then we get by (9.35), (9.39), (9.37) that

ψX (x; q, a) =
1

ϕ(q)
ψX (x)

{
1 +O

(
A2 log q

log x
+

1
log q

)}

� ψX (x)
ϕ(q)

if x � qA2B, where B is a large constant. Hence we get (9.31) for every
(a, q) = 1, which yields (9.1) with L = A2B.
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9.6 Appendix. Character sums over triple-primes

In this section we give a non-trivial estimate for the character sum ψW(w,χ)
defined by (9.33).

Proposition 9.4 Let χ (mod q) be a non-trivial character. Put

δχ = min
ρ

{1 − β ; |γ| � log q} (9.42)

where ρ = β + iγ denote zeros of L(s, χ). For x1, x2 � q and x1x2q
2 � w3/4

we have
ψW(w,χ) �

{ 1
δχ logw

+
1

log q

} w

(log x1)(log x2)
(9.43)

where the implied constant is absolute.

Clearly Proposition 9.4 and the classical zero-free region (2.9) imply (9.36)
and (9.38).

Estimating trivially one gets ψW(w,χ) � w/(log x1)(log x2), so { . . . } is
the saving factor (if w, q are large).

The proof of Proposition 9.4 does not require the zero-free region, although
at some point we use the Prime Number Theorem in the form

ψ(y) = y +O
(
y(log y)−4

)
(9.44)

which helps to simplify the arguments. We start by the “explicit formula”
∑

n

χ(n)Λ(n)f(n/w) = −
∑

β�1/2

f̂(ρ)wρ + O
(√
w (log q)2

)
,

where f̂(s) is the Mellin transform of f(u), ρ = β + iγ run over the zeros of
L(s, χ) and the implied constant is absolute. This gives

ψW(w,χ) = −
∑

β�1/2

f̂(ρ)wρ
(∑

p1

χ(p1)p
−ρ
1

)(∑

p2

χ(p2)p
−ρ
2

)

+ O
(√
w (log q)2

)
.

Note that the error term absorbs the contribution of prime powers p2, p3, . . .
which are missing in ψW(w,χ). We have

f̂(ρ) � |ρ|−3. (9.45)

Hence ∑

|γ|>T

∣
∣f̂(ρ)

∣
∣ � T−2 log q. (9.46)

We choose T = log q and estimate the term ψW(w,χ) with |γ| > T trivially,
getting
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ψW(w,χ) = −
∑ρ

f̂(ρ)
( w

x1x2

)ρ(∑

p1

χ(p1)(x1/p1)ρ
)(∑

p2

χ(p2)(x2/p2)ρ
)

+ O
(
w/(log x1)(log x2) log q

)
.

Here
∑ρ denotes summation of the zeros ρ = β + iγ of L(s, χ) restricted by

β � 1
2 , |γ| � log q. We have

∣
∣
∣
( w

x1x2

)ρ∣∣
∣ � w

x1x2

(
x1x2q

2

w

)δχ

q2(β−1),

(
x1x2q

2

w

)δχ

� w−δχ/4 � 4/δχ logw.

Hence

ψW(w,χ) � Tχ(x1, x2)w/x1x2δχ logw + w/(log x1)(log x2) log q,

where

Tχ(x1, x2) =
∑ρ

q2(β−1)
∣
∣
∣

∑

x1<p1<2x1

χ(p1)(x1/p1)ρ
∣
∣
∣
∣
∣
∣

∑

x2<p2<2x2

χ(p2)(x2/p2)ρ
∣
∣
∣. (9.47)

Note that we ignored the factor (9.45) because it does not help, the problem
occurs with bounded zeros.

To complete the proof of (9.43) it remains to show that

Tχ(x1, x2) � x1x2/(log x1)(log x2) (9.48)

where the implied constant is absolute. If we knew that
∑ρ

q2(β−1) � 1, (9.49)

then (9.48) would quickly follow by trivial estimation of the sums over primes
p1, p2. The bound (9.49) is true, it is a kind of log-free density bound for
the zeros of L(s, χ) of height |γ| � log q. However we avoid (9.49) (whose
proof would be quite long) by gaining a bit from cancellation in the sums over
p1, p2. When the variation of ρ = β+iγ with respect to γ exceeds (log q)−1 we
do have a change in the argument of (xr/pr)ρ as pr varies in xr < pr < 2xr,
log xr � log q. This observation should explain why we did not want to sepa-
rate p from p1, p2 in the smoothing function f(p p1p2/w). Moreover it is worth
mentioning that for this purpose we use two prime variables p1, p2 rather than
one, because we can apply the duality principle.

Lemma 9.5 For x � q and any complex numbers cp we have
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∑ρ
q2(β−1)

∣
∣
∣
∑

x<p<2x

cp(x/p)ρ
∣
∣
∣
2

� x

log x

∑

p

|cp|2 (9.50)

where the implied constant is absolute.

Clearly (9.48) follows from (9.50) by Cauchy’s inequality.
For the proof of Lemma 9.5 it suffices to show that for any complex num-

bers aρ
∑

x<p<2x

log p
p

∣
∣
∣
∑ρ

aρ(x/p)ρqβ−1
∣
∣
∣
2

�
∑ρ

|aρ|2. (9.51)

First we smooth the outer summation by introducing a factor h(p/x), then
we square out and execute the summation over p getting

∑

p

log p
p

h(p/x)(x/p)ρ1+ρ2 �
(
1 + |γ1 − γ2| log x

)−2
.

This follows by partial summation using (9.44) and that the Fourier transform
of h(u) satisfies ĥ(v) � (1 + |v|)−2. Hence the left side of (9.51) is estimated
by

∑ρ1 ∑ρ2 ∣∣aρ1aρ2

∣
∣
(
1 + |γ1 − γ2| log q

)−2
qβ1+β2−2 �

∑ρ
A(γ)|aρ|2

where A(t) is defined and estimated in Proposition 9.1. This proves (9.51),
hence (9.50) by the duality, and finally (9.43).

References

[A] J.V. Armitage, Zeta functions with a zero at s = 1
2
, Invent. Math. 15 (1972),

199-205.
[B] A. Baker, Linear forms in the logarithms of algebraic numbers, Mathematika

13 (1966), 204-216.
[CGG] J. B. Conrey, A. Ghosh and S.M. Gonek, A note on gaps between zeros of

the zeta function, Bull. London Math. Soc. 16 (1984), 421-424.
[CI] B. Conrey and H. Iwaniec, Spacing of zeros of Hecke L-functions and the

class number problem, Acta Arith. 103 (2002), 259-312.
[D] M. Deuring, Imaginär-quadratische Zahlkörper mit der Klassenzahl (1),

Math. Z. 37 (1933), 405-415.
[F] J. B. Friedlander, On the class numbers of certain quadratic extensions, Acta

Arith. 28 (1976), 391-393.
[FI1] J. B. Friedlander and H. Iwaniec, Incomplete Kloosterman sums and a divi-

sor problem, Ann. Math. (2) 121 (1985), 319-350.
[FI2] J. B. Friedlander and H. Iwaniec, Exceptional characters and prime numbers

in arithmetic progressions, Int. Math. Res. Notices 37 (2003), 2033-2050.
[FI3] J. B. Friedlander and H. Iwaniec, Exceptional characters and prime numbers

in short intervals, Selecta Math. 10 (2004), 61-69.



Conversations on the exceptional character 131

[FI4] J. B. Friedlander and H. Iwaniec, The illusory sieve, preprint.
[GL] A.O. Gelfond and Yu.V. Linnik, On Thue’s method and the effectiveness

problem in quadratic fields, Dokl. Akad. Nauk SSSR 61 (1948), 773-776 (in
Russian).

[G1] D. Goldfeld, An asymptotic formula relating the Siegel zero and the class
number of quadratic fields, Ann. Scuola Norm. Sup. Pisa (4) 2 (1975), 611-
615.

[G2] D. Goldfeld, The class number of quadratic fields and the conjectures of Birch
and Swinnerton-Dyer , Ann. Scuola Norm. Sup. Pisa (4) 3 (1976), 623-663.

[GSc] D. Goldfeld and A. Schinzel, On Siegel’s zero, Ann. Scuola Norm. Sup. Pisa
(4) 2 (1975), 571-583.

[GS] A. Granville and H.M. Stark, ABC implies no “Siegel zeros” for L-functions
of characters with negative discriminant , Invent. Math. 139 (2000), 509-523.

[GZ] B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent.
Math. 84 (1986), 225-320.

[Gu] J. Guo, On the positivity of the central critical values of automorphic
L-functions for GL(2), Duke Math. J. 83 (1996), 157-190.

[H-B1] D.R. Heath-Brown, Prime twins and Siegel zeros, Proc. London Math. Soc.
(3) 47 (1983), 193-224.

[H-B2] D.R. Heath-Brown, Siegel zeros and the least prime in an arithmetic pro-
gression, Quart. J. Math. Oxford (2) 41 (1990), no. 164, 405-418.

[H-B3] D.R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least
prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992),
265-338.

[He] K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56
(1952), 227-253.

[H] H. Heilbronn, On the class-number in imaginary quadratic fields, Quart. J.
Math. Oxford 5 (1934), 150-160.

[HL] J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the Siegel
zero, Ann. Math. (2) 140 (1994), 161-181.

[I] H. Iwaniec, Sieve Methods, Graduate Course Notes, Rutgers, 1996.
[IK] H. Iwaniec and E. Kowalski, Analytic Number Theory , Amer. Math. Soc.

Colloquium Publications, vol. 53, 2004.
[IS] H. Iwaniec and P. Sarnak, The non-vanishing of central values of automor-

phic L-functions and Landau-Siegel zeros, Israel J. Math. 120 (2000), 155-
177.

[KS] S. Katok and P. Sarnak, Heegner points, cycles and Maass forms, Israel J.
Math. 84 (1993), 193-227.

[KZ] W. Kohnen and D. Zagier, Values of L-series of modular forms at the center
of the critical strip, Invent. Math. 64 (1981), 175-198.
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